Migraine and Sleep—An Unexplained Association?
Abstract
:1. Introduction
2. Methods
3. Pathogenesis of Migraine and Sleep Disorders
3.1. Migraine
3.2. Sleep Disorders
4. The Most Common Sleep Disorders in Migraine
4.1. Insomnia
4.2. Obstructive Sleep Apnea
4.3. Parasomnia
4.4. Rest Leg Syndrome
4.5. Bruxism
4.6. Narcolepsy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
cAMP | Cyclic adenosine 3, 5’-monophosphate |
CGRP | calcitonin gene-related peptide |
CNS | central nervous system |
CSD | cortical spreading depression |
DpMe | deep mesencephalic nucleus |
DRN | dorsal raphe nuclei |
DRN | dorsal raphe nuclei |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, 5th Edition |
eVLPO | extended ventrolateral preoptic neurons in the hypothalamus |
GABA | gamma-aminobutyric acid |
ICD-10-CM | International Classification of Diseases, 10th Edition, Clinical Modification |
ICHD-3 | International Classification of Headache Disorders |
ICSD-3 | International Classification for Sleep Disorders, 3rd Edition |
LC | aminergic locus coeruleus neurons |
LC | locus coeruleus |
LDT | interneurons of the lateral dorsal tegmental |
LDT | lateral dorsal tegmental nuclei neurons |
MnPO | median preoptic nucleus |
NO | nitric oxide |
NOS | nitric oxide synthase |
NREM | non-rapid eye movement |
OSA | obstructive sleep apnea |
OX1R | hypocretin receptor 1 |
OX2R | hypocretin receptor 2 |
PACAP | pituitary adenylate cyclase-activating polypeptide |
PB | parabrachial nucleus |
PPT | pedunculopontine tegmental |
PPT | pedunculopontine tegmental |
PZ | parafacial zone |
REM | rapid eye movement |
RLS | rest leg syndrome |
SLD | sublaterodorsal nucleus |
TMN | tuberomammillary nucleus |
VIP | vasoactive intestinal peptide |
vlPAG | ventrolateral periaqueductal grey region |
VLPO | ventrolateral preoptic neurons in the hypothalamus |
VTA | ventrolateral tegmental nucleus |
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Ashina, M. Migraine. N. Engl. J. Med. 2020, 383, 1866–1876. [Google Scholar] [CrossRef]
- Lipton, R.B.; Munjal, S.; Alam Mbbs, M.A.; Buse, D.C.; Fanning, K.M.; Reed, M.L.; Schwedt, T.J.; Dodick, D.W. Migraine in America Symptoms and Treatment (MAST) Study: Baseline Study Methods, Treatment Patterns, and Gender Differences. Headache J. Head Face Pain 2018, 58, 1408–1426. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar]
- Dodick, D.W. Migraine. Lancet 2018, 391, 1315–1330. [Google Scholar] [CrossRef]
- Hutka, P.; Krivosova, M.; Muchova, Z.; Tonhajzerova, I.; Hamrakova, A.; Mlyncekova, Z.; Mokry, J.; Ondrejka, I. Associa-tion of Sleep Architecture and Physiology with Depressive Disorder and Antidepressants Treatment. Int. J. Mol. Sci. 2021, 22, 1333. [Google Scholar] [CrossRef]
- Maurovich-Horvat, E.; Pollmächer, T.Z.; Sonka, K. The effects of sleep and sleep deprivation on metabolic, endocrine and immune parameters. Prague Med. Rep. 2008, 109, 275–285. [Google Scholar] [PubMed]
- Szelenberger, W. Neurobiology of sleep. Pneumon Alergolologia Polska 2007, 75, 3–8. [Google Scholar]
- Rechtschaffen, A.; Bergmann, B.M. Sleep Deprivation in the Rat: An Update of the 1989 Paper. Sleep 2002, 25, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trosman, I.; Ivanenko, A. Classification and Epidemiology of Sleep Disorders in Children and Adolescents. Child Adolesc. Psychiatr. Clin. North Am. 2021, 30, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W.; Eross, E.J.; Parish, J.M.; Silber, M. Clinical, anatomical, and physiologic relationship between sleep and head-ache. Headache 2003, 43, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Kelman, L.; Rains, J.C. Headache and sleep: Examination of sleep patterns and complaints in a large clinical sample of mi-graineurs. Headache 2005, 45, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Ferini-Strambi, L.; Galbiati, A.; Combi, R. Sleep disorder-related headaches. Neurol. Sci. 2019, 40, 107–113. [Google Scholar] [CrossRef]
