Olive Fruit Development and Ripening: Break on through to the “-Omics” Side
Abstract
:1. Introduction
2. Advances in Olive Genome Assembly and Annotation and Its Significance in Population Genetic Studies
3. Application of “-Omics” Technologies to Characterize Olive Fruit Development and Ripening
3.1. Gene Expression of Candidate Genes Unravel Pathways Related to Olive Fruit Ripening
3.2. Detecting Significant Changes in Protein Abundance during Olive Drupe Development
3.3. Olive Drupe ripening Trigger Fundamental Metabolic Alterations in Olive Drupes across Ripening
4. Conclusions and Future Perspectives on Olive Ripening Studies
Author Contributions
Funding
Conflicts of Interest
References
- Bartolini, G.; Prevost, G.; Messeri, C.; Carignani, G. Olive Germplasm: Cultivars and World-Wide Collections; Food and Agriculture Organization (FAO): Rome, Italy, 1998. [Google Scholar]
- Khadari, B.; Charafi, J.; Moukhli, A.; Ater, M. Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: A paradoxical situation evidenced by the use of SSR loci. Tree Genet. Genomes 2008, 4. [Google Scholar] [CrossRef]
- Rugini, E.; Baldoni, L.; Muleo, R.; Sebastiani, L. (Eds.) The Olive Tree Genome; Springer International Publishing: Belrin, Germany, 2016; ISBN 978-3-319-48887-5. [Google Scholar]
- Margaritis, E. Distinguishing exploitation, domestication, cultivation and production: The olive in the third millennium Aegean. Antiquity 2013, 87, 746. [Google Scholar] [CrossRef]
- Besnard, G.; Rubio De Casas, R.; Christin, P.A.; Vargas, P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: Tertiary climatic shifts and lineage differentiation times. Ann. Bot. 2009, 104, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Caporali, S.; Hammami, S.B.M.; Moreno-Alías, I.; Paoletti, A.; Rapoport, H.F. Tissue size and cell number in the olive (Olea europaea) ovary determine tissue growth and partitioning in the fruit. Funct. Plant Biol. 2012, 39, 580. [Google Scholar] [CrossRef]
- Benlloch-González, M.; Sánchez-Lucas, R.; Benlloch, M.; Ricardo, F.E. An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions. Sci. Hortic. 2018, 240, 405–410. [Google Scholar] [CrossRef]
- Giovannoni, J.J. Genetic regulation of fruit development and ripening. Plant Cell 2004, 16, S170–S180. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Martins-Lopes, P.; Guedes-Pinto, H. Olive Tree Genetic Resources Characterization through Molecular Markers. In Genetic Diversity in Plants; IntechOpen: London, UK, 2012. [Google Scholar]
- Trujillo, I.; Ojeda, M.A.; Urdiroz, N.M.; Potter, D.; Barranco, D.; Rallo, L.; Diez, C.M. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet. Genomes 2014, 10, 141–155. [Google Scholar] [CrossRef]
- Kaya, H.B.; Cetin, O.; Kaya, H.; Sahin, M.; Sefer, F.; Kahraman, A.; Tanyolac, B. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers. PLoS ONE 2013, 8, e73674. [Google Scholar] [CrossRef] [Green Version]
- Biton, I.; Doron-Faigenboim, A.; Jamwal, M.; Mani, Y.; Eshed, R.; Rosen, A.; Sherman, A.; Ophir, R.; Lavee, S.; Avidan, B.; et al. Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Mol. Breed. 2015, 35. [Google Scholar] [CrossRef]
