Microgravity and Space Medicine
Funding
Conflicts of Interest
Abbreviations
D | Day |
DLR | Deutsches Zentrum für Luft- und Raumfahrt |
ESA | European Space Agency |
FTC | Follicular thyroid cancer |
H | Hour |
HU | Hindlimb unloading |
ISS | International Space Station |
MAPK | Mitogen-activated protein kinase |
MA | Muscle atrophy |
NASA | National Aeronautics and Space Administration |
PF | Parabolic flight |
r-μg | Real microgravity |
RPM | Random positioning machine |
RWV | Rotating wall vessel |
SI | Special Issue |
s-μg | Simulated microgravity |
3D | Three-dimensional |
References
- White, R.J.; Averner, M. Humans in space. Nature 2001, 409, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Grosse, J.; Wehland, M.; Mann, V.; Reseland, J.E.; Sundaresan, A.; Corydon, T.J. The impact of microgravity on bone in humans. Bone 2016, 87, 44–56. [Google Scholar] [CrossRef]
- Frippiat, J.P.; Crucian, B.E.; de Quervain, D.J.; Grimm, D.; Montano, N.; Praun, S.; Roozendaal, B.; Schelling, G.; Thiel, M.; Ullrich, O.; et al. Towards human exploration of space: The theseus review series on immunology research priorities. NPJ Microgravity 2016, 2, 16040. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Richter, P.; Vadakedath, N.; Mancinelli, R.; Krüger, M.; Strauch, S.M.; Grimm, D.; Darriet, P.; Chapel, J.P.; Cohen, J.; et al. Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv. 2020, 43, 107572. [Google Scholar] [CrossRef] [PubMed]
- Hughes-Fulford, M.; Chang, T.T.; Martinez, E.M.; Li, C.F. Spaceflight alters expression of microrna during t-cell activation. FASEB J. 2015, 29, 4893–4900. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.L.; Reynolds, J.L.; Cubano, L.A.; Hatton, J.P.; Lawless, B.D.; Piepmeier, E.H. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (jurkat). FASEB J. 1998, 12, 1007–1018. [Google Scholar] [CrossRef]
- Pietsch, J.; Gass, S.; Nebuloni, S.; Echegoyen, D.; Riwaldt, S.; Baake, C.; Bauer, J.; Corydon, T.J.; Egli, M.; Infanger, M.; et al. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the spacex crs-8 iss space mission—The spheroids project. Biomaterials 2017, 124, 126–156. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Wehland, M.; Corydon, T.J.; Richter, P.; Prasad, B.; Bauer, J.; Egli, M.; Kopp, S.; Lebert, M.; Krüger, M. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl. Med. 2020, 9, 882–894. [Google Scholar] [CrossRef]
- Globus, R.K.; Morey-Holton, E. Hindlimb unloading: Rodent analog for microgravity. J. Appl. Physiol. 2016, 120, 1196–1206. [Google Scholar] [CrossRef]
- Bonnefoy, J.; Ghislin, S.; Beyrend, J.; Coste, F.; Calcagno, G.; Lartaud, I.; Gauquelin-Koch, G.; Poussier, S.; Frippiat, J.P. Gravitational experimental platform for animal models, a new platform at esa’s terrestrial facilities to study the effects of micro-and hypergravity on aquatic and rodent animal models. Int. J. Mol. Sci. 2021, 22, 2961. [Google Scholar] [CrossRef]
- Camberos, V.; Baio, J.; Mandujano, A.; Martinez, A.F.; Bailey, L.; Hasaniya, N.; Kearns-Jonker, M. The impact of spaceflight and microgravity on the human islet-1+ cardiovascular progenitor cell transcriptome. Int. J. Mol. Sci. 2021, 22, 3577. [Google Scholar] [CrossRef]
- Wise, P.M.; Neviani, P.; Riwaldt, S.; Corydon, T.J.; Wehland, M.; Braun, M.; Krüger, M.; Infanger, M.; Grimm, D. Changes in exosome release in thyroid cancer cells after prolonged exposure to real microgravity in space. Int. J. Mol. Sci. 2021, 22, 2132. [Google Scholar] [CrossRef]