- Tiseo, C.; Vacca, A.; Felbush, A.; Filimonova, T.; Gai, A.; Glazyrina, T. European Headache Federation School of Advanced Studies (EHF-SAS). Migraine and sleep disorders: A systematic review. Headache Pain 2020, 21, 126. [Google Scholar]
- Bruni, O.; Novelli, L.; Guidetti, V.; Ferri, R. Sleep and headaches during adolescence. Adolesc. Med. State Art Rev. 2010, 21, 446–456. [Google Scholar]
- Dosi, C.; Figura, M.; Ferri, R.; Bruni, O. Sleep and Headache. Semin. Pediatr. Neurol. 2015, 22, 105–112. [Google Scholar] [CrossRef]
- Cho, S.-J.; Chu, M.K. Risk Factors of Chronic Daily Headache or Chronic Migraine. Curr. Pain Headache Rep. 2015, 19. [Google Scholar] [CrossRef]
- Korabelnikova, E.A.; Danilov, A.B.; Danilov, A.B.; Vorobyeva, Y.D.; Latysheva, N.V.; Artemenko, A.R. Sleep Disorders and Headache: A Review of Correlation and Mutual Influence. Pain Ther. 2020, 9, 411–425. [Google Scholar] [CrossRef]
- Alstadhaug, K.; Salvesen, R.; Bekkelund, S. Insomnia and Circadian Variation of Attacks in Episodic Migraine. Headache J. Head Face Pain 2007, 47, 1184–1188. [Google Scholar] [CrossRef]
- Lin, Y.K.; Lin, G.Y.; Lee, J.T. Associations between sleep quality and migraine frequency: A cross-sectional case-control study. Medicine 2016, 95, e3554. [Google Scholar] [CrossRef] [PubMed]
- Uluduz, D.; Seydaoglu, G.; Okuyucu, E.; Melek, I. Sleep changes during prophylactic treatment of migraine. Ann. Indian Acad. Neurol. 2015, 18, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Aydinlar, E.I.; Dikmen, P.Y.; Kosak, S.; Kocaman, A.S. OnabotulinumtoxinA effectiveness on chronic migraine, negative emotional states and sleep quality: A single-center prospective cohort study. J. Headache Pain 2017, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kang, Y.; Cho, S.-J. Subjective cognitive decline in patients with migraine and its relationship with depression, anxiety, and sleep quality. J. Headache Pain 2017, 18, 77. [Google Scholar] [CrossRef] [Green Version]
- Song, T.-J.; Cho, S.-J.; Kim, W.-J.; Yang, K.I.; Yun, C.-H.; Chu, M.K. Poor sleep quality in migraine and probable migraine: A population study. J. Headache Pain 2018, 19, 58. [Google Scholar] [CrossRef]
- Karthik, N.; Sinha, S.; Taly, A.; Kulkarni, G.; Ramachandraiah, C.; Rao, S. Alteration in polysomnographic profile in ‘migraine without aura’ compared to healthy controls. Sleep Med. 2013, 14, 211–214. [Google Scholar] [CrossRef]
- Park, J.-W.; Cho, S.-J.; Park, S.-G.; Chu, M.K. Circadian variations in the clinical presentation of headaches among migraineurs: A study using a smartphone headache diary. Chrono Int. 2017, 35, 546–554. [Google Scholar] [CrossRef]
- Ong, J.C.; Park, M. Chronic headaches and insomnia: Working toward a biobehavioral model. Cephalalgia 2012, 32, 1059–1070. [Google Scholar] [CrossRef]
- Yang, C.-P.; Wang, S.-J. Sleep in Patients with Chronic Migraine. Curr. Pain Headache Rep. 2017, 21, 39. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Holland, P.R.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev. 2017, 97, 553–622. [Google Scholar] [CrossRef]
- Dodick, D.W. CGRP ligand and receptor monoclonal antibodies for migraine prevention: Evidence review and clinical im-plications. Cephalalgia 2019, 39, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Wrobel Goldberg, S.; Silberstein, S.D. Targeting CGRP:a new era for migraine treatment. CNS Drugs 2015, 29, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, A. Migraine: A brain state. Curr. Opin. Neurol. 2013, 26, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Stępień, A. Modern migraine treatment. BÓL 2019, 20, 39–44. [Google Scholar] [CrossRef]
- Curran, D.A.; Hinterberger, H.; Lance, J.W.; Joffe, A.D. Total plasma serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain 1965, 88, 997–1010. [Google Scholar] [CrossRef]
- Humphrey, P.P.A.; Feniuk, W.; Perren, M.J.; Beresford, I.J.M.; Skingle, M.; Whalley, E.T. Serotonin and Migraine. Ann. N. Y. Acad. Sci. 1990, 600, 587–598. [Google Scholar] [CrossRef]
