Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans
Abstract
:1. Introduction
2. Results
2.1. The Effect of Berry Anthocyanins on Cognitive Performance
2.1.1. Attention and Psychomotor Speed
2.1.2. Executive Function
2.1.3. Memory
2.1.4. Other Cognitive Tests
Author (Year) | Intervention | Anthocyanin Dose | Attention and Psychomotor Speed | Executive Function | Memory | Other | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TMT-A | MFT | GPT | FCRTT | Miscellaneous | TMT-B | Stroop | (M)ANT | Go-No-Go | Miscellaneous | RAVLT - HVLT - CVLT | VPAL and SPAL | WRT | n-back | Miscellaneous | ||||
Ahles (2020) [31] | Chokeberry extract | 16 mg | ↑ | = (NCT) | = | |||||||||||||
27 mg | = | = (NCT) | = | |||||||||||||||
Barfoot (2019) [33] | Freeze-dried wild blueberry juice | 253 mg | ↑ | ↑ (R) | = (TOWRE-2) | |||||||||||||
Boespflug (2018) [35] | Freeze-dried blueberry powder | 269 mg | ↑? | |||||||||||||||
Bowtell (2017) [36] | Blueberry extract | 387 mg | = | ↑ | = (ISLT) | = (Groton Maze) | ||||||||||||
Cook (2020) [41] | New Zealand blackcurrant extract | 210 mg | = | = (RVIP, SRT) | = (SWM) | = (S) | ||||||||||||
Krikorian (2010) [53] | Blueberry juice | 428-598 mg 1 | ↑ (C) | ↑ (V) | ||||||||||||||
Krikorian (2020) [54] | Freeze-dried blueberry fruit powder | 258 mg | ↑? | = | ↑ (COWAT) | = (H) | ↑ (S) | |||||||||||
McNamara (2018) [58] | Freeze-dried blueberry powder | 269 mg | = | = | = (COWAT) | ↑ (H) | ||||||||||||
Miller (2018) [59] | Freeze-dried blueberry powder | 230 mg # | = | = | = | ↑ (TST) | ↑ (C) | = (DST) | = (VMWMT) | |||||||||
Traupe (2018) [70] | Blueberry juice | nr | ↑ (AMT) | ↑ | ↑ (Prose Memory) | |||||||||||||
Watson (2019) [71] | Blackcurrant juice | 115.09 mg | ↑ | = (DVT, SRTT) | ||||||||||||||
Whyte (2015) [72] | Blueberry juice | 143 mg | = | = | =? (R) | = | = (OLT) | |||||||||||
Whyte (2016) [73] | Freeze-dried wild blueberry powder | 127 mg | = | ↓? | ↑? (PMT) | ↑? (R) | ||||||||||||
254 mg | ↑ | = | ↑? (PMT) | ↑ (R) | ||||||||||||||
Whyte (2017) [74] | Wild blueberry powder | 253 mg | ↑ | |||||||||||||||
Whyte (2018) [75] | Wild blueberry powder and extract | 1.35 mg | = | = | = (R) | = | = (CBT, SST, SMST) | |||||||||||
2.7 mg | = | = | = (R) | = | = (CBT, SST, SMST) | |||||||||||||
7 mg | = | = | = (R) | ↑ | ↑? (CBT); = (SST, SMST) | |||||||||||||
Whyte (2020) [76] | Wild blueberry powder | 475 mg | = | ↑ | ↑ (R) | |||||||||||||
Whyte (2020) [30] | Wild blueberry powder | 253 mg | = (R) | ↑ (VSGT); = (BPT, PRT) | ||||||||||||||
Wild blueberry powder | 253 mg | ↑? | = Stop-Go, TST) |
2.2. The Effect of Berry Anthocyanins on Vascular Function
2.2.1. Brachial Artery Flow-Mediated Vasodilation
2.2.2. Reactive Hyperemia Index
2.2.3. Augmentation Index
2.2.4. Pulse Wave Velocity
2.2.5. Other Vascular Function Markers
Author (Year) | Intervention | Anthocyanin Dose | FMD | RHI | AIx | PWV | |
---|---|---|---|---|---|---|---|
Carotid-to-femoral | Brachial-ankle | ||||||
Ahles (2020) [31] | Chokeberry extract | 16 mg; 27 mg | |||||
Castro-Acosta (2016) [37] | Blackcurrant extract | 131 mg; 322 mg; 599 mg | |||||
Cook (2017) [40] | New Zealand blackcurrant extract | 105 mg; 210 mg; 315 mg | |||||
Curtis (2019) [43] | Freeze-dried blueberry powder | 182 mg | = | = | |||
364 mg | ↑ | ↓ | |||||
Del Bó (2013) [44] | Blueberry jello | 348 mg | = | ||||
Del Bó (2017) [45] | Blueberry juice | 309 mg | = | = | |||
Istas (2019) [46] | Chokeberry extract and whole fruit | 3.6 mg | ↑ | ||||
30 mg | ↑ | ||||||
Jeong (2014) [47] | Black raspberry extract | nr | ↑ | = | |||
Jeong (2016) [48] | Black raspberry extract | nr (low dose) | = | = | |||
nr (high dose) | = | = | |||||
Jeong (2016) [49] | Black raspberry extract | nr | ↓ | ||||
Jin (2011) [50] | Blackcurrant juice | nr | |||||
Johnson (2015) [51] | Freeze-dried blueberry powder | 103 mg # | ↓ | = | |||
Khan (2014) [52] | Blackcurrant juice | 10 mg | = | ||||
37.75 mg | ↑ | ||||||
McAnulty (2014) [56] | Blueberry powder | nr | ↓ | = | |||
McAnulty (2019) [57] | Freeze-dried blueberry powder | nr | = | = | |||
Okamoto (2020) [62] | New Zealand blackcurrant extract | 210 mg | ↓ | ↓ | |||
Riso (2013) [65] | Freeze-dried blueberry powder | 375 mg | ↑ | = | |||
Rodriguez-Mateos (2013) [29] | Freeze-dried blueberry powder | 310 mg | ↑ | = | = | ||
517 mg | ↑ | = | = | ||||
724 mg | ↑ | = | = | ||||
Freeze-dried blueberry powder | 129 mg | ↑ | |||||
258 mg | ↑ | ||||||
