Anti-Pigmentary Natural Compounds and Their Mode of Action
Abstract
:1. Melanogenesis
2. Skin-Whitening Agents Derived from Plants
3. Skin-Whitening Agents Derived from Ocean
4. Skin-Whitening Agents Derived from Bacteria or Fungi
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TYR | Tyrosinase |
TRP-1 | Tyrosinase-related protein-1 |
TRP-2 | Tyrosinase-related protein-2 |
MITF | Microphthalmia-associated transcription factor |
DQ | Dopaquinone |
L-DOPA | L-dihydroxyphenylalanine |
DHI | 5, 6-dihydroxyindole |
α-MSH | α-melanocyte stimulating hormone |
MC1R | Melanocortin-1 receptor |
PKA | Protein kinase A |
CREB | cAMP response element binding protein |
MAPKs | Mitogen-activated protein kinases |
ERK | Extracellularly responsive kinase |
JNK | c-Jun N-terminal kinase |
References
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Bossche, K.; Naeyaert, J.M.; Lambert, J.J.T. The quest for the mechanism of melanin transfer. Traffic 2006, 7, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Jung, S.H. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal. 2017, 40, 99–115. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Li, H.X.; Park, J.U.; Su, X.D.; Kim, K.T.; Kang, J.S.; Kim, Y.R.; Kim, Y.H.; Yang, S.Y. Identification of Anti-Melanogenesis Constituents from Morus alba L. Leaves. Molecules 2018, 23, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yardman-Frank, J.M.; Fisher, D.E.J.E.D. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp. Dermatol. 2021, 30, 560–571. [Google Scholar] [CrossRef]
- Kumari, S.; Tien Guan Thng, S.; Kumar Verma, N.; Gautam, H.K. Melanogenesis Inhibitors. Acta Derm. Venereol. 2018, 98, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Pillaiyar, T.; Manickam, M.; Jung, S.-H. Downregulation of melanogenesis: Drug discovery and therapeutic options. Drug Discov. Today 2017, 22, 282–298. [Google Scholar] [CrossRef]
- Ye, Y.; Chu, J.-H.; Wang, H.; Xu, H.; Chou, G.-X.; Leung, A.K.-M.; Fong, W.-F.; Yu, Z.-L. Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells. J. Ethnopharmacol. 2010, 132, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Gillbro, J.M.; Olsson, M.J. The melanogenesis and mechanisms of skin-lightening agents—Existing and new approaches. Int. J. Cosmet. Sci. 2011, 33, 210–221. [Google Scholar] [CrossRef]
- Saba, E.; Kim, S.H.; Lee, Y.Y.; Park, C.K.; Oh, J.W.; Kim, T.H.; Kim, H.K.; Roh, S.S.; Rhee, M.H. Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B-irradiated hairless mice. J. Ginseng Res. 2020, 44, 496–505. [Google Scholar] [CrossRef]
- Lee, J.O.; Kim, E.; Kim, J.H.; Hong, Y.H.; Kim, H.G.; Jeong, D.; Kim, J.; Kim, S.H.; Park, C.; Seo, D.B.; et al. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J. Ginseng Res. 2018, 42, 389–399. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, K.T.; Kim, S.S.; Hur, J.; Ha, S.K.; Cho, C.W.; Choi, S.Y. Inhibitory effects of ginseng seed on melanin biosynthesis. Pharm. Mag. 2014, 10 (Suppl. 2), S272–S275. [Google Scholar]
- Lee, D.Y.; Lee, J.; Jeong, Y.T.; Byun, G.H.; Kim, J.H. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry. J. Ginseng Res. 2017, 41, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Nam, G.; Bae, I.-H.; Park, J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes–keratinocytes and three-dimensional human skin equivalent. J. Ginseng Res. 2019, 43, 300. [Google Scholar] [CrossRef]