- Julca, I.; Marcet-Houben, M.; Cruz, F.; Gómez-Garrido, J.; Gaut, B.S.; Díez, C.M.; Gut, I.G.; Alioto, T.S.; Vargas, P.; Gabaldón, T. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol. 2020, 18, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Zhang, J.; Liu, X.; Lin, C.; Xin, H.; Xue, L.; Wang, C. De novo assembly of a new Olea europaea genome accession using nanopore sequencing. Hortic. Res. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.; Julca, I.; Gómez-Garrido, J.; Loska, D.; Marcet-Houben, M.; Cano, E.; Galán, B.; Frias, L.; Ribeca, P.; Derdak, S.; et al. Genome sequence of the olive tree, Olea europaea. Gigascience 2016, 5, 29. [Google Scholar] [CrossRef]
- Unver, T.; Wu, Z.; Sterck, L.; Turktas, M.; Lohaus, R.; Li, Z.; Yang, M.; He, L.; Deng, T.; Escalante, F.J.; et al. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl. Acad. Sci. USA 2017, 114, E9413–E9422. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Ruiz, J.; Ramírez-Tejero, J.A.; Fernández-Pozo, N.; de la O Leyva-Pérez, M.; Yan, H.; de la Rosa, R.; Belaj, A.; Montes, E.; Rodríguez-Ariza, M.O.; Navarro, F.; et al. Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.). Plant Genome 2020, 13, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Conde, C.; Delrot, S.; Gerós, H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 2008, 165, 1545–1562. [Google Scholar] [CrossRef]
- Alagna, F.; D’Agostino, N.; Torchia, L.; Servili, M.; Rao, R.; Pietrella, M.; Giuliano, G.; Chiusano, M.L.; Baldoni, L.; Perrotta, G. Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom. 2009, 10, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzzalupo, I.; Stefanizzi, F.; Perri, E.; Chiappetta, A.A. Transcript Levels of CHL P Gene, Antioxidants and Chlorophylls Contents in Olive (Olea europaea L.) Pericarps: A Comparative Study on Eleven Olive Cultivars Harvested in Two Ripening Stages. Plant Foods Hum. Nutr. 2011, 66, 1–10. [Google Scholar] [CrossRef]
- Martinelli, F.; Tonutti, P. Flavonoid metabolism and gene expression in developing olive (Olea europaea L.) fruit. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2012, 146, 164–170. [Google Scholar] [CrossRef]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; et al. Olive phenolic compounds: Metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 2012, 12, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaria, D.L.; Chiappetta, A.; Muzzalupo, I. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation. Front. Plant Sci. 2016, 6, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, F.; Basile, B.; Morelli, G.; d’Andria, R.; Tonutti, P. Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci. Hortic. 2012, 144, 201–207. [Google Scholar] [CrossRef]
- Xiaoxia, L.; Jianguo, Z.; Ying, L.; Guodong, R. Metabolome and Transcriptome Analyses Reveal Tissue-Specific Variations in Gene Expression and Metabolites of Olive. J. Plant Biol. 2020, 63, 73–82. [Google Scholar] [CrossRef]
- Bruno, L.; Picardi, E.; Pacenza, M.; Chiappetta, A.; Muto, A.; Gagliardi, O.; Muzzalupo, I.; Pesole, G.; Bitonti, M.B. Changes in gene expression and metabolic profile of drupes of Olea europaea L. cv Carolea in relation to maturation stage and cultivation area. BMC Plant Biol. 2019, 19, 428. [Google Scholar] [CrossRef] [PubMed]
- Sarri, V.; Baldoni, L.; Porceddu, A.; Cultrera, N.G.M.; Contento, A.; Frediani, M.; Belaj, A.; Trujillo, I.; Cionini, P.G. Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 2006, 49, 1606–1615. [Google Scholar] [CrossRef] [Green Version]