310 mg | ↑ | ||||||
517 mg | ↑ | ||||||
724 mg | ↑ | ||||||
Rodriguez-Mateos (2014) [66] | Freeze-dried blueberry powder | 196 mg | ↑ | ||||
339 mg | ↑ | ||||||
Stull (2015) [68] | Freeze-dried blueberry powder | 290.3 mg | ↑ | ||||
Tomisawa (2019) [69] | Blackcurrant extract | 50 mg | = |
2.3. The Effect of Berry Anthocyanins on Cardiometabolic Risk
2.3.1. Blood Pressure
2.3.2. Metabolic Risk Markers
Author (Year) | Intervention | Anthocyanin Dose | Blood Pressure | Metabolic Risk Markers | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBP/DBP | MAP | Central SBP/DBP | 24hr ABP SBP/DBP | Heart Rate | Glucose | Insulin | TC | TAG | HDL-C | LDL-C | non-HDL | ApoA1 | ApoB | |||
Ahles (2020) [31] | Chokeberry extract | 16 mg | =/= | =/= | ||||||||||||
27 mg | =/= | =/= | ||||||||||||||
Arevström (2019) [32] | Bilberry powder | 90 mg # | =/= | = | = | = | = | = | ||||||||
Basu (2010) [34] | Freeze-dried blueberry juice | 742 mg | ↓/↓ | = | = | = | = | = | ||||||||
Castro-Acosta (2016) [37] | Blackcurrant extract | 131 mg | =/= | |||||||||||||
322 mg | =/= | |||||||||||||||
599 mg | =/= | |||||||||||||||
Cho (2020) [38] | Black raspberry extract | nr | =/= | ↓ | = | = | ↓ | ↓ | = | ↓ | ||||||
Cook (2017) [39] | New Zealand blackcurrant extract | 210 mg | =/= | = | = | |||||||||||
Cook (2017) [40] | New Zealand blackcurrant extract | 105 mg | =/= | = | = | |||||||||||
210 mg | =/= | ↓ | = | |||||||||||||
315 mg | =/= | ↓? | = | |||||||||||||
Cook (2020) [41] | New Zealand blackcurrant extract | 210 mg | ↓/↓ | |||||||||||||
Curtis (2009) [42] | Elderberry extract | 500 mg | =/= | = | = | = | = | = | = | |||||||
Curtis (2019) [43] | Freeze-dried blueberry powder | 182 mg | =/= | = | = | = | = | = | = | |||||||
Del Bó (2013) [44] | Blueberry jello | 348 mg | =/= | |||||||||||||
Del Bó (2017) [45] | Blueberry juice | 309 mg | =/= | = | ||||||||||||
Istas (2019) [46] | Chokeberry extract and whole fruit | 3.6 mg | =/= | =/= | = | = | = | = | = | = | ||||||
30 mg | =/= | =/= | = | = | = | = | = | = | ||||||||
Jeong (2014) [47] | Black raspberry extract | nr | ↓ | = | = | = | = | = | ||||||||
Jeong (2016) [48] | Black raspberry extract | nr (low dose) | =/= | =/- | =/= | |||||||||||
nr (high dose) | =/= | =/- | ↓/= | |||||||||||||
Jeong (2016) [49] | Black raspberry extract | nr | =/= | =/- | = | |||||||||||
Johnson (2015) [51] | Freeze-dried blueberry powder | 103 mg # | ↓/↓ | = | = | |||||||||||
Khan (2014) [52] | Blackcurrant juice | 10 mg | =/= | = | ||||||||||||
35.75 mg | =/= | = | ||||||||||||||
Loo (2016) [55] | Chokeberry juice and powder | 1024 mg | =/= | =/↓? | = | = | = | = | = | = | ||||||
McAnulty (2014) [56] | Blueberry powder | nr | ↓/= | |||||||||||||
McAnulty (2019) [57] | Freeze-dried blueberry powder | nr | ↓/= | |||||||||||||
Murkovic (2004) [60] | Elderberry juice | 40 mg | = | = | = | = | ||||||||||
Naruszewicz (2007) [61] | Chokeberry extract | 64 mg # | ↓/↓ | = | = | = | = | = | ||||||||
Okamoto (2020) [62] | New Zealand blackcurrant extract | 210 mg | ↓/↓? | ↓ | =/↓ | = | = | = | = | |||||||
Petrovic (2016) [63] | Chokeberry juice | nr | = | = | = | |||||||||||
Pokimica (2019) [64] | Chokeberry juice | 28.3 mg | =/= | = | = | = | ||||||||||
113.3 mg | =/= | = | = | = | = | |||||||||||
Riso (2013) [65] | Freeze-dried blueberry powder | 375 mg | =/= | = | = | = | = | = | ||||||||
Rodriguez-Mateos (2013) [29] | Freeze-dried blueberry powder | 310 mg | =/= | = | ||||||||||||
517 mg | =/= | = | ||||||||||||||
724 mg | =/= | = | ||||||||||||||
Stull (2010) [67] | Freeze-dried blueberry powder | 668 mg | =/= | = | = | = | = | = | = | |||||||
Stull (2015) [68] | Freeze-dried blueberry powder | 290.3 mg | =/= | = | = | = | = | = | = | |||||||
Whyte (2018) [75] | Wild blueberry powder and extract | 1.35 mg | =/= | |||||||||||||
2.7 mg | =/= | |||||||||||||||
7 mg | ↓/= | |||||||||||||||
Xie (2017) [77] | Chokeberry extract | 45.1 mg | =/= | ↓ | = | = | ↓ |
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Study Selection
4.3. Data Extraction
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Harvey, P.D. Domains of cognition and their assessment. Dialogues Clin. Neurosci. 2019, 21, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Craik, F.; Bialystok, E. Cognition through the lifespan: Mechanisms of change. Trends Cogn. Sci. 2006, 10, 131–138. [Google Scholar] [CrossRef] [PubMed]
