Activity of Oritavancin and Its Synergy with Other Antibiotics against Mycobacterium abscessus Infection In Vitro and In Vivo
Abstract
:1. Introduction
2. Results
2.1. Activity of Oritavancin against M. abscessus and M. tuberculosis
2.2. Bactericidal Activity of Oritavancin against M. abscessus and M. bovis BCG In Vitro and Intracellular
2.3. Interactions with Other Clinically Utilized Antibiotics
2.4. M. abscessus-Killing Effect of Oritavancin in Combination with Clarithromycin, Cefoxitin, Moxifloxacin, Tigecycline, or Meropenem
2.5. Activity of Oritavancin against M. abscessus Infection in Immunosuppressive Mouse Model
3. Discussion
4. Materials and Methods
4.1. Antimicrobial Agents
4.2. Bacterial Strains, Cell Line, and Culture Conditions
4.3. Mouse Experiments
4.4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.5. Cytotoxicity Assay
4.6. Intracellular Anti-Mycobacterial Activity
4.7. Time–Concentration-Dependent Killing Assay
4.8. Synergy Assay
4.9. Bacterial Load Experiments
4.10. Ethical Approval
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winthrop, K.L.; McNelley, E.; Kendall, B.; Marshall-Olson, A.; Morris, C.; Cassidy, M.; Saulson, A.; Hedberg, K. Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: An emerging public health disease. Am. J. Respir. Crit. Care Med. 2010, 182, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Frerichs, J.B. An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region; report of a case with a study of the organism, Mycobacterium abscessus, n. sp. J. Investig. Dermatol. 1953, 20, 133–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.L.; Palmer, S.M. Mycobacterium abscessus chest wall and pulmonary infection in a cystic fibrosis lung transplant recipient. J. Heart Lung Transplant. 2006, 25, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM drug discovery: Status, gaps and the way forward. Drug Discov. Today 2018, 23, 1502–1519. [Google Scholar] [CrossRef]
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Floto, R.A.; Olivier, K.N.; Saiman, L.; Daley, C.L.; Herrmann, J.L.; Nick, J.A.; Noone, P.G.; Bilton, D.; Corris, P.; Gibson, R.L.; et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 2016, 71 (Suppl. 1), i1–i22. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.E. Mycobacterium abscessus and Antibiotic Resistance: Same As It Ever Was. Clin. Infect. Dis. 2019, 69, 1687–1689. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline: Executive Summary. Clin. Infect. Dis. 2020, 71, e1–e36. [Google Scholar] [CrossRef]
- Egorova, A.; Jackson, M.; Gavrilyuk, V.; Makarov, V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med. Res. Rev. 2021. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wu, M.L.; Teo, J.W.P.; Dick, T. Vancomycin and Clarithromycin Show Synergy against Mycobacterium abscessus In Vitro. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.L.; Octavia, S.; Go, J.; Ng, S.; Tang, Y.E.; Soh, P.; Yong, J.; Jureen, R.; Lin, R.T.P.; Yeoh, S.F.; et al. In vitro susceptibility of Mycobacterium abscessus complex and feasibility of standardizing treatment regimens. J. Antimicrob. Chemother. 2020. [Google Scholar] [CrossRef]
- Sarathy, J.P.; Ganapathy, U.S.; Zimmerman, M.D.; Dartois, V.; Gengenbacher, M.; Dick, T. TBAJ-876, a 3,5-Dialkoxypyridine Analogue of Bedaquiline, Is Active against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2020, 64, e02404-19. [Google Scholar] [CrossRef] [Green Version]