- Classey, J.; Bartsch, T.; Goadsby, P. Distribution of 5-HT1B, 5-HT1D and 5-HT1F receptor expression in rat trigeminal and dorsal root ganglia neurons: Relevance to the selective anti-migraine effect of triptans. Brain Res. 2010, 1361, 76–85. [Google Scholar] [CrossRef]
- Ma, Q.P.; Hill, R.; Sirinathsinghji, D. Colocalization of CGRP with 5-HT1B/1D receptors and substance P in trigeminal ganglion neurons in rats. Eur. J. Neurosci. 2001, 13, 2099–2104. [Google Scholar] [CrossRef]
- Orzeł-Gryglewska, J. Znaczenie dopaminy w regulacji stanów snu i czuwania. Kosmos 2014, 63, 189–200. [Google Scholar]
- Smidt, M. How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci. 2007, 8, 21–32. [Google Scholar] [CrossRef]
- Barbanti, P.; Aurilia, C.; Egeo, G.; Fofi, L.; Guadagni, F.; Ferroni, P. Dopaminergic symptoms in migraine: A cross-sectional study on 1148 consecutive headache center-based patients. Cephalalgia 2020, 40, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, P.; Fofi, L.; Aurilia, C.; Egeo, G. Dopaminergic symptoms in migraine. Neurol. Sci. 2013, 34, S67–S70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.M.; Thomsen, L.; Olesen, J.; Ashina, M. Familial Hemiplegic Migraine Type 1 Shows no Hypersensitivity to Nitric Oxide. Cephalalgia 2008, 28, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Hougaard, A.; Hauge, A.W.; Guo, S.; Tfelt-Hansen, P. The nitric oxide synthase inhibitor and serotonin-receptor agonist NXN-188 during the aura phase of migraine with aura: A randomized, double-blind, placebo-controlled cross-over study. Scand. J. Pain 2013, 4, 48–52. [Google Scholar] [CrossRef]
- Koulchitsky, S.; Fischer, M.J.; De Col, R.; Schlechtweg, P.M.; Messlinger, K. Biphasic Response to Nitric Oxide of Spinal Trigeminal Neurons With Meningeal Input in Rat–Possible Implications for the Pathophysiology of Headaches. J. Neurophysiol. 2004, 92, 1320–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerman, S.; Holland, P.R.; Lasalandra, M.P.; Goadsby, P.J. Oxygen Inhibits Neuronal Activation in the Trigeminocervical Complex After Stimulation of Trigeminal Autonomic Reflex, But Not During Direct Dural Activation of Trigeminal Afferents. Headache J. Head Face Pain 2009, 49, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J. Trigeminal Autonomic Cephalalgias. Contin. Lifelong Learn. Neurol. 2012, 18, 883–895. [Google Scholar] [CrossRef] [Green Version]
- May, A.; Goadsby, P.J. The trigeminovascular system in humans: Pathophysiological implications for primary headache syn-dromes of the neural influences on the cerebral circulation. J. Cereb. Blood Flow Metab. 1999, 19, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Akerman, S.; Holland, P.R.; Summ, O.; Lasalandra, M.P.; Goadsby, P.J. A translational in vivo model of trigeminal autonomic ceph-alalgias: Therapeutic characterization. Brain 2012, 135, 3664–3675. [Google Scholar] [CrossRef] [Green Version]
- Goadsby, P.J.; Edvinsson, L.; Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 1990, 28, 183–187. [Google Scholar] [CrossRef]
- Edvinsson, L. Patophysiology of primary headaches. Curr. Pain Headache Rep. 2001, 5, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Liampas, I.; Siokas, V.; Brotis, A.; Vikelis, M.; Dardiotis, E. Endogenous Melatonin Levels and Therapeutic Use of Exogenous Mel-atonin in Migraine: Systematic Review and Meta-Analysis. Headache 2020, 60, 1273–1299. [Google Scholar] [CrossRef]
- Brola, W.; Sobolewski, P. Nowe strategie leczenia i profilaktyki migreny. Aktualn Neurol. 2019, 19, 132–140. [Google Scholar] [CrossRef]
- Alstadhaug, K.B.; Odeh, F.; Salvesen, R.; Bekkelund, S.I. Prophylaxis of migraine with melatonin: A randomized controlled trial. Neurology 2010, 75, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Chabi, A.; Zhang, Y.; Jackson, S.; Cady, R.; Lines, C.; Herring, W.J.; Connor, K.M.; Michelson, D. Randomized controlled trial of the orexin receptor antagonist filorexant for migraine prophylaxis. Cephalalgia 2014, 35, 379–388. [Google Scholar] [CrossRef]