- Karagiannis, E.; Tanou, G.; Samiotaki, M.; Michailidis, M.; Diamantidis, G.; Minas, I.S.; Molassiotis, A. Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude. Front. Plant Sci. 2016, 7, 1689. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Scali, M.; Vignani, R.; Spadafora, A.; Sensi, E.; Mazzuca, S.; Cresti, M. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 2003, 24, 2369–2375. [Google Scholar] [CrossRef]
- Wang, W.; Vignani, R.; Scali, M.; Sensi, E.; Tiberi, P.; Cresti, M. Removal of lipid contaminants by organic solvents from oilseed protein extract prior to electrophoresis. Anal. Biochem. 2004, 329, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tai, F.; Hu, X. Current Initiatives in Proteomics of the Olive Tree. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2010; pp. 25–32. ISBN 9780123744203. [Google Scholar]
- Esteve, C.; Cañas, B.; Moreno-Gordaliza, E.; Del Río, C.; García, M.C.; Marina, M.L. Identification of olive (Olea europaea) pulp proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 2011, 59, 12093–12101. [Google Scholar] [CrossRef]
- Esteve, C.; Del Río, C.; Marina, M.L.; García, M.C. Development of an ultra-high performance liquid chromatography analytical methodology for the profiling of olive (Olea europaea L.) pulp proteins. Anal. Chim. Acta 2011, 690, 129–134. [Google Scholar] [CrossRef]
- Wang, W.; De-Dios-Alché, J.; Castro, A.J.; Rodríguez-García, M.I. Characterization of seed storage proteins and their synthesis during seed development in Olea europaea. Int. J. Dev. Biol. 2001, 45, 63–64. [Google Scholar]
- Zamora, R.; Alaiz, M.; Hidalgo, F.J. Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition, and antioxidant activity. J. Agric. Food Chem. 2001, 49, 4267–4270. [Google Scholar] [CrossRef]
- Montealegre, C.; Esteve, C.; García, M.C.; García-Ruiz, C.; Marina, M.L. Proteins in Olive Fruit and Oil. Crit. Rev. Food Sci. Nutr. 2014, 54, 611–624. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Motamed, N.; Rastgar-Jazii, F.; Montasser-Kouhsari, S.; Shokraii, E.H. Oxidative enzyme activities and soluble protein content in leaves and fruits of olives during ripening. J. Food Biochem. 2003, 27, 181–196. [Google Scholar] [CrossRef]
- Romero-Segura, C.; García-Rodríguez, R.; Sánchez-Ortiz, A.; Sanz, C.; Pérez, A.G. The role of olive β-glucosidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2012, 45, 191–196. [Google Scholar] [CrossRef]
- Bianco, L.; Alagna, F.; Baldoni, L.; Finnie, C.; Svensson, B.; Perrotta, G. Proteome Regulation during Olea europaea Fruit Development. PLoS ONE 2013, 8, e53563. [Google Scholar] [CrossRef] [Green Version]
- Bianco, L.; Perrotta, G. Fruit development and ripening: Proteomic as an approach to study Olea europaea and other non-model organisms. In Agricultural Proteomics Volume 1: Crops, Horticulture, Farm Animals, Food, Insect and Microorganisms; Springer: Cham, Switzerland, 2016; pp. 53–65. ISBN 9783319432755. [Google Scholar]