- Hamad, B. The antibiotics market. Nat. Rev. Drug. Discov. 2010, 9, 675–676. [Google Scholar] [CrossRef]
- Lavollay, M.; Dubee, V.; Heym, B.; Herrmann, J.L.; Gaillard, J.L.; Gutmann, L.; Arthur, M.; Mainardi, J.L. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin. Microbiol. Infect. 2014, 20, O297–O300. [Google Scholar] [CrossRef] [Green Version]
- Kwak, N.; Dalcolmo, M.P.; Daley, C.L.; Eather, G.; Gayoso, R.; Hasegawa, N.; Jhun, B.W.; Koh, W.J.; Namkoong, H.; Park, J.; et al. M ycobacterium abscessus pulmonary disease: Individual patient data meta-analysis. Eur. Respir. J. 2019, 54. [Google Scholar] [CrossRef]
- Hanh, B.T.B.; Kim, T.H.; Park, J.W.; Lee, D.G.; Kim, J.S.; Du, Y.E.; Yang, C.S.; Oh, D.C.; Jang, J. Etamycin as a Novel Mycobacterium abscessus Inhibitor. Int. J. Mol. Sci. 2020, 21. [Google Scholar] [CrossRef]
- Baines, S.D.; O’Connor, R.; Saxton, K.; Freeman, J.; Wilcox, M.H. Comparison of oritavancin versus vancomycin as treatments for clindamycin-induced Clostridium difficile PCR ribotype 027 infection in a human gut model. J. Antimicrob. Chemother. 2008, 62, 1078–1085. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, P.E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Rubino, C.M.; Bhavnani, S.M.; Moeck, G.; Bellibas, S.E.; Ambrose, P.G. Population pharmacokinetic analysis for a single 1,200-milligram dose of oritavancin using data from two pivotal phase 3 clinical trials. Antimicrob. Agents Chemother. 2015, 59, 3365–3372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S.; et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 2014, 370, 2180–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox Mark, H.; Baines, S.; Lehoux, D.; Parr Thomas, R. Method of Inhibiting Clostridium Difficile BY Administration of Oritavancin. U.S. Patent No. 8,518,873, 27 August 2013. [Google Scholar]
- Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Steenwinkel, J.E.; de Knegt, G.J.; ten Kate, M.T.; van Belkum, A.; Verbrugh, H.A.; Kremer, K.; van Soolingen, D.; Bakker-Woudenberg, I.A. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2010, 65, 2582–2589. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, T.; Qu, G.; Pang, Y.; Zhao, Y. In vitro synergistic activity of clofazimine and other antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis isolates. Int. J. Antimicrob. Agents 2015, 45, 71–75. [Google Scholar] [CrossRef]
- Maggioncalda, E.C.; Story-Roller, E.; Ammerman, N.C.; Nuermberger, E.L.; Lamichhane, G. Progressive Mycobacterium abscessus lung infection in C3HeB/FeJ mice associated with corticosteroid administration. bioRxiv 2018, 418491. [Google Scholar] [CrossRef]
- Lerat, I.; Cambau, E.; Roth Dit Bettoni, R.; Gaillard, J.L.; Jarlier, V.; Truffot, C.; Veziris, N. In vivo evaluation of antibiotic activity against Mycobacterium abscessus. J. Infect. Dis. 2014, 209, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Story-Roller, E.; Maggioncalda, E.C.; Lamichhane, G. Synergistic Efficacy of beta-Lactam Combinations against Mycobacterium abscessus Pulmonary Infection in Mice. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.G.; Trigo, G.; Fraga, A.G.; Gama, J.B.; Longatto-Filho, A.; Saraiva, M.; Silva, M.T.; Castro, A.G.; Pedrosa, J. Corticosteroid-induced immunosuppression ultimately does not compromise the efficacy of antibiotherapy in murine Mycobacterium ulcerans infection. PLoS Negl. Trop. Dis. 2012, 6, e1925. [Google Scholar] [CrossRef] [Green Version]