- Hwang, G.Y.; Choung, S.Y. Anti-melanogenic effects of Aster spathulifolius extract in UVB-exposed C57 BL/6J mice and B16F10 melanoma cells through the regulation of MAPK/ERK and AKT/GSK 3β signalling. J. Pharm. Pharmacol. 2016, 68, 503–513. [Google Scholar] [CrossRef]
- Jeong, Y.T.; Jeong, S.C.; Hwang, J.S.; Kim, J.H. Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis. Chem. Biol. Interact. 2015, 238, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Fu, Y.; Cao, Y.; Jiang, S.; Yang, Y.; Song, G.; Yun, C.; Gao, R. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation. Exp. Derm. 2020, 29, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Chang, B.; Kim, D.; Cho, H.; Kim, S. Melanogenesis inhibitory effect of aerial part of Pueraria thunbergiana in vitro and in vivo. Arch. Dermatol. Res. 2015, 307, 57–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Lee, E.J.; Ahn, Y.; Park, S.; Kim, S.H.; Oh, S.H. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine 2019, 57, 57–64. [Google Scholar] [CrossRef]
- Shin, D.H.; Cha, Y.J.; Joe, G.J.; Yang, K.E.; Jang, I.-S.; Kim, B.H.; Kim, J.M. Whitening effect of Sophora flavescens extract. Pharm. Biol. 2013, 51, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-Y.; Kim, Y.-C. Whitening effect of black tea water extract on brown Guinea pig skin. Toxicol. Res. 2011, 27, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.F.; Wang, C.L.; Ye, F.; Sun, H.P.; Ma, C.Y.; Liu, W.Y.; Feng, F.; Abe, M.; Akihisa, T.; Zhang, J. Chemical constituents of the seed cake of Camellia oleifera and their antioxidant and antimelanogenic activities. Chem. Biodivers. 2018, 15, e1800137. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Choi, S.Y.; Park, E.Y. Anti-melanogenic effects of black, green, and white tea extracts on immortalized melanocytes. J. Vet. Sci. 2015, 16, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.-H.; Chiang, Y.-C.; Tsai, M.-H.; Liang, C.-J.; Hsu, L.-F.; Li, S.-Y.; Wang, M.-C.; Yen, F.-L.; Lee, C.-W. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. J. Ethnopharmacol. 2014, 151, 386–393. [Google Scholar] [CrossRef]
- Guillerme, J.-B.; Couteau, C.; Coiffard, L.J.C. Applications for marine resources in cosmetics. Cosmetics 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X.J.C. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners. Cosmetics 2016, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.H.; Ko, S.C.; Kim, D.; Jeon, Y.J. Screening of marine algae for potential Tyrosinase inhibitor: Those inhibitors reduced Tyrosinase activity and melanin synthesis in zebrafish. J. Dermatol. 2011, 38, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Sun, H. Purification of a fucoidan from kelp polysaccharide and its inhibitory kinetics for Tyrosinase. Carbohydr. Polym. 2014, 99, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown algaEcklonia stolonifera. Arch. Pharmacal. Res. 2004, 27, 1226. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.-J.; Ko, S.-C.; Kang, S.-M.; Cha, S.-H.; Lee, S.-H.; Kang, D.-H.; Jung, W.-K.; Affan, A.; Oh, C.; Jeon, Y.-J. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem. Toxicol. 2010, 48, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.B.; Yoon, N.Y. Inhibitory effect of Fucofuroeckol-A from Eisenia bicyclis on Tyrosinase activity and melanin biosynthesis in murine melanoma B16F10 cells. Fish. Aquat. Sci. 2018, 21, 35. [Google Scholar] [CrossRef]
