Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. IR Spectra of PAMNPs
2.2. Conjugation of Aptamers with PAMNPs
2.3. Bacterial Capture Efficiency of PAMNP-Aptamer
2.4. Optimization of Elution Efficiency
2.5. Mass Spectrometric Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Instruments
3.3. Bacterial Samples
3.4. Synthesis of Magnetic Fe3O4 Nanoparticles Modified with Carboxylic Group (Fe3O4@SiO2@PA)
3.5. Synthesis of Aptamer-Modified Fe3O4@SiO2@PA Magnetic Nanoparticles (PAMNP-Aptamer)
3.6. Capture and Elution of Bacteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peacock, S.J.; Paterson, G.K. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Barski, P.; Piechowicz, L.; Galinski, J.; Kur, J. Rapid assay for detection of methicillin-resistant Staphylococcus aureus using multiplex PCR. Mol. Cell Probe 1996, 10, 471–475. [Google Scholar] [CrossRef]
- Nair, D.; Shashindran, N.; Kumar, A.; Vinodh, V.; Biswas, L.; Biswas, R. Comparison of phenotypic MRSA detection methods with PCR for mecA gene in the background of emergence of oxacillin-susceptible MRSA. Microb. Drug Resist. 2021. [Google Scholar] [CrossRef]
- Peng, J.; Cheng, G.Y.; Huang, L.L.; Wang, Y.L.; Hao, H.H.; Peng, D.P.; Liu, Z.L.; Yuan, Z.H. Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of beta-lactam antibiotics in foods. Anal. Bioanal Chem. 2013, 405, 8925–8933. [Google Scholar] [CrossRef]
- Cataldo, R.; De Nunzio, G.; Millithaler, J.F.; Alfinito, E. Aptamers which Target Proteins: What proteotronics suggests to pharmaceutics. Curr. Pharm. Des. 2020, 26, 363–371. [Google Scholar] [CrossRef]
- Lee, B.H.; Kwon, Y.S.; Gu, M.B. Development of highly sensitive aptamers to metabolite X for an aptamer-based diagnostic system. Abstr. Pap. Am. Chem. Soc. 2015, 249, 1155. [Google Scholar]
- Wilson, D.S.; Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647. [Google Scholar] [CrossRef] [Green Version]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505. [Google Scholar] [CrossRef]
- Mayer, G. The Chemical Biology of Aptamers. Angew. Chem. Int. Ed. 2009, 48, 2672–2689. [Google Scholar] [CrossRef]
- Wolter, O.; Mayer, G. Aptamers as valuable molecular tools in neurosciences. J. Neurosci. 2017, 37, 2517. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lyu, S.X.; Gu, G.Y.; Bolten, S. Selection of aptamers targeted to food-borne pathogenic bacteria Vibrio parahaemolyticus. Food Sci. Nutr. 2020, 8, 3835–3842. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, R.H.; Wei, H.; Li, Y.B. Selection of aptamers against pathogenic bacteria and their diagnostics application. World J. Microbiol. Biotechnol. 2018, 34, 149. [Google Scholar] [CrossRef]
- Reddy, P.M.; Chang, K.C.; Liu, Z.J.; Chen, C.T.; Ho, Y.P. Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria. J. Biomed. Nanotechnol. 2014, 10, 1429–1439. [Google Scholar] [CrossRef]
- Bruno, J.G.; Richarte, A.M. Development and characterization of an enzyme-linked DNA aptamer-magnetic bead-based assay for human IGF-I in serum. Microchem. J. 2016, 124, 90–95. [Google Scholar] [CrossRef]
- Bruno, J.G.; Carrillo, M.P.; Phillips, T.; Edge, A. Discrimination of recombinant from natural human growth hormone using DNA aptamers. J. Biomol. Tech. 2011, 22, 27–36. [Google Scholar]
- Shin, H.S.; Gedi, V.; Kim, J.K.; Lee, D.K. Detection of Gram-negative bacterial outer membrane vesicles using DNA aptamers. Sci. Rep. 2019, 9, 13167. [Google Scholar] [CrossRef]
- Lonne, M.; Bolten, S.; Lavrentieva, A.; Stahl, F.; Scheper, T.; Walter, J.G. Development of an aptamer-based affinity purification method for vascular endothelial growth factor. Biotechnol. Rep. 2015, 8, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Barberan, M.; Lerma-Garciia, M.J.; Moga, A.; Carrasco-Correa, E.J.; Martinez-Perez-Cejuela, H.; Beneito-Cambra, M.; Simo-Alfonso, E.F.; Herrero-Martinez, J.M. Recent advances in aptamer-based miniaturized extraction approaches in food analysis. TrAC Trend Anal. Chem. 2021, 138, 116230. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Lal, R.; Ramya, M. Aptamer-based approaches for the detection of waterborne pathogens. Int. Microbiol. 2021, 24, 125–140. [Google Scholar] [CrossRef]
