Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH® Micro-Immunotherapy Treatment
Abstract
:1. An Introduction to Rheumatoid Arthritis and Micro-Immunotherapy
2. IL-1β and TNF-α in the Physiopathology of RA, the Bad and the Ugly
2.1. IL-1β, the Bad
2.2. TNF-α, the Ugly
3. RA and Cytokines: A TNF-α and IL-1β Crosstalk Modeled Both In Vitro and In Vivo
4. Anti-IL-1β and -TNF-α Therapies: Effects and Side Effects of the Conventional Allopathic Doses
5. Predictive Markers… as a New Option towards Personalized Medicine
6. The Immunotherapy Based on Low Amount of Cytokines
7. Micro-Immunotherapy: A Multiple Immune-Targeted Ultra-Low-Dose-Based Strategy to Calm Chronic Inflammation in RA
8. From the Mouth to the Body: How ULD-Based Medicines Might Act
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACPA | Anti-citrullinated peptide antibodies |
ACR | American College of Rheumatology |
CCP | Cyclic citrullinated peptides |
CH | Centesimal Hahnemannian |
CIA | Collagen-induced arthritis |
COX-2 | Cyclooxygenase-2 |
CRP | C reactive protein |
Cx43 | Connexin-43 |
DMARD | Disease-modifying anti-rheumatic drug |
ESR | Erythrocyte sedimentation rate |
FDA | Food and Drug Administration |
FDOJ | Fatty-degenerative osteolysis of the jawbone |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
HAQ | Health Assessment Questionnaire |
HLA | Human leukocyte antigen |
IFN-γ | Interferon-γ |
IκB | Inhibitor of nuclear factor-κB |
IL-1β | Interleukin-1β |
JAK3 | Janus-activated kinase 3 |
LD | Low dose |
LDA | Low disease activity |
LOX | Lipoxygenase |
LPS | Lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
MCC | Merkel cell carcinoma |
MCPyV | Merkel cell polyomavirus |
MHC | Major histocompatibility complex |
MI | Micro-immunotherapy |
MCP1 | Monocyte chemoattractant protein-1 |
MIM | Micro-immunotherapy medicine |
MIP1α | Macrophage inflammatory protein-1 alpha |
MMP | Matrix metalloproteinase |
MyD88 | Myeloid and differentiation primary response 88 |
NF-κB | Nuclear factor-κB |
PBMC | Peripheral blood mononuclear cell |
PEG | Polyethylene glycol |
PGE2 | Prostaglandin E2 |
RA | Rheumatoid arthritis |
RANKL | Receptor activator of nuclear factor-κB ligand |
RANTES | Regulated upon activation, normal T cells expressed and secreted |
SKA | Sequential kinetic activation |
SNA® | Specific nucleic acids |
TIR | Toll-IL-1 receptor |
TNF-α | Tumor necrosis factor-α |
TNFR1 | TNF receptor type 1 |
TRAF1-C5 | TNF receptor-associated factor 1 and complement component-5 |
ULD | Ultra-low dose |
VEGF | Vascular endothelial growth factor |
References
- Wolfe, F.; Michaud, K. Predicting depression in rheumatoid arthritis: The signal importance of pain extent and fatigue, and comorbidity. Arthritis Care Res. 2009, 61, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Alamanos, Y.; Drosos, A.A. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005, 4, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Rudan, I.; Sidhu, S.; Papana, A.; Meng, S.; Xin-Wei, Y.; Wang, W.; Campbell-Page, R.M.; Demaio, A.R.; Nair, H.; Sridhar, D.; et al. Prevalence of rheumatoid arthritis in low- and middle-income countries: A systematic review and analysis. J. Glob. Health 2015, 5, 010409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamanos, Y.; Voulgari, P.V.; Drosos, A.A. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: A systematic review. Semin. Arthritis Rheum. 2006, 36, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ridgley, L.A.; Anderson, A.E.; Pratt, A.G. What are the dominant cytokines in early rheumatoid arthritis? Curr. Opin. Rheumatol. 2018, 30, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.A.; Saag, K.G.; Bridges, S.L.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. 2016, 68, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Adis Editorial. Tofacitinib. Drugs R D 2010, 10, 271–284. [CrossRef]