- Velázquez-Palmero, D.; Romero-Segura, C.; García-Rodríguez, R.; Hernández, M.L.; Vaistij, F.E.; Graham, I.A.; Pérez, A.G.; Martínez-Rivas, J.M. An oleuropein β-glucosidase from olive fruit is involved in determining the phenolic composition of virgin olive oil. Front. Plant Sci. 2017, 8, 1902. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Karamanoli, K.; Lazaridou, A.; Matsi, T.; Molassiotis, A. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology. Plant Physiol. Biochem. 2017, 116, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Deborde, C.; Moing, A.; Roch, L.; Jacob, D.; Rolin, D.; Giraudeau, P. Plant metabolism as studied by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102–103, 61–97. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, E.; Michailidis, M.; Tanou, G.; Samiotaki, M.; Karamanoli, K.; Avramidou, E.; Ganopoulos, I.; Madesis, P.; Molassiotis, A. Ethylene –dependent and –independent superficial scald resistance mechanisms in ‘Granny Smith’ apple fruit. Sci. Rep. 2018, 8, 11436. [Google Scholar] [CrossRef] [Green Version]
- Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002, 13, 636–644. [Google Scholar] [CrossRef]
- Di Donna, L.; Mazzotti, F.; Naccarato, A.; Salerno, R.; Tagarelli, A.; Taverna, D.; Sindona, G. Secondary metabolites of Olea europaea leaves as markers for the discrimination of cultivars and cultivation zones by multivariate analysis. Food Chem. 2010, 121, 492–496. [Google Scholar] [CrossRef]
- Martinelli, F.; Remorini, D.; Saia, S.; Massai, R.; Tonutti, P. Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci. Hortic. 2013, 159, 52–58. [Google Scholar] [CrossRef]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Gómez-González, S.; Ruiz-Jiménez, J.; Luque De Castro, M.D. Oil Content and Fatty Acid Profile of Spanish Cultivars during Olive Fruit Ripening. J. Am. Oil Chem. Soc. 2011, 88, 1737–1745. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Cherubini, C.; Giusti, M.; Zanoni, B.; Innocenti, M.; Mulinacci, N. Phenolic profiles, oil amount and sugar content during olive ripening of three typical Tuscan cultivars to detect the best harvesting time for oil production. Food Res. Int. 2013, 54, 1876–1884. [Google Scholar] [CrossRef]
- Fernández-Cuesta, A.; León, L.; Velasco, L.; De la Rosa, R. Changes in squalene and sterols associated with olive maturation. Food Res. Int. 2013, 54, 1885–1889. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Dagdelen, A.; Tümen, G.; Özcan, M.M.; Dündar, E. Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalik, Domat and Gemlik varieties at different ripening stages. Food Chem. 2013, 136, 41–45. [Google Scholar] [CrossRef]
- Beltrán, G.; Bejaoui, M.A.; Jimenez, A.; Sanchez-Ortiz, A. Ethanol in Olive Fruit. Changes during Ripening. J. Agric. Food Chem. 2015, 63, 5309–5312. [Google Scholar] [CrossRef]
- Peragón, J. Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening. J. Agric. Food Chem. 2013, 61, 6671–6678. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Sordini, B.; Esposto, S.; Taticchi, A.; Urbani, S.; Sebastiani, L. Metabolomics of Olive Fruit: A Focus on the Secondary Metabolites. In The Olive Tree Genome; Springer: Cham, Switzerland, 2016; pp. 123–139. [Google Scholar]
- Rao, G.; Sui, J.; Zhang, J. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol. Open 2016, 5, 829–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Olive Variety | Genome ID | Genome Size (Gb) | Total Number of Scaffolds | Contig N50 (Kb) | Scaffold N50 (Kb) | Sequencing Platform(s) | Reference |
---|---|---|---|---|---|---|---|
‘Arbequina’ | 1.3 | 1290 | 4665 | 41,790 | Nanopore & HiC | Rao et al., 2021 [14] | |