- Ho, Y.-P.; Reddy, P.M. Advances in mass spectrometry for the identification of pathogens. Mass Spectrom. Rev. 2011, 30, 1203–1224. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.-P.; Reddy, P.M. Identification of pathogens by mass spectrometry. Clin. Chem. 2010, 56, 525–536. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.S.; Dorrestein, P.C. Emerging mass spectrometry techniques for the direct analysis of microbial colonies. Curr. Opin. Microbiol. 2014, 19, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.W.; Li, B.N.; Liu, C.; Li, M.; Zhou, Z. Analysis of single-cell microbial mass spectra profiles from single-particle aerosol mass spectrometry. Rapid Commun. Mass. Spectrom. 2021, 35, e9069. [Google Scholar] [CrossRef] [PubMed]
- Giebel, R.; Worden, C.; Rust, S.M.; Kleinheinz, G.T.; Robbins, M.; Sandrin, T.R. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): Applications and challenges. In Advances in Applied Microbiology; Allen, I.L., Sima, S., Geoffrey, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 71, pp. 149–184. [Google Scholar]
- Sauer, S.; Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 2010, 8, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Everley, R.A.; Mott, T.M.; Toney, D.M.; Croley, T.R. Characterization of Clostridium species utilizing liquid chromatography/mass spectrometry of intact proteins. J. Microbiol. Methods 2009, 77, 152–158. [Google Scholar] [CrossRef]
- Edwards-Jones, V.; Claydon, M.A.; Evason, D.J.; Walker, J.; Fox, A.J.; Gordon, D.B. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 2000, 49, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.; Fox, A.J.; Edwards-Jones, V.; Gordon, D.B. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: Media effects and inter-laboratory reproducibility. J. Microbiol. Methods 2002, 48, 117–126. [Google Scholar] [CrossRef]
- Demirev, P.A.; Fenselau, C. Mass spectrometry for rapid characterization of microorganisms. Annu. Rev. Anal. Chem. 2008, 1, 71–93. [Google Scholar] [CrossRef]
- Dworzanski, J.P.; Snyder, A.P. Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Rev. Proteom. 2005, 2, 863–878. [Google Scholar] [CrossRef]
- VerBerkmoes, N.C.; Connelly, H.M.; Pan, C.; Hettich, R.L. Mass spectrometric approaches for characterizing bacterial proteomes. Expert Rev. Proteom. 2004, 1, 433–447. [Google Scholar] [CrossRef]
- Sauget, M.; Valot, B.; Bertrand, X.; Hocquet, D. Can MALDI-TOF Mass spectrometry reasonably type bacteria? Trends Microbiol. 2017, 25, 447–455. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.; Azab, M.S.; Meibed, M.; El-Kholy, A.; Elmetwalli, A.W. Assessment of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF- MS) for accurate bacterial identification in clinical labs. Am. J. Clin. Pathol. 2020, 154, S143. [Google Scholar] [CrossRef]
- Guo, L.; Ye, L.; Zhao, Q.; Ma, Y.; Yang, J.; Luo, Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J. Thorac. Dis. 2014, 6, 534–538. [Google Scholar]
- Liu, K.-K.; Chen, M.-F.; Chen, P.-Y.; Lee, T.J.F.; Cheng, C.-L.; Chang, C.-C.; Ho, Y.-P.; Chao, J.-I. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 2008, 19, 205102. [Google Scholar] [CrossRef]
- Xu, X.; Liu, G.; Huang, X.; Li, L.; Lin, H.; Xu, D. MALDI-TOF MS-based identification of bacteria and a survey of fresh vegetables with pathogenic bacteria in Beijing, China. Food Biosci. 2020, 100746. [Google Scholar] [CrossRef]
- Kuo, F.Y.; Lin, W.L.; Chen, Y.C. Affinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureus. Nanoscale 2016, 8, 9217–9225. [Google Scholar] [CrossRef]
- Chan, P.H.; Chen, Y.C. Human Serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal. Chem. 2012, 84, 8952–8956. [Google Scholar] [CrossRef]
- Turek, D.; Van Simaeys, D.; Johnson, J.; Ocsoy, I.; Tan, W. Molecular recognition of live methicillin-resistant Staphylococcus aureus cells using DNA aptamers. World J. Transl. Med. 2013, 2, 67–74. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-C.; Kumar, K.; Wu, C.-H.; Chang, K.-C.; Chiang, C.-K.; Ho, Y.-P. Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. Int. J. Mol. Sci. 2021, 22, 6571. https://doi.org/10.3390/ijms22126571
Liu Y-C, Kumar K, Wu C-H, Chang K-C, Chiang C-K, Ho Y-P. Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. International Journal of Molecular Sciences. 2021; 22(12):6571. https://doi.org/10.3390/ijms22126571
Chicago/Turabian StyleLiu, Yu-Chen, Katragunta Kumar, Cheng-Hsiu Wu, Kai-Chih Chang, Cheng-Kang Chiang, and Yen-Peng Ho. 2021. "Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry" International Journal of Molecular Sciences 22, no. 12: 6571. https://doi.org/10.3390/ijms22126571
APA StyleLiu, Y. -C., Kumar, K., Wu, C. -H., Chang, K. -C., Chiang, C. -K., & Ho, Y. -P. (2021). Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. International Journal of Molecular Sciences, 22(12), 6571. https://doi.org/10.3390/ijms22126571