- Lavie, P. The sleep theory of Constantin von Economo. J. Sleep Res. 1993, 2, 175–178. [Google Scholar] [CrossRef]
- Hobson, J.; McCarley, R.; Wyzinski, P. Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science 1975, 189, 55–58. [Google Scholar] [CrossRef]
- Lu, J.; Bjorkum, A.A.; Xu, M.; Gaus, S.E.; Shiromani, P.J.; Saper, C.B. Selective Activation of the Extended Ventrolateral Preoptic Nu-cleus during Rapid Eye Movement Sleep. J. Neurosci. 2002, 22, 4568–4576. [Google Scholar] [CrossRef] [PubMed]
- Gallopin, T.; Fort, P.; Eggermann, E.; Cauli, B.; Mu, M. Identication of sleep-promoting neurons in vitro. Nature 2000, 404, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Porkka-Heiskanen, T.; Strecker, R.E.; Thakkar, M.; Bjørkum, A.A.; Greene, R.W.; McCarley, R.W. Adenosine: A Mediator of the Sleep-Inducing Effects of Prolonged Wakefulness. Science 1997, 276, 1265–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.S.; Ottallah, H.; Maciel, C.B.; Strickland, M.; Doré, S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019, 42, 1–16. [Google Scholar] [CrossRef]
- Gallopin, T.; Luppi, P.-H.; Rambert, F.A.; Frydman, A.; Fort, P. Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: An in vitro pharmacologic study. Sleep 2004, 27, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Mleux, B.; Eggermann, E.; Bisetti, A.; Bayer, L.; Machard, D.; Jones, B.E.; Mühlethaler, M.; Serafin, M. Nicotinic Enhancement of the Noradrenergic Inhibition of Sleep-Promoting Neurons in the Ventrolateral Preoptic Area. J. Neurosci. 2004, 24, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Anaclet, C.; Ferrari, L.; Arrigoni, E.; Bass, C.E.; Saper, C.B.; Lu, J.; Fuller, P.M. The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nat. Neurosci. 2014, 17, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.-H.; Zhong, Z.-G.; Chen, M.C.; Lu, J. Nigrostriatal and mesolimbic control of sleep–wake behavior in rat. Brain Struct. Funct. 2019, 224, 2525–2535. [Google Scholar] [CrossRef]
- Chowdhury, S.; Matsubara, T.; Miyazaki, T.; Ono, D.; Fukatsu, N.; Abe, M.; Sakimura, K.; Sudo, Y.; Yamanaka, A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. eLife 2019, 8, 1–27. [Google Scholar] [CrossRef]
- Weber, F.; Hoang Do, J.P.; Chung, S.; Beier, K.T.; Bikov, M.; Saffari Doost, M. Regulation of REM and Non-REM Sleep by Peri-aqueductal GABAergic Neurons. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oishi, Y.; Xu, Q.; Wang, L.; Zhang, B.J.; Takahashi, K.; Takata, Y. Slow-wave sleep is controlled by a subset of nucleus accum-bens core neurons in mice. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, K. Single unit activity of periaqueductal gray and deep mesencephalic nucleus neurons involved in sleep stage switch-ing in the mouse. Eur. J. Neurosci. 2018, 47, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhong, P.; Hu, F.; Barger, Z.; Ren, Y.; Ding, X.; Li, S.; Weber, F.; Chung, S.; Palmiter, R.D.; et al. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019, 177, 1293–1307.e16. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Kumar, S.; McGinty, D.; Alam, M.N.; Szymusiak, R. Neuronal activity in the preoptic hypothalamus during sleep dep-rivation and recovery sleep. J. Neurophysiol. 2014, 111, 287–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uschakov, A.; Gong, H.; McGinty, D.; Szymusiak, R. Efferent projections from the median preoptic nucleus to sleep- and arous-al-regulatory nuclei in the rat brain. Neuroscience 2007, 150, 104–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarley, R.; Hobson, J. Neuronal excitability modulation over the sleep cycle: A structural and mathematical model. Science 1975, 189, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sherman, D.M.; Devor, M.; Saper, C.B. A putative flip–flop switch for control of REM sleep. Nat. Cell Biol. 2006, 441, 589–594. [Google Scholar] [CrossRef]