- Mousavi, M.J.; Karami, J.; Aslani, S.; Tahmasebi, M.N.; Vaziri, A.S.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Autoimmun. Highlights 2021, 12, 3. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal. 2010, 3, cm1. [Google Scholar] [CrossRef]
- Lee, E.-G.; Lee, S.; Chae, H.-J.; Park, S.J.; Lee, Y.C.; Yoo, W.-H. Ethyl acetate fraction from Cudrania tricuspidata inhibts IL-1b-induced rheumatoid synovial fibroblast proliferation and MMPs, COX-2 and PGE2 production. Biol. Res. 2010, 43, 225–231. [Google Scholar] [CrossRef]
- Kobayashi, M.; Squires, G.R.; Mousa, A.; Tanzer, M.; Zukor, D.J.; Antoniou, J.; Feige, U.; Poole, A.R. Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005, 52, 128–135. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, R.; Chen, Y.; Fu, W.; Wei, X.; Ma, G.; Hu, W.; Lu, C. Curcumin ameliorates IL-1β-induced apoptosis by activating autophagy and inhibiting the NF-κB signaling pathway in rat primary articular chondrocytes. Cell Biol. Int. 2020. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, K.; Slowikowski, K.; Fonseka, C.Y.; Rao, D.A.; Kelly, S.; Goodman, S.M.; Tabechian, D.; Hughes, L.B.; Salomon-Escoto, K.; et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 2019, 20, 928–942. [Google Scholar] [CrossRef]
- Allam, I.; Djidjik, R.; Ouikhlef, N.; Louahchi, S.; Raaf, N.; Behaz, N.; Abdessemed, A.; Khaldoun, N.; Tahiat, A.; Bayou, M.; et al. Interleukin-1 and the interleukin-1 receptor antagonist gene polymorphisms study in patients with rheumatoid arthritis. Pathol. Biol. 2013, 61, 264–268. [Google Scholar] [CrossRef]
- Jahid, M.; Rehan-Ul-Haq null Chawla, D.; Avasthi, R.; Ahmed, R.S. Association of polymorphic variants in IL1B gene with secretion of IL-1β protein and inflammatory markers in north Indian rheumatoid arthritis patients. Gene 2018, 641, 63–67. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bae, S.-C. Associations between interleukin-1 and IL-1 receptor antagonist polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis. Cell Mol. Biol. (Noisy-le-Grand) 2015, 61, 105–111. [Google Scholar]
- Zhu, L.; Chen, P.; Sun, X.; Zhang, S. Associations between Polymorphisms in the IL-1 Gene and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Evidence from a Meta-Analysis. Int. Arch. Allergy Immunol. 2021, 182, 234–242. [Google Scholar] [CrossRef]
- Lee, Y.H.; Ji, J.D.; Song, G.G. Association between interleukin 1 polymorphisms and rheumatoid arthritis susceptibility: A metaanalysis. J. Rheumatol. 2009, 36, 12–15. [Google Scholar] [CrossRef]
- Kobayashi, T.; Murasawa, A.; Ito, S.; Yamamoto, K.; Komatsu, Y.; Abe, A.; Sumida, T.; Yoshie, H. Cytokine gene polymorphisms associated with rheumatoid arthritis and periodontitis in Japanese adults. J. Periodontol. 2009, 80, 792–799. [Google Scholar] [CrossRef]
- Harrison, P.; Pointon, J.J.; Chapman, K.; Roddam, A.; Wordsworth, B.P. Interleukin-1 promoter region polymorphism role in rheumatoid arthritis: A meta-analysis of IL-1B-511A/G variant reveals association with rheumatoid arthritis. Rheumatol. Oxf. Engl. 2008, 47, 1768–1770. [Google Scholar] [CrossRef] [Green Version]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Bäumel, M.; Männel, D.N.; Zack, O.M.; Oppenheim, J.J. Interaction of TNF with TNF Receptor Type 2 Promotes Expansion and Function of Mouse CD4+CD25+ T Regulatory Cells. J. Immunol. 2007, 179, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, L.A.; Ayres, T.M.; Wong, G.H.W.; Goeddel, D.V. A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993, 74, 845–853. [Google Scholar] [CrossRef]