‘Farga’ | OE6A | 1.32 | 11,038 | 52 | 443 | Illumina MiSeq | Cruz et al., 2016 [15] |
sbsp. sylvestris | Oe451 | 1.46 | 41,256 | 25 | 228 | Illumina HiSeq 2000 | Unver et al., 2017 [16] |
‘Picual’ | Oleur061 | 1.68 | 8718 | 410 | 1145 | PacBio RSII & Illumina HiSeq 2500 | Jiménez-Ruiz et al., 2020 [17] |
Publication | Olive Cultivars | Ripening Stage | Plant Material | Approach | ||
---|---|---|---|---|---|---|
Alagna et al., 2009 [19] | ‘Coratina’ | 45 DAF 1 | fruit pulp | 454 pyrosequencing | ||
‘Tendellone’ | 135 DAF | |||||
Mazzalupo et al., 2011 [20] | Bardi i Tirana’ | ‘Nocellara del Belice’ | 129 DAF 190 DAF | pericarp | Quantitative Reverse—Transcription PCR | |
‘Buscionetto’ | ‘Semidana’ | (qRT-PCR) | ||||
‘Carolea | ‘Taggiasca’ | |||||
‘Casalina’ | ‘Tonda Dolce’ | |||||
‘Gaggiolo’ | ‘Verdello’ | |||||
‘Gnagnaro’ | ||||||
Martinelli et al., 2012 [21] | ‘Leccino’ | 4 DAF | 12 DAF | epicarp | RT-PCR | |
9 DAF | 16 DAF | mesocarp | Semi-quantitative PCR | |||
Alagna et al., 2012 [22] | ‘Coratina’ | Dolce d’Andria’ | 45 DAF | 120 DAF | fruit pulp | cDNA-AFLP analysis |
‘Rosciola’ | ‘Tendellone’ | 60 DAF | 135 DAF | Semi-quantitative PCR RT-qPCR | ||
‘Frantoio’ | ‘Non Belice’ | 75 DAF | 150 DAF | |||
‘Canino’ | ‘Noc Etnea’ | 90 DAF | 165 DAF | |||
‘Moraiolo’ | ‘Bianchella’ | 105 DAF | ||||
‘Leccino’ | ‘Dritta’ | |||||
Iaria et al., 2016 [23] | ‘Cassanese’ | 100 DAF | epicarp | Illumina HiSeq TM 2000 | ||
‘Leucocarpa’ | 130 DAF | mesocarp | ||||
Martinelli et al., 2012 [24] | ‘Leccino’ | DOY 2 229 | DOY 272 | epicarp | RT-PCR | |
DOY 255 | DOY 302 | mesocarp | ||||
Xiaoxia et al., 2020 [25] | ‘Leccino’ | fully ripe | fruit pulp | Illumina HiSeq X10 | ||
leaves | RT-Qpcr | |||||
Bruno et al., 2019 [26] | ‘Carolea’ | 180 DAF | fruit pulp | Illumina HiSeq 2000 | ||
oil | qRT-PCR |
Publication | Olive Cultivars | Ripening Stage | Plant Material | Approach | |
---|---|---|---|---|---|
Esteve et al., 2011 [32] | ‘Picual’ | fully ripe | fruit pulp | SDS-PAGE | |
‘Frantoio’ | MALDI-TOF MS | ||||
‘Bent al Kadi’ | nanoLC-MS/MS | ||||
‘Mision de San Vicente’ | |||||
Esteve et al., 2011 [33] | ‘Picual’ | green-yellow | fruit pulp | SDS-PAGE | |
‘Arbequina’ | spotted | UHPLC | |||
‘Hojiblanca’ | fully ripe | ||||
‘Gordal de Velez Rubio’ | |||||
‘Manzanilla Cacerena’ | |||||
Wang et al., 2001 [34] | ‘Picual’ | fully ripe | germplasm | PAGE | |
SDS-PAGE | |||||
N-terminal sequencing | |||||
Zamora et al., 2001 [35] | ‘Arbequina’ | green | mesocarp | tricine-SDS-PAGE | |
‘Picual’ | spotted | HPLC | |||
fully ripe | |||||
Ebrahimzadeh et al., 2002 [37] | ‘Zard’ | 45 DAFS 1 | 120 DAFS | leaves | PAGE |
60 DAFS | 135 DAFS | fruit pulp | SDS-PAGE | ||
75 DAFS | 150 DAFS | ||||
90 DAFS | 165 DAFS | ||||
105 DAFS | 180 DAFS | ||||
Bianco et al., 2013 [39] | ‘Coratina’ | 45 DAF 2 | epicarp | SDS-PAGE | |
110 DAF | mesocarp | MALDI-TOF MS | |||
150 DAF | |||||
Velázquez-Palmero et al., 2017 [41] | ‘Arbequina’ | 63-133 DAF | endocarp | HPLC | |
‘Picual’ | 161 DAF | mesocarp | SDS-PAGE | ||
196, 217 DAF | fruit pulp | Immunoblot analysis | |||
245 DAF |
Publication | Olive Cultivars | Ripening Stage | Plant Material | Approach | ||||
---|---|---|---|---|---|---|---|---|
Alagna et al., 2012 [22] | ‘Coratina’ | ‘Dolce d’Andria’ | 45 DAF 1 | 120 DAF | fruit pulp | HPLC-DAD | ||