- Erickson, E.T.M.; Ferrari, L.L.; Gompf, H.S.; Anaclet, C. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front. Neurosci. 2019, 13, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef]
- Lee, M.G.; Hassani, O.K.; Jones, B.E. Discharge of Identified Orexin/Hypocretin Neurons across the Sleep-Waking Cycle. J. Neurosci. 2005, 25, 6716–6720. [Google Scholar] [CrossRef]
- Modirrousta, M.; Mainville, L.; Jones, B. Gabaergic neurons with α2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience 2004, 129, 803–810. [Google Scholar] [CrossRef]
- Lee, D.A.; Oikonomou, G.; Cammidge, T.; Andreev, A.; Hong, Y.; Hurley, H.; Prober, D.A. Neuropeptide VF neurons promote sleep via the serotonergic raphe. eLife 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Monti, J.M. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med. Rev. 2010, 14, 319–327. [Google Scholar] [CrossRef]
- Oikonomou, G.; Altermatt, M.; Zhang, R.-W.; Coughlin, G.M.; Montz, C.; Gradinaru, V.; Prober, D.A. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron 2019, 103, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Saper, C.B.; Fuller, P.M. Wake–Sleep Circuitry: An Overview. Curr. Opin. Neurobiol. 2017, 44, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Friedmann, D.; Xiong, J.; Liu, C.D.; Ferguson, B.R.; Weerakkody, T.; DeLoach, K.E.; Ran, C.; Pun, A.; Sun, Y.; et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 2018, 175, 472–487.e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guieu, R.; Devaux, C.; Henry, H.; Bechis, G.; Pouget, J.; Mallet, D.; Sampieri, F.; Juin, M.; Gola, R.; Rochat, H. Adenosine and Migraine. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1998, 25, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, B.E.; Shuttleworth, C.W. Evidence that adenosine contributes to Leao’s spreading depression in vivo. Br. J. Pharmacol. 2017, 37, 1656–1669. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Olcese, U.; Lazimy, Y.M.; Faraguna, U.; Esser, S.K.; Williams, J.C.; Cirelli, C.; Tononi, G. Cortical Firing and Sleep Homeostasis. Neuron 2009, 63, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Bettendorff, L.; Sallanon-Moulin, M.; Touret, M.; Wins, P.; Margineanu, I.; Schoffeniels, E. Paradoxical Sleep Deprivation Increases the Content of Glutamate and Glutamine in Rat Cerebral Cortex. Sleep 1996, 19, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Tadavarty, R.; Rajput, P.S.; Wong, J.M.; Kumar, U.; Sastry, B.R. Sleep-Deprivation Induces Changes in GABAB and mGlu Receptor Expression and Has Consequences for Synaptic Long-Term Depression. PLoS ONE 2011, 6, e24933. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsen, M.; Amirian, I.; Reiter, R.J.; Rosenberg, J.; Gögenur, I. Analgesic effects of melatonin: A review of current evidence from experimental and clinical studies. J. Pineal Res. 2011, 51, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Ahmadpour, Y.; Rezaei, H.; Kooshki, L.; Moradi, S.Z.; Iranpanah, A. The antinociceptive mechanisms of melatonin: Role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway. Behav. Pharmacol. 2020, 31, 728–737. [Google Scholar] [CrossRef]
- Dworak, M.; McCarley, R.W.; Kim, T.; Kalinchuk, A.V.; Basheer, R. Sleep and Brain Energy Levels: ATP Changes during Sleep. J. Neurosci. 2010, 30, 9007–9016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, L.; Siegel, J.M. Sleep deprivation under sustained hypoxia protects against oxidative stress. Free Radic. Biol. Med. 2011, 51, 1842–1848. [Google Scholar] [CrossRef] [Green Version]
- Barbanti, P.; Aurilia, C.; Egeo, G.; Fofi, L.; Vanacore, N. A case-control study on excessive daytime sleepiness in chronic migraine. Sleep Med. 2013, 14, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.; Franco, A.L.; Gonçalves, D.A.; Speciali, J.G.; Bigal, M.E.; Camparis, C.M. Temporomandibular disorders, sleep bruxism, and primary headaches are mutually associated. J. Orofac. Pain 2013, 27, 14–20. [Google Scholar] [PubMed]