- Raajshree, K.; Durairaj, B. Evaluation of the antiTyrosinase and antioxidant potential of zinc oxide nanoparticles synthesized from the brown seaweed-turbinaria conoides. Int. J. Appl. Pharm. 2017, 9, 116–120. [Google Scholar]
- Dolorosa, M.; Purwaningsih, S.; Anwar, E.; Hidayat, T. Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. In IOP Conference Series: Earth and Environmental Science, 2019; IOP Publishing: Bristol, UK, 2019; p. 012020. [Google Scholar]
- Paudel, P.; Wagle, A.; Seong, S.H.; Park, H.J.; Jung, H.A.; Choi, J.S. A new Tyrosinase inhibitor from the red alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Mar. Drugs 2019, 17, 295. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, S.; Park, S.; Park, J.S.; Kim, Y.H.; Yang, S.Y. Slow-binding inhibition of Tyrosinase by Ecklonia cava phlorotannins. Mar. Drugs 2019, 17, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-N.; Yang, H.-M.; Kang, S.-M.; Kim, D.; Ahn, G.; Jeon, Y.-J. Octaphlorethol A isolated from Ishige foliacea inhibits α-MSH-stimulated induced melanogenesis via ERK pathway in B16F10 melanoma cells. Food Chem. Toxicol. 2013, 59, 521–526. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.R.; Yang, H.-W.; Lee, H.G.; Ko, J.-Y.; Jeon, Y.-J. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells. Fish. Aquat. Sci. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Ding, Y.; Jiratchayamaethasakul, C.; Kim, J.; Kim, E.-A.; Heo, S.-J.; Lee, S.-H. Antioxidant and anti-melanogenic activities of ultrasonic extract from Stichopus japonicus. Asian Pac. J. Trop. Biomed. 2020, 10, 33. [Google Scholar]
- Georgousaki, K.; Tsafantakis, N.; Gumeni, S.; Gonzalez, I.; Mackenzie, T.A.; Reyes, F.; Lambert, C.; Trougakos, I.P.; Genilloud, O.; Fokialakis, N. Screening for Tyrosinase inhibitors from actinomycetes; identification of trichostatin derivatives from Streptomyces sp. CA-129531 and scale up production in bioreactor. Bioorganic Med. Chem. Lett. 2020, 30, 126952. [Google Scholar] [CrossRef]
- Song, M.; Lee, J.; Kim, Y.-J.; Hoang, D.H.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells. Mar. Drugs 2020, 18, 473. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Sanjeewa, K.A.; Kim, H.-S.; Lee, H.G.; Wang, L.; Lee, D.-S.; Jeon, Y.-J. Padina boryana, a brown alga from the Maldives: Inhibition of α-MSH-stimulated melanogenesis via the activation of ERK in B16F10 cells. Fish. Aquat. Sci. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Arguelles, E.; Sapin, A.B. Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Ochrophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. J. Appl. Pharm. Sci. 2020, 10, 051–058. [Google Scholar]
- Azam, M.S.; Kwon, M.; Choi, J.; Kim, H.-R. Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells. Biomed. Pharmacother. 2018, 104, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Chou, Y.S.; Young, T.H.; Cheng, N.C. Inhibition of melanin synthesis and melanosome transfer by chitosan biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1239–1250. [Google Scholar] [CrossRef]
- Wu, S.-Y.S.; Wang, H.-M.D.; Wen, Y.-S.; Liu, W.; Li, P.-H.; Chiu, C.-C.; Chen, P.-C.; Huang, C.-Y.; Sheu, J.-H.; Wen, Z.-H. 4-(Phenylsulfanyl) butan-2-one suppresses melanin synthesis and melanosome maturation in vitro and in vivo. Int. J. Mol. Sci. 2015, 16, 20240–20257. [Google Scholar] [CrossRef] [Green Version]