- United Nations Department of Economic and Social Affairs Population Division. World Population Ageing 2020 Highlights: Living Arrangements of Older Persons. (ST/ESA/SER.A/451); United Nations Department of Economic and Social Affairs Population Division: New York, NY, USA, 2020. [Google Scholar]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.Y.; Fagan, S.C.; Ergul, A. Brain Vasculature and Cognition. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 593–602. [Google Scholar] [CrossRef]
- Pase, M.P.; Satizabal, C.L.; Seshadri, S. Role of Improved Vascular Health in the Declining Incidence of Dementia. Stroke 2017, 48, 2013–2020. [Google Scholar] [CrossRef]
- Widmer, R.J.; Lerman, A. Endothelial dysfunction and cardiovascular disease. Glob. Cardiol. Sci. Pract. 2014, 291–308. [Google Scholar] [CrossRef]
- Creager, M.A.; Lüscher, T.F.; Cosentino, F.; Beckman, J.A. Diabetes and Vascular Disease. Circulation 2003, 108, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef]
- Segers, P.; Rietzschel, E.R.; Chirinos, J.A. How to Measure Arterial Stiffness in Humans. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Tsentidou, G.; Moraitou, D.; Tsolaki, M. Cognition in Vascular Aging and Mild Cognitive Impairment. J. Alzheimers Dis. 2019, 72, 55–70. [Google Scholar] [CrossRef]
- Forte, G.; De Pascalis, V.; Favieri, F.; Casagrande, M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J. Clin. Med. 2019, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, S.T.d.; Giatti, L.; Brant, L.C.C.; Griep, R.H.; Schmidt, M.I.; Duncan, B.B.; Suemoto, C.K.; Ribeiro, A.L.P.; Barreto, S.M. Hypertension, Prehypertension, and Hypertension Control. Hypertension 2021, 77, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Clare, L.; Wu, Y.-T.; Teale, J.C.; MacLeod, C.; Matthews, F.; Brayne, C.; Woods, B.; CFAS-Wales Study Team. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017, 14, e1002259. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Tousoulis, D.; Androulakis, E.; Giotakis, A.; Siasos, G.; Latsios, G.; Stefanadis, C. Lifestyle factors and endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 94–106. [Google Scholar] [CrossRef]
- Shi, L.; Morrison, J.A.; Wiecha, J.; Horton, M.; Hayman, L.L. Healthy lifestyle factors associated with reduced cardiometabolic risk. Br. J. Nutr. 2011, 105, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Dębski, H. Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition. Veg. Crops Res. Bull. 2008, 68, 5–22. [Google Scholar] [CrossRef]
- Ramos, P.; Herrera, R.; Moya-León, M. Handbook of Anthocyanins. Anthocyanins: Food Sources and Benefits to Consumer´s Health; Nova Science Publishers Inc.: New York, NY, USA, 2014; pp. 373–394. [Google Scholar]
- Wu, X.; Beecher, G.; Haytowitz, D.; Gebhardt, S.; Prior, R. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Rosi, A.; Paolella, G.; Biasini, B.; Scazzina, F. Dietary habits of adolescents living in North America, Europe or Oceania: A review on fruit, vegetable and legume consumption, sodium intake, and adherence to the Mediterranean Diet. Nutr. Metab. Cardiovasc. Dis. 2019. [Google Scholar] [CrossRef]
- Kent, K.; Charlton, K.E.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. J. Hum. Nutr. Diet. 2017, 30, 260–274. [Google Scholar] [CrossRef]
- Travica, N.; D’Cunha, N.M.; Naumovski, N.; Kent, K.; Mellor, D.D.; Firth, J.; Georgousopoulou, E.N.; Dean, O.M.; Loughman, A.; Jacka, F.; et al. The effect of blueberry interventions on cognitive performance and mood: A systematic review of randomized controlled trials. Brain Behav. Immun. 2020, 85, 96–105. [Google Scholar] [CrossRef]
- Hein, S.; Whyte, A.R.; Wood, E.; Rodriguez-Mateos, A.; Williams, C.M. Systematic Review of the Effects of Blueberry on Cognitive Performance as We Age. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 984–995. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, J.; Clark, C.; Kord Varkaneh, H.; Lakiang, T.; Vasanthan, L.T.; Onyeche, V.; Mousavi, S.M.; Zhang, Y. The effect of Aronia consumption on lipid profile, blood pressure, and biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 1981–1990. [Google Scholar] [CrossRef]
- Fairlie-Jones, L.; Davison, K.; Fromentin, E.; Hill, A.M. The Effect of Anthocyanin-Rich Foods or Extracts on Vascular Function in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2017, 9, 908. [Google Scholar] [CrossRef] [Green Version]