- Mirza, F.; Lorenzo, J.; Drissi, H.; Lee, F.Y.; Soung, D.Y. Dried plum alleviates symptoms of inflammatory arthritis in TNF transgenic mice. J. Nutr. Biochem. 2018, 52, 54–61. [Google Scholar] [CrossRef]
- Haworth, C.; Brennan, F.M.; Chantry, D.; Turner, M.; Maini, R.N.; Feldmann, M. Expression of granulocyte-macrophage colony-stimulating factor in rheumatoid arthritis: Regulation by tumor necrosis factor-alpha. Eur. J. Immunol. 1991, 21, 2575–2579. [Google Scholar] [CrossRef]
- Paleolog, E.M.; Young, S.; Stark, A.C.; McCloskey, R.V.; Feldmann, M.; Maini, R.N. Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum. 1998, 41, 1258–1265. [Google Scholar] [CrossRef]
- Fatima Rizvi, S.T.; Arif, A.; Azhar, A. TNF gene promoter region polymorphisms and association with young-onset rheumatoid arthritis. Pak. J. Pharm. Sci. 2019, 32, 2295–2297. [Google Scholar] [PubMed]
- Hadinedoushan, H.; Noorbakhsh, P.; Soleymani-Salehabadi, H. Tumor Necrosis Factor Alpha Gene Polymorphism and Association with Its Serum Level in Iranian Population with Rheumatoid Arthritis. Arch. Rheumatol. 2016, 31, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.K.; Ganesan, N.; Gopalakrishnan, R. Association of susceptible genetic markers and autoantibodies in rheumatoid arthritis. J. Genet. 2014, 93, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Panoulas, V.F.; Smith, J.P.; Nightingale, P.; Kitas, G.D. Association of the TRAF1/C5 locus with increased mortality, particularly from malignancy or sepsis, in patients with rheumatoid arthritis. Arthritis Rheum. 2009, 60, 39–46. [Google Scholar] [CrossRef]
- Saeki, N.; Imai, Y. Reprogramming of synovial macrophage metabolism by synovial fibroblasts under inflammatory conditions. Cell Commun. Signal. CCS 2020, 18. [Google Scholar] [CrossRef]
- Speranskii, A.I.; Kostyuk, S.V.; Kalashnikova, E.A.; Veiko, N.N. Enrichment of extracellular DNA from the cultivation medium of human peripheral blood mononuclears with genomic CpG rich fragments results in increased cell production of IL-6 and TNF-a via activation of the NF-kB signaling pathway. Biomeditsinskaia Khimiia 2016, 62, 331–340. [Google Scholar] [CrossRef]
- Schierbeck, H.; Wähämaa, H.; Andersson, U.; Harris, H.E. Immunomodulatory Drugs Regulate HMGB1 Release from Activated Human Monocytes. Mol. Med. 2010, 16, 343–351. [Google Scholar] [CrossRef]
- Matsuki, T.; Arai, Y.; Tsuchida, S.; Terauchi, R.; Oda, R.; Fujiwara, H.; Mazda, O.; Kubo, T. Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis. Arch. Rheumatol. 2015, 31, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Jing, R.; Ban, Y.; Xu, W.; Nian, H.; Guo, Y.; Geng, Y.; Zang, Y.; Zheng, C. Therapeutic effects of the total lignans from Vitex negundo seeds on collagen-induced arthritis in rats. Phytomed. Int. J. Phytother. Phytopharm. 2019, 58, 152825. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, H.; Zhao, X.-X.; Rahman, K.; Wang, Y.; Ma, X.-Q.; Zheng, C.-J.; Zhang, Q.-Y.; Han, T.; Qin, L.-P. Inhibitory effects of the root extract of Litsea cubeba (lour.) pers. on adjuvant arthritis in rats. J. Ethnopharmacol. 2013, 147, 327–334. [Google Scholar] [CrossRef]