‘Rosciola’ | ‘Tendellone’ | 60 DAF | 135 DAF | NMR | ||||
‘Frantoio’ | ‘Non Belice’ | 75 DAF | 150 DAF | |||||
‘Canino’ | ‘Noc Etnea’ | 90 DAF | 165 DAF | |||||
‘Moraiolo’ | ‘Bianchella’ | 105 DAF | ||||||
‘Leccino’ | ‘Dritta’ | |||||||
Romero-Segura et al., 2012 [38] | ‘Picual’ | 140 DAF | 217 DAF | mesocarp | HPLC-MS-ESI | |||
‘Arbequina’ | 168 DAF | 245 DAF | oil | |||||
196 DAF | ||||||||
Martinelli et al., 2013 [47] | ‘Cipressino’ | 236 DOY 2 | epicarp | GC-MS | ||||
mesocarp | ||||||||
Machado et al., 2013 [48] | ‘Cobrancosa’ | fully ripe | fruit pulp | HPLC | ||||
Martinelli et al., 2012 [24] | ‘Leccino’ | DOY 229 | DOY 272 | epicarp | GC-MS | |||
DOY 255 | DOY 302 | mesocarp | ||||||
Gómez-González et al., 2011 [49] | ‘Picual’ | ‘Gordal’ | green | purple | oil | GC-MS | ||
‘Arbequina’ | ‘Picudo’ | green-yellow | black | |||||
‘Manzanilla’ | yellow-purple | |||||||
Cecchi et al., 2013 [50] | ‘Frantoio’ | 105 to 189 DAF | fruit pulp | HPLC-DAD-ESI-MS | ||||
‘Moraiolo’ | ||||||||
‘Leccino’ | ||||||||
Fernandez-Cuesta et al., 2013 [51] | ‘Picual’ | fully ripe | epicarp | GC | ||||
‘Arbequina’ | mesocarp | NMR | ||||||
Gómez-Rico et al., 2009 [52] | ‘Arbequina’ | ‘Picolimon’ | green | fruit pulp | HPLC-MS | |||
‘Cornicabra’ | ‘Picudo’ | spotted | oil | GC-MS | ||||
‘Morisca’ | ‘Picual’ | black | ||||||
Dagdelen et al., 2013 [53] | ‘Ayvalik’ | fully ripe | fruit pulp | HPLC | ||||
‘Domat’ | oil | |||||||
‘Gemlik’ | ||||||||
Beltran et al., 2015 [54] | ‘Picual’ | 147 DAF | 182 DAF | mesocarp | HS-SPME-GC-FID | |||
‘Hojiblanca’ | 154 DAF | 210 DAF | ||||||
‘Arbequina’ | ||||||||
Peragon et al., 2013 [55] | ‘Picual’ | green, | black skin & <50% purple flesh, | fruit pulp | HPLC-UV-Vis | |||
‘Cornezuelo’ | green-yellow | black skin & >50% purple flesh, | HPLC-MS/MS | |||||
spotted, | black skin & 100% purple flesh | |||||||
reddish, brown, | ||||||||
black skin & white flesh | ||||||||
Xiaoxia et al., 2020 [25] | ‘Leccino’ | fully ripe | fruit pulp | GC-MS | ||||
leaves | ||||||||
Bruno et al., 2019 [26] | ‘Carolea’ | 180 DAF | fruit pulp | HPLC | ||||
oil | GC-FID-MS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skodra, C.; Titeli, V.S.; Michailidis, M.; Bazakos, C.; Ganopoulos, I.; Molassiotis, A.; Tanou, G. Olive Fruit Development and Ripening: Break on through to the “-Omics” Side. Int. J. Mol. Sci. 2021, 22, 5806. https://doi.org/10.3390/ijms22115806
Skodra C, Titeli VS, Michailidis M, Bazakos C, Ganopoulos I, Molassiotis A, Tanou G. Olive Fruit Development and Ripening: Break on through to the “-Omics” Side. International Journal of Molecular Sciences. 2021; 22(11):5806. https://doi.org/10.3390/ijms22115806
Chicago/Turabian StyleSkodra, Christina, Vaia Styliani Titeli, Michail Michailidis, Christos Bazakos, Ioannis Ganopoulos, Athanassios Molassiotis, and Georgia Tanou. 2021. "Olive Fruit Development and Ripening: Break on through to the “-Omics” Side" International Journal of Molecular Sciences 22, no. 11: 5806. https://doi.org/10.3390/ijms22115806
APA StyleSkodra, C., Titeli, V. S., Michailidis, M., Bazakos, C., Ganopoulos, I., Molassiotis, A., & Tanou, G. (2021). Olive Fruit Development and Ripening: Break on through to the “-Omics” Side. International Journal of Molecular Sciences, 22(11), 5806. https://doi.org/10.3390/ijms22115806