- Daneshzad, E.; Shab-Bidar, S.; Mohammadpour, Z.; Djafarian, K. Effect of anthocyanin supplementation on cardio-metabolic biomarkers: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2019, 38, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Rendeiro, C.; Bergillos-Meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Whyte, A.R.; Lamport, D.J.; Schafer, G.; Williams, C.M. The cognitive effects of an acute wild blueberry intervention on 7- to 10-year-olds using extended memory and executive function task batteries. Food Funct. 2020, 11, 4793–4801. [Google Scholar] [CrossRef] [PubMed]
- Ahles, S.; Stevens, Y.R.; Joris, P.J.; Vauzour, D.; Adam, J.; de Groot, E.; Plat, J. The Effect of Long-Term Aronia melanocarpa Extract Supplementation on Cognitive Performance, Mood, and Vascular Function: A Randomized Controlled Trial in Healthy, Middle-Aged Individuals. Nutrients 2020, 12, 2475. [Google Scholar] [CrossRef] [PubMed]
- Arevström, L.; Bergh, C.; Landberg, R.; Wu, H.; Rodriguez-Mateos, A.; Waldenborg, M.; Magnuson, A.; Blanc, S.; Fröbert, O. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: An open-label randomized clinical trial. Nutr. Res. 2019, 62, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Barfoot, K.L.; May, G.; Lamport, D.J.; Ricketts, J.; Riddell, P.M.; Williams, C.M. The effects of acute wild blueberry supplementation on the cognition of 7-10-year-old schoolchildren. Eur. J. Nutr. 2019, 58, 2911–2920. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef] [Green Version]
- Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci. 2018, 21, 297–305. [Google Scholar] [CrossRef]
- Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab. 2017, 42, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Castro-Acosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem. 2016, 38, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.M.; Chae, J.; Jeong, S.R.; Moon, M.J.; Ha, K.-C.; Kim, S.; Lee, J.H. The cholesterol-lowering effect of unripe Rubus coreanus is associated with decreased oxidized LDL and apolipoprotein B levels in subjects with borderline-high cholesterol levels: A randomized controlled trial. Lipids Health Dis. 2020, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Willems, M.E.T. Blackcurrant Alters Physiological Responses and Femoral Artery Diameter during Sustained Isometric Contraction. Nutrients 2017, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Edwards, V.C.; Willems, M.E. Cardiovascular function during supine rest in endurance-trained males with New Zealand blackcurrant: A dose-response study. Eur. J. Appl. Physiol. 2017, 117, 247–254. [Google Scholar] [CrossRef]
- Cook, M.D.; Sandu, B.H.A.K.; Joyce Ph, D.J. Effect of New Zealand Blackcurrant on Blood Pressure, Cognitive Function and Functional Performance in Older Adults. J. Nutr. Gerontol. Geriatr. 2020, 39, 99–113. [Google Scholar] [CrossRef]
- Curtis, P.J.; Kroon, P.A.; Hollands, W.J.; Walls, R.; Jenkins, G.; Kay, C.D.; Cassidy, A. Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J. Nutr. 2009, 139, 2266–2271. [Google Scholar] [CrossRef] [Green Version]
- Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Del Bó, C.; Riso, P.; Campolo, J.; Møller, P.; Loft, S.; Klimis-Zacas, D.; Brambilla, A.; Rizzolo, A.; Porrini, M. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr. Res. 2013, 33, 220–227. [Google Scholar] [CrossRef]
- Del Bo, C.; Deon, V.; Campolo, J.; Lanti, C.; Parolini, M.; Porrini, M.; Klimis-Zacas, D.; Riso, P. A serving of blueberry (V. corymbosum) acutely improves peripheral arterial dysfunction in young smokers and non-smokers: Two randomized, controlled, crossover pilot studies. Food Funct. 2017, 8, 4108–4117. [Google Scholar] [CrossRef] [PubMed]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Hong, S.J.; Lee, T.B.; Kwon, J.W.; Jeong, J.T.; Joo, H.J.; Park, J.H.; Ahn, C.M.; Yu, C.W.; Lim, D.S. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome. Phytother. Res. 2014, 28, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Hong, S.J.; Cho, J.Y.; Lee, T.B.; Kwon, J.W.; Joo, H.J.; Park, J.H.; Yu, C.W.; Lim, D.S. Effects of Rubus occidentalis extract on blood pressure in patients with prehypertension: Randomized, double-blinded, placebo-controlled clinical trial. Nutrition 2016, 32, 461–467. [Google Scholar] [CrossRef]
- Jeong, H.S.; Kim, S.; Hong, S.J.; Choi, S.C.; Choi, J.H.; Kim, J.H.; Park, C.Y.; Cho, J.Y.; Lee, T.B.; Kwon, J.W.; et al. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Med. Food 2016, 19, 346–352. [Google Scholar] [CrossRef]