- Roth, T. Insomnia: Definition, Prevalence, Etiology, and Consequences. J. Clin. Sleep Med. 2007, 3. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Cho, S.-J.; Kim, W.-J.; Yang, K.I.; Yun, C.-H.; Chu, M.K. Impact of migraine on the clinical presentation of insomnia: A population-based study. J. Headache Pain 2018, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Odegard, S.S.; Engstrom, M.; Sand, T.; Stovner, L.J.; Zwart, J.A.; Hagen, K. Associations between sleep disturbance and pri-mary headaches: The third Nord-Trondelag health study. J. Headache Pain 2020, 11, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Lateef, T.; Swanson, S.; Cui, L.; Nelson, K.; Nakamura, E.; Merikangas, K. Headaches and sleep problems among adults in the United States: Findings from the National Comorbidity Survey–Replication Study. Cephalalgia 2011, 31, 648–653. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.-J.; Kim, W.-J.; Yang, K.I.; Yun, C.-H.; Chu, M.K. Insomnia in probable migraine: A population-based study. J. Headache Pain 2016, 17, 92. [Google Scholar] [CrossRef]
- Kristiansen, H.A.; Kværner, K.J.; Akre, H.; Øverland, B.; Russell, M.B. Migraine and sleep apnea in the general population. J. Headache Pain 2011, 12, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.G.; Ziemba, A.M.; Garb, J.L. Improvement in Headaches With Continuous Positive Airway Pressure for Obstructive Sleep Apnea: A Retrospective Analysis. Headache J. Head Face Pain 2013, 53, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Vendrame, M.; Kaleyias, J.; Valencia, I.; Legido, A.; Kothare, S.V. Polysomnographic Findings in Children With Headaches. Pediatr. Neurol. 2008, 39, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Gelaye, B.; Sacco, S.; Brown, W.J.; Nitchie, H.L.; Ornello, R.; Peterlin, B.L. Body composition status and the risk of migraine: A me-ta-analysis. Neurology 2017, 88, 1795–1804. [Google Scholar] [CrossRef] [Green Version]
- Messina, A.; Bitetti, I.; Precenzano, F.; Iacono, D.; Messina, G.; Roccella, M.; Parisi, L.; Salerno, M.; Valenzano, A.; Maltese, A.; et al. Non-Rapid Eye Movement Sleep Parasomnias and Migraine: A Role of Orexinergic Projec-tions. Front. Neurol. 2018, 28, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilleminault, C.; Palombini, L.; Pelayo, R.; Chervin, R.D. Sleepwalking and sleep terrors in prepubertal children: What triggers them? Pediatrics 2003, 111, e17–e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruni, O.; Russo, P.M.; Violani, C.; Guidetti, V. Sleep and Migraine: An Actigraphic Study. Cephalalgia 2004, 24, 134–139. [Google Scholar] [CrossRef]
- Schürks, M.; Winter, A.; Berger, K.; Kurth, T. Migraine and restless legs syndrome: A systematic review. Cephalalgia 2014, 34, 777–794. [Google Scholar] [CrossRef]
- Acar, B.A.; Acar, T.; Alagöz, A.N.; Karacan, A.; Varım, C.; Uyanık, M.S.; Kaya, T.; Akdemir, R. Relationship between primary restless legs syndrome and migraine with aura. Kaohsiung J. Med Sci. 2016, 32, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Van Oosterhout, W.P.; van Someren, E.J.; Louter, M.A.; Schoonman, G.G.; Lammers, G.J.; Rijsman, R.M. Restless legs syndrome in migraine patients: Prevalence and severity. Eur. J. Neurol. 2016, 23, 1110–1116. [Google Scholar] [CrossRef]
- Didriksen, M.; Hansen, T.F.; Thørner, L.W.; Burgdorf, K.S.; Erikstrup, C.; Pedersen, O.B.; Paarup, H.M.; Nielsen, K.R.; Hjalgrim, H.; Sørensen, E.; et al. Restless legs syndrome is associated with increased risk of migraine. Cephalalgia Rep. 2018, 1. [Google Scholar] [CrossRef]
- Cerbo, R.; Barbanti, P.; Buzzi, M.G.; Fabbrini, G.; Brusa, L.; Roberti, C. Dopamine hypersensitivity in migraine: Role of the ap-omorphine test. Clin. Neuropharmacol. 1997, 20, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Cologno, D.; Cicarelli, G.; Petretta, V.; d’Onofrio, F.; Bussone, G. High prevalence of dopaminergic premonitory symptoms in mi-graine patients with restless legs syndrome: A pathogenetic link? Neurol. Sci. 2008, 29 (Suppl. 1), 166–168. [Google Scholar] [CrossRef]