- Rioja, I.; Bush, K.A.; Buckton, J.B.; Dickson, M.C.; Life, P.F. Joint cytokine quantification in two rodent arthritis models: Kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment. Clin. Exp. Immunol. 2004, 137, 65–73. [Google Scholar] [CrossRef]
- Williams, R.O.; Marinova-Mutafchieva, L.; Feldmann, M.; Maini, R.N. Evaluation of TNF-α and IL-1 Blockade in Collagen-Induced Arthritis and Comparison with Combined Anti-TNF-α/Anti-CD4 Therapy. J. Immunol. Am. Assoc. Immunol. 2000, 165, 7240–7245. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Ye, X.; Che, R.; Wu, Q.; Qi, J.; Song, L.; Guo, X.; Zhang, S.; Wu, H.; Ren, G.; et al. FGF21 exerts comparable pharmacological efficacy with Adalimumab in ameliorating collagen-induced rheumatoid arthritis by regulating systematic inflammatory response. Biomed. Pharmacother. 2017, 89, 751–760. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Wang, Z.; Gao, H.; Ding, J.; He, Z. Intraarticular Injection of Infliximab-Loaded Thermosensitive Hydrogel Alleviates Pain and Protects Cartilage in Rheumatoid Arthritis. J. Pain Res. 2020, 13, 3315–3329. [Google Scholar] [CrossRef]
- Dhimolea, E. Canakinumab. mAbs. 2010, 2, 3–13. [Google Scholar] [CrossRef]
- Alten, R.; Gomez-Reino, J.; Durez, P.; Beaulieu, A.; Sebba, A.; Krammer, G.; Preiss, R.; Arulmani, U.; Widmer, A.; Gitton, X.; et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: Results of a 12-week, phase II, dose-finding study. BMC Musculoskelet. Disord. 2011, 12, 153. [Google Scholar] [CrossRef]
- Ait-Oudhia, S.; Lowe, P.J.; Mager, D.E. Bridging Clinical Outcomes of Canakinumab Treatment in Patients With Rheumatoid Arthritis With a Population Model of IL-1β Kinetics. CPT Pharmacomet. Syst. Pharmacol. 2012, 1, e5. [Google Scholar] [CrossRef]
- Marketos, N.; Bournazos, I.; Ioakimidis, D. Canakinumab for refractory RA: A case report. Mediterr. J. Rheumatol. 2018, 29, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Mertens, M.; Singh, J.A. Anakinra for Rheumatoid Arthritis: A Systematic Review. J. Rheumatol. 2009, 36, 1118–1125. [Google Scholar] [CrossRef]
- Bresnihan, B.; Newmark, R.; Robbins, S.; Genant, H.K. Effects of anakinra monotherapy on joint damage in patients with rheumatoid arthritis. Extension of a 24-week randomized, placebo-controlled trial. J. Rheumatol. 2004, 31, 1103–1111. [Google Scholar]
- Ruscitti, P.; Berardicurti, O.; Cipriani, P.; Giacomelli, R.; TRACK Study Group. Benefits of anakinra versus TNF inhibitors in rheumatoid arthritis and type 2 diabetes: Long-term findings from participants furtherly followed-up in the TRACK study, a multicentre, open-label, randomised, controlled trial. Clin. Exp. Rheumatol. 2021, 39, 403–406. [Google Scholar]
- Cavalli, G.; Dinarello, C.A. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatol. Oxf. Engl. 2015, 54, 2134–2144. [Google Scholar] [CrossRef] [Green Version]
- Charles, P.; Elliott, M.J.; Davis, D.; Potter, A.; Kalden, J.R.; Antoni, C.; Breedveld, F.C.; Smolen, J.S.; Eberl, G.; de Woody, K.; et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J. Immunol. 1999, 163, 1521–1528. [Google Scholar]
- Palframan, R.; Airey, M.; Moore, A.; Vugler, A.; Nesbitt, A. Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis. J. Immunol. Methods 2009, 348, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. Monoclonal Antibodies. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548844/ (accessed on 30 December 2020).
- Annexe I Résumé des Caractéristiques du Produit. Available online: https://www.ema.europa.eu/en/documents/product-information/humira-epar-product-information_fr.pdf (accessed on 3 May 2021).