- Jin, Y.; Alimbetov, D.; George, T.; Gordon, M.H.; Lovegrove, J.A. A randomised trial to investigate the effects of acute consumption of a blackcurrant juice drink on markers of vascular reactivity and bioavailability of anthocyanins in human subjects. Eur. J. Clin. Nutr. 2011, 65, 849–856. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- Khan, F.; Ray, S.; Craigie, A.M.; Kennedy, G.; Hill, A.; Barton, K.L.; Broughton, J.; Belch, J.J. Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: A randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic. Biol. Med. 2014, 72, 232–237. [Google Scholar] [CrossRef]
- Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry Supplementation Improves Memory in Older Adults. J. Agric. Food Chem. 2010, 58, 3996–4000. [Google Scholar] [CrossRef] [Green Version]
- Krikorian, R.; Kalt, W.; McDonald, J.E.; Shidler, M.D.; Summer, S.S.; Stein, A.L. Cognitive performance in relation to urinary anthocyanins and their flavonoid-based products following blueberry supplementation in older adults at risk for dementia. J. Funct. Foods 2020, 64, 103667. [Google Scholar] [CrossRef]
- Loo, B.M.; Erlund, I.; Koli, R.; Puukka, P.; Hellström, J.; Wähälä, K.; Mattila, P.; Jula, A. Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure. Nutr. Res. 2016, 36, 1222–1230. [Google Scholar] [CrossRef]
- McAnulty, L.S.; Collier, S.R.; Landram, M.J.; Whittaker, D.S.; Isaacs, S.E.; Klemka, J.M.; Cheek, S.L.; Arms, J.C.; McAnulty, S.R. Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr. Res. 2014, 34, 577–584. [Google Scholar] [CrossRef] [PubMed]
- McAnulty, L.; Collier, S.; Pike, J.; Thompsonand, K.; McAnulty, S. Time course of blueberry ingestion on measures of arterial stiffness and blood pressure. J. Berry Res. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- McNamara, R.K.; Kalt, W.; Shidler, M.D.; McDonald, J.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol. Aging 2018, 64, 147–156. [Google Scholar] [CrossRef]
- Miller, M.G.; Hamilton, D.A.; Joseph, J.A.; Shukitt-Hale, B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2018, 57, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Murkovic, M.; Abuja, P.M.; Bergmann, A.R.; Zirngast, A.; Adam, U.; Winklhofer-Roob, B.M.; Toplak, H. Effects of elderberry juice on fasting and postprandial serum lipids and low-density lipoprotein oxidation in healthy volunteers: A randomized, double-blind, placebo-controlled study. Eur. J. Clin. Nutr. 2004, 58, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Naruszewicz, M.; Laniewska, I.; Millo, B.; Dłuzniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, e179–e184. [Google Scholar] [CrossRef]
- Okamoto, T.; Hashimoto, Y.; Kobayashi, R.; Nakazato, K.; Willems, M.E.T. Effects of blackcurrant extract on arterial functions in older adults: A randomized, double-blind, placebo-controlled, crossover trial. Clin. Exp. Hypertens. 2020, 42, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, S.; Arsic, A.; Glibetic, M.; Cikiriz, N.; Jakovljevic, V.; Vucic, V. The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: Results from a randomized, double-blind, placebo-controlled study. Can. J. Physiol. Pharmacol. 2016, 94, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Pokimica, B.; García-Conesa, M.T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, G.; Konić-Ristić, A.; Glibetić, M. Chokeberry Juice Containing Polyphenols Does Not Affect Cholesterol or Blood Pressure but Modifies the Composition of Plasma Phospholipids Fatty Acids in Individuals at Cardiovascular Risk. Nutrients 2019, 11, 850. [Google Scholar] [CrossRef] [Green Version]
- Riso, P.; Klimis-Zacas, D.; Del Bo, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Mateos, A.; Del Pino-García, R.; George, T.W.; Vidal-Diez, A.; Heiss, C.; Spencer, J.P. Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols. Mol. Nutr. Food Res. 2014, 58, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef] [PubMed]
- Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123. [Google Scholar] [CrossRef]