- Berardesca, E.; Rigoni, C.; Cantù, A.; Cameli, N.; Tedeschi, A.; Italia, D.D.; Laureti, T.; Agolzer, A.; Alfaioli, B.; Belloli, C.; et al. Effectiveness of a new cosmetic treatment for melasma. J. Cosmet. Dermatol. 2020, 19, 1684–1690. [Google Scholar] [CrossRef]
- Monteiro, R.C.; Kishore, B.N.; Bhat, R.M.; Sukumar, D.; Martis, J.; Ganesh, H.K. A comparative study of the efficacy of 4% hydroquinone vs. 0.75% kojic acid cream in the treatment of facial melasma. Indian J. Dermatol. 2013, 58, 157. [Google Scholar] [CrossRef] [PubMed]
- Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of Tyrosinase. J. Pharm. Pharmacol. 1994, 46, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Rhee, D.Y.; Bang, S.H.; Kim, S.Y.; Won, C.H.; Lee, M.W.; Choi, J.H.; Chang, S.E. The natural yeast extract isolated by ethanol precipitation inhibits melanin synthesis by modulating Tyrosinase activity and downregulating melanosome transfer. Biosci. Biotechnol. Biochem. 2015, 79, 1504–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-C.; Chang, T.-M. Antioxidative properties and inhibitory effect of Bifidobacterium adolescentis on melanogenesis. World J. Microbiol. Biotechnol. 2012, 28, 2903–2912. [Google Scholar] [CrossRef]
- Wang, G.-H.; Chen, C.-Y.; Tsai, T.-H.; Chen, C.-K.; Cheng, C.-Y.; Huang, Y.-H.; Hsieh, M.-C.; Chung, Y.-C. Evaluation of Tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations. J. Biosci. Bioeng. 2017, 123, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-C.; Chan, C.-F.; Huang, W.-Y.; Lin, J.-S.; Chan, P.; Liu, H.-Y.; Lin, Y.-S. Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications. Molecules 2013, 18, 14161–14171. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Kim, H.; Jung, B.J.; You, G.E.; Jang, S.; Chung, D.K. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits melanogenesis in B16F10 mouse melanoma cells. Mol. Cells 2015, 38, 163. [Google Scholar] [PubMed] [Green Version]
- Lim, H.Y.; Jeong, D.; Park, S.H.; Shin, K.K.; Hong, Y.H.; Kim, E.; Yu, Y.-G.; Kim, T.-R.; Kim, H.; Lee, J. Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus acidophilus KCCM12625P. Int. J. Mol. Sci. 2020, 21, 1620. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-S.; Kuan, Y.-D.; Chiu, K.-H.; Wang, W.-K.; Chang, F.-H.; Liu, C.-H.; Lee, C.-H. The extract of Rhodobacter sphaeroides inhibits melanogenesis through the MEK/ERK signaling pathway. Mar. Drugs 2013, 11, 1899–1908. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-H.; Chen, C.-Y.; Lin, C.-P.; Huang, C.-L.; Lin, C.-H.; Cheng, C.-Y.; Chung, Y.-C. Tyrosinase inhibitory and antioxidant activities of three Bifidobacterium bifidum-fermented herb extracts. Ind. Crops Prod. 2016, 89, 376–382. [Google Scholar] [CrossRef]
- Wang, S.-T.; Chang, W.-C.; Hsu, C.; Su, N.-W. Antimelanogenic effect of urolithin A and urolithin B, the colonic metabolites of ellagic acid, in B16 melanoma cells. J. Agric. Food Chem. 2017, 65, 6870–6876. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Liou, H.-C.; Chan, C.-F. Tyrosinase inhibitory effect and antioxidative activities of fermented and ethanol extracts of Rhodiola rosea and Lonicera japonica. Sci. World J. 2013, 2013, 612739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, J.; Shan, C.; Liu, S.; Zheng, H.; Liu, C.; Liu, M.; Jin, F.; Wang, L. Skin resistance to UVB-induced oxidative stress and hyperpigmentation by the topical use of Lactobacillus helveticus NS 8-fermented milk supernatant. J. Appl. Microbiol. 