- Nidegger, A.; Mylonas, A.; Conrad, C. Paradoxical psoriasis induced by anti-TNF—A clinical challenge. Rev. Med. Suisse 2019, 15, 668–671. [Google Scholar] [PubMed]
- Rotondo, J.C.; Bononi, I.; Puozzo, A.; Govoni, M.; Foschi, V.; Lanza, G.; Gafà, R.; Gaboriaud, P.; Touzé, F.A.; Selvatici, R.; et al. Merkel Cell Carcinomas Arising in Autoimmune Disease Affected Patients Treated with Biologic Drugs, Including Anti-TNF. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 3929–3934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, C.M.F.; Terreri, M.T.; Moraes-Pinto MI de Barbosa, C.; Machado, N.P.; Melo, M.R.; Pinheiro, M.M. Incidence of active mycobacterial infections in Brazilian patients with chronic inflammatory arthritis and negative evaluation for latent tuberculosis infection at baseline--a longitudinal analysis after using TNFa blockers. Mem. Inst. Oswaldo Cruz. 2015, 110, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Moreland, L.W.; Baumgartner, S.W.; Schiff, M.H.; Tindall, E.A.; Fleischmann, R.M.; Weaver, A.L.; Ettlinger, R.E.; Cohen, S.; Koopman, W.J.; Mohler, K.; et al. Treatment of Rheumatoid Arthritis with a Recombinant Human Tumor Necrosis Factor Receptor (p75)–Fc Fusion Protein. N. Engl. J. Med. 1997, 337, 141–147. [Google Scholar] [CrossRef]
- Hayashi, S.; Matsubara, T.; Fukuda, K.; Funahashi, K.; Hashimoto, M.; Maeda, T.; Kamenaga, T.; Takashima, Y.; Matsumoto, T.; Niikura, T.; et al. Predictive factors for effective selection of Interleukin-6 inhibitor and tumor necrosis factor inhibitor in the treatment of rheumatoid arthritis. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Gharibdoost, F.; Salari, A.-H.; Salesi, M.; Ebrahimi Chaharom, F.; Mottaghi, P.; Hosseini, M.; Sahebari, M.; Nazarinia, M.; Mirfeizi, Z.; Shakibi, M.; et al. Assessment of Treatment Safety and Quality of Life in Patients Receiving Etanercept Biosimilar for Autoimmune Arthritis (ASQA): A Multicenter Post-marketing Surveillance Study. Adv. Ther. 2021, 38, 1290–1300. [Google Scholar] [CrossRef]
- Annexe I Résumé des Caractéristiques du Produit. Available online: https://ec.europa.eu/health/documents/community-register/2019/20191114146217/anx_146217_fr.pdf (accessed on 3 May 2021).
- Vlachopoulos, C.; Gravos, A.; Georgiopoulos, G.; Terentes-Printzios, D.; Ioakeimidis, N.; Vassilopoulos, D.; Stamatelopoulos, K.; Tousoulis, D. The effect of TNF-a antagonists on aortic stiffness and wave reflections: A meta-analysis. Clin. Rheumatol. 2018, 37, 515–526. [Google Scholar] [CrossRef]
- Kleiner, G.; Marcuzzi, A.; Zanin, V.; Monasta, L.; Zauli, G. Cytokine levels in the serum of healthy subjects. Mediat. Inflamm. 2013, 2013, 434010. [Google Scholar] [CrossRef]
- Italiani, P.; Puxeddu, I.; Napoletano, S.; Scala, E.; Melillo, D.; Manocchio, S.; Angiolillo, A.; Migliorini, P.; Boraschi, D.; Vitale, E.; et al. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: New markers of disease progression? J. Neuroinflamm. 2018, 15, 342. [Google Scholar] [CrossRef]
- Thilagar, S.; Theyagarajan, R.; Sudhakar, U.; Suresh, S.; Saketharaman, P.; Ahamed, N. Comparison of serum tumor necrosis factor-α levels in rheumatoid arthritis individuals with and without chronic periodontitis: A biochemical study. J. Indian Soc. Periodontol. 2018, 22, 116–121. [Google Scholar] [CrossRef]