- Suzuki, K.; Okuma, Y.; Uchiyama, T.; Miyamoto, M.; Sakakibara, R.; Shimo, Y.; Hattori, N.; Kuwabara, S.; Yamamoto, T.; Kaji, Y.; et al. The prevalence, course and clinical correlates of migraine in Parkinson’s disease: A multicentre case-controlled study. Cephalalgia 2018, 38, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, C.; Burstein, R. Sensitization of the trigeminovascular pathway: Perspective and implications to migraine patho-physiology. J. Clin Neurol. 2012, 8, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, A.S.; Rye, D.B. Review of the relationship of restless legs syndrome and periodic limb movements in sleep to hyperten-sion, heart disease, and stroke. Sleep 2009, 32, 589–597. [Google Scholar] [CrossRef]
- Kato, M.; Saruta, J.; Takeuchi, M.; Sugimoto, M.; Kamata, Y.; Shimizu, T.; To, M.; Fuchida, S.; Igarashi, H.; Kawata, T.; et al. Grinding patterns in migraine patients with sleep bruxism: A case-controlled study. Cranio 2016, 34, 1–7. [Google Scholar] [CrossRef]
- Haggiag, A.; Speciali, J.G. A new biofeedback approach for the control of awake bruxism and chronic migraine headache: Uti-lization of an awake posterior interocclusal device. Arq. Neuropsiquiatr. 2020, 78, 397–402. [Google Scholar] [CrossRef]
- Dahmen, N.; Kasten, M.; Wieczorek, S.; Gencik, M.; Epplen, J.T.; Ullrich, B. Increased Frequency of Migraine in Narcoleptic Patients: A Confirmatory Study. Cephalalgia 2003, 23, 14–19. [Google Scholar] [CrossRef]
- Suzuki, K.; Miyamoto, M.; Miyamoto, T.; Inoue, Y.; Matsui, K.; Nishida, S.; Hayashida, K.; Usui, A.; Ueki, Y.; Nakamura, M.; et al. The Prevalence and Characteristics of Primary Headache and Dream-Enacting Behaviour in Japanese Patients with Narcolepsy or Idiopathic Hypersomnia: A Multi-Centre Cross-Sectional Study. PLoS ONE 2015, 10, e0139229. [Google Scholar] [CrossRef] [Green Version]
- Evers, S.; The DMKG Study Group. Migraine and Idiopathic Narcolepsy—A case-control study. Cephalalgia 2003, 23, 786–789. [Google Scholar] [CrossRef]
- Yang, C.P.; Hsieh, M.L.; Chiang, J.H.; Chang, H.Y.; Hsieh, V.C. Migraine and risk of narcolepsy in children: A nationwide longitudi-nal study. PLoS ONE 2017, 12, e0189231. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, Z.; De Lecea, L. The hypocretins/orexins: Integrators of multiple physiological functions. Br. J. Pharmacol. 2014, 171, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat. Rev. Neurosci. 2007, 8, 171–181. [Google Scholar] [CrossRef] [PubMed]
Major Diagnostic Sections | Definition | Disorder |
---|---|---|
Insomnia | Difficulty initiating or maintain sleep, poor quality of sleep | Chronic insomnia disorder Short-term insomnia disorder Other insomnia disorder |
Sleep-related breathing disorders * | Abnormal respiration during sleep characterized by intermittent partial or complete upper airway obstruction | OSA disorders: OSA, adult, OSA pediatric Central sleep apnea syndromes: Central sleep apnea with Cheyne-Stokes breathing Central sleep apnea due to a medical disorder without Cheyne-Stokes breathing Central sleep apnea due to high altitude periodic breathing Central sleep apnea due to a medication or substance Primary central sleep apnea Primary central sleep apnea of infancy Primary central sleep apnea of prematurity Treatment-emergent central sleep apnea Sleep-related hypoventilation disorders: Obesity hypoventilation syndrome Congenital central alveolar hypoventilation syndrome Late-onset central hypoventilation with hypothalamic dysfunction Idiopathic central alveolar hypoventilation Sleep-related hypoventilation due to a medication or substance Sleep-related hypoventilation due to a medical disorder Sleep-related hypoxemia disorder |