- Jirak, P.; Wernly, B.; Lichtenauer, M.; Paar, V.; Franz, M.; Knost, T.; Abusamrah, T.; Kelm, M.; Muessig, J.M.; Bimpong-Buta, N.Y.; et al. Dynamic changes of heart failure biomarkers in response to parabolic flight. Int. J. Mol. Sci. 2020, 21, 3467. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.M.; Hord, J.M.; Ryan, P.; Holly, D.; Janini Gomes, M.; Rodriguez, D.; Guzzoni, V.; Garcia-Villatoro, E.; Green, C.; Lee, Y.; et al. Nox2 inhibition regulates stress response and mitigates skeletal muscle fiber atrophy during simulated microgravity. Int. J. Mol. Sci. 2021, 22, 3252. [Google Scholar] [CrossRef] [PubMed]
- Ogneva, I.V.; Usik, M.A.; Burtseva, M.V.; Biryukov, N.S.; Zhdankina, Y.S.; Sychev, V.N.; Orlov, O.I. Drosophila melanogaster sperm under simulated microgravity and a hypomagnetic field: Motility and cell respiration. Int. J. Mol. Sci. 2020, 21, 5985. [Google Scholar] [CrossRef]
- Ogneva, I.V.; Usik, M.A.; Biryukov, N.S.; Zhdankina, Y.S. Sperm motility of mice under simulated microgravity and hypergravity. Int. J. Mol. Sci. 2020, 21, 5054. [Google Scholar] [CrossRef] [PubMed]
- Monti, N.; Masiello, M.G.; Proietti, S.; Catizone, A.; Ricci, G.; Harrath, A.H.; Alwasel, S.H.; Cucina, A.; Bizzarri, M. Survival pathways are differently affected by microgravity in normal and cancerous breast cells. Int. J. Mol. Sci. 2021, 22, 862. [Google Scholar] [CrossRef] [PubMed]
- Wehland, M.; Steinwerth, P.; Aleshcheva, G.; Sahana, J.; Hemmersbach, R.; Lützenberg, R.; Kopp, S.; Infanger, M.; Grimm, D. Tissue engineering of cartilage using a random positioning machine. Int. J. Mol. Sci. 2020, 21, 9596. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, H.; Zhou, S.; Zhou, X.; Huang, Y.E.; Hou, F.; Jiang, W. Integrative analysis of regulatory module reveals associations of microgravity with dysfunctions of multi-body systems and tumorigenesis. Int. J. Mol. Sci. 2020, 21, 7585. [Google Scholar] [CrossRef] [PubMed]
- Neelam, S.; Richardson, B.; Barker, R.; Udave, C.; Gilroy, S.; Cameron, M.J.; Levine, H.G.; Zhang, Y. Changes in nuclear shape and gene expression in response to simulated microgravity are linc complex-dependent. Int. J. Mol. Sci. 2020, 21, 6762. [Google Scholar] [CrossRef]
- Morabito, C.; Guarnieri, S.; Cucina, A.; Bizzarri, M.; Mariggiò, M.A. Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. Int. J. Mol. Sci. 2020, 21, 3638. [Google Scholar] [CrossRef]
- Genah, S.; Monici, M.; Morbidelli, L. The effect of space travel on bone metabolism: Considerations on today’s major challenges and advances in pharmacology. Int. J. Mol. Sci. 2021, 22, 4585. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Kuang, Y.; Zuo, Z. The emerging role of macrophages in immune system dysfunction under real and simulated microgravity conditions. Int. J. Mol. Sci. 2021, 22, 2333. [Google Scholar] [CrossRef]
- Johnson, I.R.D.; Nguyen, C.T.; Wise, P.; Grimm, D. Implications of altered endosome and lysosome biology in space environments. Int. J. Mol. Sci. 2020, 21, 8205. [Google Scholar] [CrossRef] [PubMed]
- Nassef, M.Z.; Melnik, D.; Kopp, S.; Sahana, J.; Infanger, M.; Lützenberg, R.; Relja, B.; Wehland, M.; Grimm, D.; Krüger, M. Breast cancer cells in microgravity: New aspects for cancer research. Int. J. Mol. Sci. 2020, 21, 7345. [Google Scholar] [CrossRef] [PubMed]