- Tomisawa, T.; Nanashima, N.; Kitajima, M.; Mikami, K.; Takamagi, S.; Maeda, H.; Horie, K.; Lai, F.C.; Osanai, T. Effects of Blackcurrant Anthocyanin on Endothelial Function and Peripheral Temperature in Young Smokers. Molecules 2019, 24, 4295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traupe, I.; Giacalone, M.; Agrimi, J.; Baroncini, M.; Pomé, A.; Fabiani, D.; Danti, S.; Timpano Sportiello, M.R.; Di Sacco, F.; Lionetti, V.; et al. Postoperative cognitive dysfunction and short-term neuroprotection from blueberries: A pilot study. Minerva Anestesiol. 2018, 84, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.W.; Okello, E.J.; Brooker, H.J.; Lester, S.; McDougall, G.J.; Wesnes, K.A. The impact of blackcurrant juice on attention, mood and brain wave spectral activity in young healthy volunteers. Nutr. Neurosci. 2019, 22, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Whyte, A.R.; Williams, C.M. Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition 2015, 31, 531–534. [Google Scholar] [CrossRef]
- Whyte, A.R.; Schafer, G.; Williams, C.M. Cognitive effects following acute wild blueberry supplementation in 7- to 10-year-old children. Eur. J. Nutr. 2016, 55, 2151–2162. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.R.; Schafer, G.; Williams, C.M. The effect of cognitive demand on performance of an executive function task following wild blueberry supplementation in 7 to 10 years old children. Food Funct. 2017, 8, 4129–4138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients 2018, 10, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, A.R.; Rahman, S.; Bell, L.; Edirisinghe, I.; Krikorian, R.; Williams, C.M.; Burton-Freeman, B. Improved metabolic function and cognitive performance in middle-aged adults following a single dose of wild blueberry. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef]
- Root-Bernstein, R. Brain Aging: Models, Methods, and Mechanisms. JAMA 2007, 298, 2798–2799. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Tousoulis, D.; Antoniades, C.; Stefanadis, C. Evaluating endothelial function in humans: A guide to invasive and non-invasive techniques. Heart 2005, 91, 553–558. [Google Scholar] [CrossRef]
- Vendemiale, G.; Romano, A.D.; Dagostino, M.; de Matthaeis, A.; Serviddio, G. Endothelial dysfunction associated with mild cognitive impairment in elderly population. Aging Clin. Exp. Res. 2013, 25, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Csipo, T.; Lipecz, A.; Fulop, G.A.; Hand, R.A.; Ngo, B.N.; Dzialendzik, M.; Tarantini, S.; Balasubramanian, P.; Kiss, T.; Yabluchanska, V.; et al. Age-related decline in peripheral vascular health predicts cognitive impairment. Geroscience 2019, 41, 125–136. [Google Scholar] [CrossRef]
- Naiberg, M.R.; Newton, D.F.; Goldstein, B.I. Flow-Mediated Dilation and Neurocognition: Systematic Review and Future Directions. Psychosom. Med. 2016, 78, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Nabeel, P.M.; Kiran, V.R.; Joseph, J.; Abhidev, V.V.; Sivaprakasam, M. Local Pulse Wave Velocity: Theory, Methods, Advancements, and Clinical Applications. IEEE Rev. Biomed. Eng. 2020, 13, 74–112. [Google Scholar] [CrossRef] [PubMed]
- Nassour, R.; Ayash, A.; Al-tameemi, K. Anthocyanin pigments: Structure and biological importance. J. Chem. Pharm. Sci. 2020, 13, 45–57. [Google Scholar]
- Kay, C.D.; Mazza, G.; Holub, B.J.; Wang, J. Anthocyanin metabolites in human urine and serum. Br. J. Nutr. 2004, 91, 933–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalt, W.; Liu, Y.; McDonald, J.E.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.E. Anthocyanin Metabolites Are Abundant and Persistent in Human Urine. J. Agric. Food Chem. 2014, 62, 3926–3934. [Google Scholar] [CrossRef]
- Recharla, N.; Riaz, M.; Ko, S.; Park, S. Novel technologies to enhance solubility of food-derived bioactive compounds: A review. J. Funct. Foods 2017, 39, 63–73. [Google Scholar] [CrossRef]
Author (Year) | Country | Study Design | Study Population | Intervention | Anthocyanin Dose/Day | Study Duration | Sample Size * | Age (Years) | Male (%) | Cognitive Domains | Vascular Function | Cardiometabolic Parameters |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ahles (2020) [31] | NL | Parallel | Healthy middle-aged adults | Chokeberry extract | 16 mg; 27 mg | 24 weeks | 34/35/32 | 53 # | 36 # | Attention and Psychomotor Speed, Executive Function | ABI, cIMT, eP | BP |
Arevström (2019) [32] | Sweden | Parallel | Myocardial infarction survivors | Bilberry powder | 90 mg # | 8 weeks | 25/25 | 67 #,$ | 84 # | BP, Carbohydrate and lipid metabolism | ||
Barfoot (2018) [33] | UK | Parallel | Healthy children | Freeze-dried wild blueberry juice | 253 mg | 2 h | 29/25 | 8 # | 25 # | Executive Function, Memory | ||