2017, 123, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, C.; Cheng, C.; Dai, H.; Ai, Y.; Lin, C.; Chung, Y. Evaluation of Tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. BioMed Res. Int. 2018, 2018, 5201786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.-H.; Lin, Y.-M.; Kuo, J.-T.; Lin, C.-P.; Chang, C.-F.; Hsieh, M.-C.; Cheng, C.-Y.; Chung, Y.-C. Comparison of biofunctional activity of Asparagus cochinchinensis (Lour.) Merr. Extract before and after fermentation with Aspergillus oryzae. J. Biosci. Bioeng. 2019, 127, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis. Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.K.; Kim, K.B.; Lee, J.Y.; Kwack, S.J.; Kwon, Y.C.; Kang, J.S.; Kim, H.S.; Lee, B.M. Risk Assessment of 5-Chloro-2-Methylisothiazol-3(2H)-One/2-Methylisothiazol-3(2H)-One (CMIT/MIT) Used as a Preservative in Cosmetics. Toxicol. Res. 2019, 35, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.E.; Jung, Y.J.; Choi, Y.J.; Choi, J.S.; Cho, Y.W. Artificial skin models for animal-free testing. J. Pharm. Investig. 2018, 48, 215–223. [Google Scholar] [CrossRef]
Name | Mode of Action |
---|---|
Korean Red Ginseng (KRG) | Tyrosinase inhibition activity |
Panax ginseng calyx ethanol extract (Pg-C-EE) | Inhibition of melanin production by suppressing MITF, p38, ERK, and CREB |
The seed of Panax ginseng | Tyrosinase inhibition activity |
Floralginsenoside A (FGA), Ginsenoside Rd (GRD), Ginsenoside Re (GRE) | Inhibition of melanin production by suppressing MITF |
Ginsenoside F1 (GF1) | Inhibition of melanosome transport |
Aster spathulifolius extract (ASE) | Tyrosinase, TRP-1 and MITF suppressions by activating MAPK/ERK pathway. |
Sweroside (Lonicera japonica) | TRP-1, TRP-2, and MITF suppressions |
Isoliquiritigenin (ISL), licorice root | Tryosinase and TRP-1 suppressions; induction of melanin degradation; reduction in the number of dendrites and melanin transport |
Pueraria thunbergiana | Tyrosinase, TRP-1, MITF, and GSK-3β suppressions |
Juglans mandshurica | Tyrosinase and MITF suppressions |
Sophora flavescens | Inhibition of melanin transport |
Morus alba | Tyrosinase, TRP-1, and MITF suppressions by downregulating CREB and p38 signaling pathways |
Black tea extract (BT) | Tyrosinase, TRP-2, and MITF suppressions |
Camellia oleifera | Tyrosinase and TRP-2 suppressions |
Camellia sinensis | Tyrosinase suppression |
Eupafolin, Phyla nodiflora | Inhibition of Akt and activation of phospho-ERK or p38 MAPK |
Name | Mode of Action |
---|---|
Endarachne binghamiae Schizymenia dabyi Ecklonia cava (EC) Sargassum silquastrum (SS) | Tyrosinase inhibition activity |
Fucoidan | Competitive inhibition of Tyrosinase activity |
Ecklonia stolonifera OKAMURA | Noncompetitive and competitive inhibition of Tyrosinase activity |
Diphlorethohydroxycarmalol (DPHC) | Noncompetitive inhibition of Tyrosinase activity |
Fucofuroeckol-A | Noncompetitive inhibition of Tyrosinase activity |
Turbinaria conoides | Tyrosinase inhibition activity |
Sargassum plagyophyllum Eucheuma cottonii | Tyrosinase inhibition activity; protection against UV-B radiation-induced cell damage |
Symphyocladia latiuscala | Tyrosinase inhibition activity |
Phlorofucofuroeckol A and 2-O-(2, 4, 6-trihydroxy phenyl)-6, 6′-bieckol from Ecklonia cava | Tyrosinase inhibition activity |
Octaphlorethol A(OPA) from Ishige foliaceae | Tyrosinase inhibition activity |
Combination of Undaria pinnatifida (UPEF), Ecklonia cava (E), glycosaminoglycans (GAGs) | Tyrosinase inhibition activity; MITF suppression |