- Hagihara, M.; Kato, H.; Sugano, T.; Okade, H.; Sato, N.; Shibata, Y.; Sakanashi, D.; Asai, N.; Koizumi, Y.; Suematsu, H.; et al. Pharmacodynamic evaluation of meropenem, cefepime, or aztreonam combined with a novel β-lactamase inhibitor, nacubactam, against carbapenem-resistant and/or carbapenemase-producing Klebsiella pneumoniae and Escherichia coli using a murine thigh-infection model. Int. J. Antimicrob. Agents 2021, 57, 106330. [Google Scholar] [CrossRef]
- Boylan, C.J.; Campanale, K.; Iversen, P.W.; Phillips, D.L.; Zeckel, M.L.; Parr, T.R., Jr. Pharmacodynamics of oritavancin (LY333328) in a neutropenic-mouse thigh model of Staphylococcus aureus infection. Antimicrob. Agents Chemother. 2003, 47, 1700–1706. [Google Scholar] [CrossRef] [Green Version]
Concentration (μg/mL) | ||
---|---|---|
Strains | MIC | MBC |
M. abscessus | 8 | 64 |
M. tuberculosis H37Rv | 0.125 | 0.5 |
M. tuberculosis H37Ra | 2 | 8 |
M. bovis | 0.125 | 0.5 |
M. bovis BCG | 0.5 | 1 |
M. smegmatis mc2155 | 8 | 32 |
MIC (μg/mL) | |||||
---|---|---|---|---|---|
Drug | Alone | Combination | FIC | ∑FIC | Remarks |
Oritavancin | 8 | 2.0 | 0.25 | ||
Clarithromycin | 0.0625 | 0.0156 | 0.25 | 0.5 | Synergism |
Oritavancin | 8 | 0.125 | 0.0156 | ||
Tigecycline | 1 | 0.125 | 0.125 | 0.141 | Synergism |
Oritavancin | 8 | 4.0 | 0.25 | ||
Cefoxitin | 4 | 1.0 | 0.25 | 0.5 | Synergism |
Oritavancin | 8 | 4.0 | 0.25 | ||
Moxifloxacin | 1 | 0.25 | 0.25 | 0.5 | Synergism |
Oritavancin | 8 | 0.125 | 0.0156 | ||
Meropenem | 4 | 1.0 | 0.25 | 0.266 | Synergism |
Oritavancin | 8 | 1.0 | 0.125 | ||
Levoxofloxacin | 2 | 1.0 | 0.5 | 0. 563 | No interaction |
Oritavancin | 8 | 0.5 | 0.0625 | 0.508 | |
Amikacin | 8 | 4.0 | 0.5 | No interaction | |
Oritavancin | 8 | 2.0 | 0.125 | 0.625 | |
Bedaquiline | 0.25 | 0.125 | 0.5 | No interaction | |
Oritavancin | 8 | 8 | 0.5 | 1.0 | |
Linezolid | 0.25 | 0.125 | 0.5 | No interaction | |
Oritavancin | 8 | 0.125 | 0.0078 | 1.01 | |
Rifampicin | 1 | 1.0 | 1.0 | No interaction | |
Oritavancin | 8 | 8.0 | 0.5 | 1.0 | |
Imipenem | 16 | 8.0 | 0.5 | 0.5 | No interaction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Tang, J.; Feng, J.; Dong, W.; Huo, X.; Lu, H.; Wang, C.; Lu, W.; Wang, X.; Chen, H.; et al. Activity of Oritavancin and Its Synergy with Other Antibiotics against Mycobacterium abscessus Infection In Vitro and In Vivo. Int. J. Mol. Sci. 2021, 22, 6346. https://doi.org/10.3390/ijms22126346
Wang G, Tang J, Feng J, Dong W, Huo X, Lu H, Wang C, Lu W, Wang X, Chen H, et al. Activity of Oritavancin and Its Synergy with Other Antibiotics against Mycobacterium abscessus Infection In Vitro and In Vivo. International Journal of Molecular Sciences. 2021; 22(12):6346. https://doi.org/10.3390/ijms22126346
Chicago/Turabian StyleWang, Gaoyan, Jia Tang, Jiajia Feng, Wenqi Dong, Xinyu Huo, Hao Lu, Chenchen Wang, Wenjia Lu, Xiangru Wang, Huanchun Chen, and et al. 2021. "Activity of Oritavancin and Its Synergy with Other Antibiotics against Mycobacterium abscessus Infection In Vitro and In Vivo" International Journal of Molecular Sciences 22, no. 12: 6346. https://doi.org/10.3390/ijms22126346
APA StyleWang, G., Tang, J., Feng, J., Dong, W., Huo, X., Lu, H., Wang, C., Lu, W., Wang, X., Chen, H., & Tan, C. (2021). Activity of Oritavancin and Its Synergy with Other Antibiotics against Mycobacterium abscessus Infection In Vitro and In Vivo. International Journal of Molecular Sciences, 22(12), 6346. https://doi.org/10.3390/ijms22126346