Basu (2010) [34] | USA | Parallel | Obese individuals with MetS | Freeze-dried blueberry juice | 742 mg | 8 weeks | 25/23 | 50 # | 8 # | BP, Carbohydrate and lipid metabolism | ||
Boespflug (2018) [35] | USA | Parallel | Older adults with MCI | Freeze-dried blueberry powder | 269 mg | 16 weeks | 8/8 | 78 # | 44 # | Memory | ||
Bowtell (2017) [36] | UK | Parallel | Healthy older adults | Blueberry extract | 387 mg | 12 weeks | 12/14 | 68 # | 50 # | Executive Function, Memory, Other | ||
Castro-Acosta (2016) [37] | UK | Cross-Over | Healthy men and postmenopausal women | Blackcurrant extract | 131 mg; 322 mg; 599 mg | 2 h | 22 | 45 | 59 | DVP | BP | |
Cho (2020) [38] | South Korea | Parallel | Individuals with increased cholesterol | Black raspberry extract | nr | 12 weeks | 39/38 | 47 # | 25 # | BP, Carbohydrate and lipid metabolism | ||
Cook (2017) [39] | UK | Cross-Over | Healthy men | New Zealand blackcurrant extract | 210 mg | 1 week | 13 | 25 | 100 | Femoral artery diameter | BP | |
Cook (2017) [40] | UK | Cross-Over | Male athletes | New Zealand blackcurrant extract | 105 mg; 210 mg; 315 mg | 1 week | 15 | 38 | 100 | BP | ||
Cook (2020) [41] | UK | Cross-Over | Healthy older adults | New Zealand blackcurrant extract | 210 mg | 1 week | 14 | 60 | 86 # | Attention and Psychomotor Speed, Executive Function, Memory | BP | |
Curtis (2009) [42] | UK | Parallel | Healthy postmenopausal women | Elderberry extract | 500 mg | 12 weeks | 26/26 | 58 # | 0 | BP, Carbohydrate and lipid metabolism | ||
Curtis (2019) [43] | UK | Parallel | Overweight/obese adults with MetS | Freeze-dried blueberry powder | 182 mg; 364 mg | 24 weeks | 37/39/39 | 63 # | 68 # | AIx, FMD, PWV | BP, Carbohydrate and lipid metabolism | |
Del Bó (2013) [44] | Italy | Cross-Over | Healthy men | Blueberry jello | 348 mg | 1 h | 10 | 21 | 100 | RHI | BP | |
Del Bó (2017) [45] | Italy | Cross-Over | Healthy men | Blueberry juice | 309 mg | 2 h | 12 | 24 | 100 | AIx, RHI | BP | |
Istas (2019) [46] | UK | Parallel | Healthy men | Chokeberry extract and whole fruit | 3.6 mg; 30 mg | 12 weeks | 23/23/20 | 24 # | 100 | FMD | BP, Carbohydrate and lipid metabolism | |
Jeong (2014) [47] | South Korea | Parallel | Adults with MetS | Black raspberry extract | nr | 12 weeks | 39/38 | 59 # | 47 # | ABI, cIMT, PWV, FMD | Carbohydrate and lipid metabolism | |
Jeong (2016) [48] | South Korea | Parallel | Prehypertensive adults | Black raspberry extract | nr | 8 weeks | 15/15/15 | 57 # | 53 # | AIx, PWV | BP | |
Jeong (2016) [49] | South Korea | Parallel | Adults with MetS | Black raspberry extract | nr | 12 weeks | 26/25 | 59 # | 45 # | AIx | BP | |
Jin (2011) [50] | UK | Cross-Over | Healthy adults | Blackcurrant juice | nr | 2 h | 20 | 45 # | 45 # | vascular reactivity | ||
Johnson (2015) [51] | USA | Parallel | Postmenopausal women with (pre)hypertension | Freeze-dried blueberry powder | 103 mg # | 8 weeks | 20/20 | 59 # | 0 | PWV | BP | |
Khan (2014) [52] | UK | Parallel | Healthy adults with low fruit intake | Blackcurrant juice | 10 mg; 35.75 mg | 6 weeks | 21/22/21 | 52 # | 67 # | FMD | BP, Carbohydrate and lipid metabolism | |
Krikorian (2010) [53] | USA | Parallel | Older adults with MCI | Blueberry juice | 428-598 mg 1 | 12 weeks | 9/7 | 78 # | 31 # | Memory | ||
Krikorian (2020) [54] | USA | Parallel | Older adults with MCI | Freeze-dried blueberry fruit powder | 258 mg | 16 weeks | 16/21 | 77 # | 46 # | Attention and Psychomotor Speed, Executive Function, Memory | ||
Loo (2016) [55] | Finland | Cross-Over | Adults with mild hypertension | Chokeberry juice and powder | 1024 mg | 8 weeks | 38 | 56 | 37 # | BP, Carbohydrate and lipid metabolism | ||
McAnulty (2014) [56] | UK | Parallel | Sedentary individuals | Blueberry powder | nr | 6 weeks | 13/12 | 43 # | nr | AIx, PWV | BP | |
McAnulty (2019) [57] | USA | Parallel | Sedentary individuals | Freeze-dried blueberry powder | nr | 3 weeks | 10/12 | 56 # | 32 # | AIx, PWV | BP | |
McNamara (2018) [58] | USA | Parallel | Older adults with subjective MCI | Freeze-dried blueberry powder | 269 mg | 24 weeks | 19/20 | 68 # | 46 # | Attention and Psychomotor Speed, Executive Function, Memory | ||
Miller (2018) [59] | USA | Parallel | Healthy older adults | Freeze-dried blueberry powder | 230 mg # | 90 days | 18/19 | 68 # | 32 # | Attention and Psychomotor Speed, Executive Function, Memory, Other | ||