Central Disorders of Hypersomnolence | Daytime sleepiness not associated with disturbed sleep or misaligned circadian rhythms | Narcolepsy type 1 * Narcolepsy type 2 * Idiopathic hypersomnia Kleine–Levin syndrome Hypersomnia due to a medical disorder * Hypersomnia due to a medication or substance Hypersomnia associated with a psychiatric disorder Insufficient sleep syndrome * |
Circadian Rhythm Sleep-Wake Disorders * | Sleep disturbance due to misalignment between environment ant the individual’s sleep-wake cycle | Delayed sleep-wake phase disorder Advanced sleep-wake phase disorder Irregular sleep-wake rhythm disorder Non-24-h sleep-wake rhythm disorder Shift work disorder Jet lag disorder Circadian sleep-wake disorder not otherwise specified |
Parasomnias | Undesirable movements, behaviors, perceptions or dreams, that occur during sleep or arousals from sleep without conscious awareness | NREM-related parasomnias: * Confusional arousals Sleepwalking Sleep terrors Sleep-related eating disorder REM-related parasomnias: * REM sleep behavior disorder Recurrent isolated sleep paralysis Nightmare disorder Other parasomnias: Exploding head syndrome Sleep-related hallucinations Sleep enuresis Parasomnia due to a medical disorder Parasomnia due to a medication or substance Parasomnia, unspecified |
Sleep Related Movement Disorders * | Simple, stereotypic movements that disrupt sleep | Restless legs syndrome Periodic limb movement disorder Sleep-related leg cramps Sleep-related bruxism Sleep-related rhythmic movement disorder Benign sleep myoclonus of infancy Propriospinal myoclonus at sleep onset Sleep-related movement disorder due to a medical disorder Sleep-related movement disorder due to a medication or substance Sleep-related movement disorder, unspecified |
Others sleep disorders | Sleep disorders that cannot be appropriately classified elsewhere |
Neurotransmitter | Potential Common Mechanism for Sleep and Migraine |
---|---|
Adenosine |
|
Cholinergic system |
|
Dopaminergic system | ventrolateral tegmental nucleus (VTA) located in midbrain–consolidate wakefulness periaqueductal grey neurons–antinociception |
GABA |
|
Galanin | ventrolateral preoptic neurons in the hypothalamus (VLPO)–promotion of NREM |
Histamine | tuberomammillary nucleus (TMN) located in posterior hypothalamus–promotion of wakefulness |
Melanin | lateral hypothalamic area–promotion of REM sleep, promotion of NREM sleep in some conditions |
Noradrenaline | locus coeruleus––inhibition of the ventrolateral preoptic neurons in the hypothalamus (VLPO)–promotion of wakefulness |
Orexin (also referred to as hypocretin neurons) | lateral hypothalamic area–promotion of wakefulness |
Serotonin | dorsal raphe nuclei–inhibition of REM and initiation of sleep but also mood regulation, food intake, temperature regulation |
Anatomical Structures | Sleep | Migraine |
---|---|---|
Brainstem
|
|
|
Hypothalamus
|
|
|
Thalamus |
|
|
Cortex |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waliszewska-Prosół, M.; Nowakowska-Kotas, M.; Chojdak-Łukasiewicz, J.; Budrewicz, S. Migraine and Sleep—An Unexplained Association? Int. J. Mol. Sci. 2021, 22, 5539. https://doi.org/10.3390/ijms22115539
Waliszewska-Prosół M, Nowakowska-Kotas M, Chojdak-Łukasiewicz J, Budrewicz S. Migraine and Sleep—An Unexplained Association? International Journal of Molecular Sciences. 2021; 22(11):5539. https://doi.org/10.3390/ijms22115539
Chicago/Turabian StyleWaliszewska-Prosół, Marta, Marta Nowakowska-Kotas, Justyna Chojdak-Łukasiewicz, and Sławomir Budrewicz. 2021. "Migraine and Sleep—An Unexplained Association?" International Journal of Molecular Sciences 22, no. 11: 5539. https://doi.org/10.3390/ijms22115539
APA StyleWaliszewska-Prosół, M., Nowakowska-Kotas, M., Chojdak-Łukasiewicz, J., & Budrewicz, S. (2021). Migraine and Sleep—An Unexplained Association? International Journal of Molecular Sciences, 22(11), 5539. https://doi.org/10.3390/ijms22115539