- Riwaldt, S.; Pietsch, J.; Sickmann, A.; Bauer, J.; Braun, M.; Segerer, J.; Schwarzwälder, A.; Aleshcheva, G.; Corydon, T.J.; Infanger, M.; et al. Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 2015, 15, 2945–2952. [Google Scholar] [CrossRef] [PubMed]
- Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Krüger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schütte, A.; et al. Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int. J. Mol. Sci. 2019, 20, 3156. [Google Scholar] [CrossRef] [Green Version]
Author | Title | Topics | Reference |
---|---|---|---|
Camberos V. et al. | The impact of microgravity and spaceflight on the human islet-1+ cardiovascular progenitor cell transcriptome |
| [11] |
Lawler J. M. et al. | Nox2 inhibition regulates stress response and mitigates skeletal muscle fiber atrophy during simulated microgravity |
| [14] |
Wise P. M. et al. | Changes in exosome release in thyroid cancer cells after prolonged exposure to real microgravity in space |
| [12] |
Monti N et al. | Survival pathways are differently affected by microgravity in normal and cancerous breast cells |
| [17] |
Wehland M. et al. | Tissue engineering of cartilage using a random positioning machine |
| [18] |
Yuan M. et al. | Integrative analysis of regulatory module reveals associations of microgravity with dysfunctions of multi-body systems and tumorigenesis |
| [19] |
Neelam S. et al. | Changes in nuclear shape and gene expression in response to simulated microgravity are LINC complex-dependent |
| [20] |
Ogneva I. V. et al. | Drosophila melanogaster sperm under simulated microgravity and a hypomagnetic field: motility and cell respiration |
| [15] |
Ogneva I. V. et al. | Sperm motility of mice under simulated microgravity and hypergravity |
| [16] |
Morabito C. et al. | Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts |
| [21] |
Jirak P. et al. | Dynamic changes of heart failure biomarkers in response to parabolic flight |
| [13] |
Author | Title | Topics | Reference |
---|---|---|---|
Genah S. et al. | The effect of space travel on bone metabolism: considerations on today’s major challenges and advances in pharmacology |
| [22] |
Bonnefoy J. et al. | Gravitational experimental platform for animal models, a new platform at ESA’s terrestrial facilities to study the effects of micro- and hypergravity on aquatic and rodent animal models |
| [10] |
Sun Y et al. | The emerging role of macrophages in immune system dysfunction under real and simulated microgravity conditions |
| [23] |
Johnson I. R. D. et al. | Implications of altered endosome and lysosome biology in space environments |
| [24] |
Nassef M. Z. et al. | Breast cancer cells in microgravity: New aspects for cancer research |
| [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimm, D. Microgravity and Space Medicine. Int. J. Mol. Sci. 2021, 22, 6697. https://doi.org/10.3390/ijms22136697
Grimm D. Microgravity and Space Medicine. International Journal of Molecular Sciences. 2021; 22(13):6697. https://doi.org/10.3390/ijms22136697
Chicago/Turabian StyleGrimm, Daniela. 2021. "Microgravity and Space Medicine" International Journal of Molecular Sciences 22, no. 13: 6697. https://doi.org/10.3390/ijms22136697
APA StyleGrimm, D. (2021). Microgravity and Space Medicine. International Journal of Molecular Sciences, 22(13), 6697. https://doi.org/10.3390/ijms22136697