Murkovic (2004) [60] | Austria | Parallel | Healthy adults | Elderberry juice | 40 mg | 2 weeks | 17/17 | 29 # | 59 # | Carbohydrate and lipid metabolism | ||
Naruszewicz (2007) [61] | Poland | Parallel | Myocardial infarction survivors | Chokeberry extract | 64 mg # | 6 weeks | 22/22 | 66 # | 75 # | BP, Carbohydrate and lipid metabolism | ||
Okamoto (2020) [62] | Japan | Cross-Over | Healthy older adults | New Zealand blackcurrant extract | 210 mg | 1 week | 14 | 73 | 43 | AIx, PWV, PWV | BP, Carbohydrate and lipid metabolism | |
Petrovic (2016) [63] | Serbia | Parallel | Young athletes | Chokeberry juice | nr | 4 weeks | 18/14 | 18 # | 47 # | Carbohydrate and lipid metabolism | ||
Pokimica (2019) [64] | Serbia | Parallel | Individuals at cardiovascular risk | Chokeberry juice | 28.3 mg; 113.3 mg | 4 weeks | 27/28/29 | 41 # | 38 # | BP, Carbohydrate and lipid metabolism | ||
Riso (2013) [65] | Italy | Cross-Over | Healthy men at cardiovascular risk | Freeze-dried blueberry powder | 375 mg | 6 weeks | 18 | 48 | 100 | AIx, RHI | BP, Carbohydrate and lipid metabolism | |
Rodriguez-Mateos (2013) [29] | UK | Cross-Over | Healthy men | Freeze-dried blueberry powder | 310 mg; 517 mg; 724 mg | 24 h | 10 | 27 | 100 | AIx, DVP, FMD, PWV | BP | |
Cross-Over | Healthy men | Freeze-dried blueberry powder | 129 mg; 258 mg; 310 mg; 517 mg; 724 mg | 1 h | 11 | 27 | 100 | FMD | ||||
Rodriguez-Mateos (2014) [66] | UK | Cross-Over | Healthy men | Freeze-dried blueberry powder | 196 mg; 339 mg | 6 h | 10 | 27 | 100 | FMD | ||
Stull (2010) [67] | USA | Parallel | Obese, insulin resistant adults | Freeze-dried blueberry powder | 668 mg | 6 weeks | 15/17 | 52 # | 16 # | BP, Carbohydrate and lipid metabolism | ||
Stull (2015) [68] | USA | Parallel | Adults with MetS | Freeze-dried blueberry powder | 290.3 mg | 6 weeks | 23/21 | 57 # | 36 # | RHI | BP, Carbohydrate and lipid metabolism | |
Tomisawa (2019) [69] | Japan | Cross-Over | Healthy male smokers | Blackcurrant extract | 50 mg | 2 h | 13 | 22 | 100 | FMD | ||
Traupe (2018) [70] | Italy | Parallel | Middle-aged adults scheduled for prostatectomy | Blueberry juice | nr | appr. 4 weeks | 13/13 | 67 # | nr | Attention and Psychomotor Speed, Executive Function, Memory | ||
Watson (2019) [71] | UK | Cross-Over | Healthy young adults | Blackcurrant juice | 115.09 mg | 2 h | 9 | 23 | 33 # | Attention and Psychomotor Speed | ||
Whyte (2015) [72] | UK | Cross-Over | Healthy children | Blueberry juice | 143 mg | 2 h | 14 | 9 | 71 # | Executive Function, Memory | ||
Whyte (2016) [73] | UK | Cross-Over | Healthy children | Freeze-dried wild blueberry powder | 127 mg; 254 mg | 6 h | 21 | 9 | 43 # | Attention and Psychomotor Speed, Executive Function, Memory | ||
Whyte (2017) [74] | UK | Cross-Over | Healthy children | Wild blueberry powder | 253 mg | 3 h | 21 | 8 | 52 # | Executive Function | ||
Whyte (2018) [75] | UK | Parallel | Older adults with subjective MCI | Wild blueberry powder and extract | 1.35 mg; 2.7 mg; 7 mg | 24 weeks | 30/30/31/31 | 71 | 39 # | Executive Function, Memory | BP | |
Whyte (2020) [76] | UK | Cross-Over | Healthy middle-aged adults | Wild blueberry powder | 475 mg | 8 h | 35 | 51 | 34 # | Executive Function, Memory | ||
Whyte (2020) [30] | UK | Cross-Over | Healthy children | Wild blueberry powder | 253 mg | 3 h | 18 | 8 | 39 # | Executive Function | ||
UK | Cross-Over | Healthy children | Wild blueberry powder | 253 mg | 75 min | 17 | 9 | 29 # | Memory, Other | |||
Xie (2017) [77] | USA | Parallel | Former smokers | Chokeberry extract | 45.1 mg | 12 weeks | 25/24 | 35 # | 49 # | BP, Carbohydrate and lipid metabolism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahles, S.; Joris, P.J.; Plat, J. Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans. Int. J. Mol. Sci. 2021, 22, 6482. https://doi.org/10.3390/ijms22126482
Ahles S, Joris PJ, Plat J. Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans. International Journal of Molecular Sciences. 2021; 22(12):6482. https://doi.org/10.3390/ijms22126482
Chicago/Turabian StyleAhles, Sanne, Peter J. Joris, and Jogchum Plat. 2021. "Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans" International Journal of Molecular Sciences 22, no. 12: 6482. https://doi.org/10.3390/ijms22126482
APA StyleAhles, S., Joris, P. J., & Plat, J. (2021). Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans. International Journal of Molecular Sciences, 22(12), 6482. https://doi.org/10.3390/ijms22126482