Stichopus japonicus | Tyrosinase inhibition activity; MITF suppression |
Trichostatin A (TSA) from Stichopus japonicus | Tyrosinase inhibition activity |
JMS (Jeju magma-seawater) | Inhibition of Tyrosinase activity; melanin secretion; melanogenic gene expression |
Pandina boryana | Regulated phosphorylation of ERK |
Sargassum siliquosum | Tyrosinase inhibition activity; conformational change of the enzyme |
Sargaquinoic acid (SQA) from Sargassum serratifoliu | TYR, TRP-1, and TRP-2 suppression |
Chitosan | Inhibition of melanosome release and transport |
4-(phenylsulfanyl) butan-2-one from Cladiella australis | MITF, TYR, TRP-1, TRP-2, and Gp100 suppression |
Name | Mode of Action |
---|---|
Acetobacter, Aspergillus and Penicillium | Inhibition of Tyrosinase activity and melanosome transfer |
Saccharomyces cerevisiae yeast extract | Inhibition of Tyrosinase activity and melanosome transfer |
Bifidobacterium adolescentis | Inhibition of Tyrosinase activity and melanin production |
Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus, Lactobacillus brevis | Inhibition of Tyrosinase activity; fermented extracts showed higher anti-TYRosine activity than nonfermented extracts |
Lactobacillus rhamnosus | Inhibition of Tyrosinase activity |
Lipoteichoic Acid (LTA) from Lactobacillus plantarum | Inhibition of Tyrosinase activity; inhibition of melanogenesis-related enzymes |
Lactobacillus acidophilus (AL) | Inhibition of the mRNA expression of melanogenesis-related genes |
Rhodobacter sphaeroides (lycogen) | Inhibition of melanogenesis-related protein |
Bifidobacterium bifidum-fermented Chinese herb extracts | Anti-Tyrosinase activity; fermented extracts showed higher anti-TYRosine activity than nonfermented extracts |
Urolithin A (UA) and Urolithin B (UB) from urolithin-producing bacteria | Inhibition of Tyrosinase activity |
Nonfermented Rhodiola rosea and Lonicera japonica extracts Alcaligenes piechaudii-Fermented extract | Inhibition of Tyrosinase activity; fermented extracts showed higher anti-TYRosine activity than nonfermented |
Lactobacillus helveticus NS8-fermented milk (NS8-FS) | Inhibition of Tyrosinase activity; regulation of melanogenesis-related gene expression |
Magnolia officinalis bark (MOB) extracts by Aspergillus niger fermentation | Inhibition of Tyrosinase activity |
Asparagus cochinchinensis extract fermented with Aspergillus oryzae | Inhibition of Tyrosinase activity; regulation of melanogenesis-related protein; expression; non-fermented extract directly inhibited Tyrosinase activity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Huh, Y.; Lim, K.-M. Anti-Pigmentary Natural Compounds and Their Mode of Action. Int. J. Mol. Sci. 2021, 22, 6206. https://doi.org/10.3390/ijms22126206
Kim K, Huh Y, Lim K-M. Anti-Pigmentary Natural Compounds and Their Mode of Action. International Journal of Molecular Sciences. 2021; 22(12):6206. https://doi.org/10.3390/ijms22126206
Chicago/Turabian StyleKim, Kyuri, YoonJung Huh, and Kyung-Min Lim. 2021. "Anti-Pigmentary Natural Compounds and Their Mode of Action" International Journal of Molecular Sciences 22, no. 12: 6206. https://doi.org/10.3390/ijms22126206
APA StyleKim, K., Huh, Y., & Lim, K. -M. (2021). Anti-Pigmentary Natural Compounds and Their Mode of Action. International Journal of Molecular Sciences, 22(12), 6206. https://doi.org/10.3390/ijms22126206