- Al-Saadany, H.M.; Hussein, M.S.; Gaber, R.A.; Zaytoun, H.A. Th-17 cells and serum IL-17 in rheumatoid arthritis patients: Correlation with disease activity and severity. Egypt Rheumatol. 2016, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tukaj, S.; Kotlarz, A.; Jóźwik, A.; Smoleńska, Z.; Bryl, E.; Witkowski, J.M.; Lipińska, B. Cytokines of the Th1 and Th2 type in sera of rheumatoid arthritis patients; correlations with anti-Hsp40 immune response and diagnostic markers. Acta Biochim. Pol. 2010, 57, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, K.; Jayasinghe, C.; Wanigasekara, P.; Sominanda, A. Potential applicability of cytokines as biomarkers of disease activity in rheumatoid arthritis: Enzyme-linked immunosorbent spot assay-based evaluation of TNF-α, IL-1β, IL-10 and IL-17A. PLoS ONE 2021, 16, e0246111. [Google Scholar] [CrossRef]
- Centola, M.; Cavet, G.; Shen, Y.; Ramanujan, S.; Knowlton, N.; Swan, K.A.; Turner, M.; Sutton, C.; Smith, D.R.; Haney, D.J.; et al. Development of a multi-biomarker disease activity test for rheumatoid arthritis. PLoS ONE 2013, 8, e60635. [Google Scholar] [CrossRef] [Green Version]
- Fabre, S.; Guisset, C.; Tatem, L.; Dossat, N.; Dupuy, A.M.; Cohen, J.D.; Cristol, J.P.; Daures, J.P.; Jorgensen, C. Protein biochip array technology to monitor rituximab in rheumatoid arthritis. Clin. Exp. Immunol. 2009, 155, 395–402. [Google Scholar] [CrossRef]
- Avdeev, A.S.; Novikov, A.A.; Aleksandrova, E.N.; Panasiuk, E.I.; Nasonov, E.L. The importance of cytokine profile characteristics for evaluating the therapeutic effectiveness of monoclonal antibodies against IL-6 receptors in patients with rheumatoid arthritis. Klin. Med. 2014, 92, 28–34. [Google Scholar]
- Cunningham, C.C.; Wade, S.; Floudas, A.; Orr, C.; McGarry, T.; Wade, S.; Cregan, S.; Fearon, U.; Veale, D.J. Serum miRNA Signature in Rheumatoid Arthritis and “At-Risk Individuals”. Front Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Salvi, V.; Gianello, V.; Tiberio, L.; Sozzani, S.; Bosisio, D. Cytokine Targeting by miRNAs in Autoimmune Diseases. Front. Immunol. 2019, 10, 15. [Google Scholar] [CrossRef]
- Zhu, T.-T.; Zhang, W.-F.; Yin, Y.-L.; Liu, Y.-H.; Song, P.; Xu, J.; Zhang, M.-X.; Li, P. MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension. J. Cell Physiol. 2019, 234, 9535–9550. [Google Scholar] [CrossRef]
- Peng, J.-S.; Chen, S.-Y.; Wu, C.-L.; Chong, H.-E.; Ding, Y.-C.; Shiau, A.-L.; Wang, C.-R. Amelioration of Experimental Autoimmune Arthritis Through Targeting of Synovial Fibroblasts by Intraarticular Delivery of MicroRNAs 140-3p and 140-5p. Arthritis Rheumatol. 2016, 68, 370–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papathanasiou, I.; Balis, C.; Trachana, V.; Mourmoura, E.; Tsezou, A. The synergistic function of miR-140-5p and miR-146a on TLR4-mediated cytokine secretion in osteoarthritic chondrocytes. Biochem. Biophys. Res. Commun. 2020, 522, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Najm, A.; Masson, F.-M.; Preuss, P.; Georges, S.; Ory, B.; Quillard, T.; Sood, S.; Goodyear, C.S.; Veale, D.J.; Fearon, U.; et al. MicroRNA-17-5p Reduces Inflammation and Bone Erosions in Mice with Collagen-Induced Arthritis and Directly Targets the JAK/STAT Pathway in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis Rheumatol. 2020, 72, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-F.; Yang, P.; Shen, M.-Y.; Wang, X.; Gao, N.-X.; Zhou, X.-P.; Zhou, L.-L.; Lu, Y. MicroRNA-26b-5p alleviates murine collagen-induced arthritis by modulating Th17 cell plasticity. Cell Immunol. 2021, 365, 104382. [Google Scholar] [CrossRef]
- Li, J.; Wan, Y.; Guo, Q.; Zou, L.; Zhang, J.; Fang, Y.; Zhang, J.; Zhang, J.; Fu, X.; Liu, H.; et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res. Ther. 2010, 12, R81. [Google Scholar] [CrossRef] [Green Version]
- Mu, N.; Gu, J.; Huang, T.; Zhang, C.; Shu, Z.; Li, M.; Hao, Q.; Li, W.; Zhang, W.; Zhao, J.; et al. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Fabre, S.; Dupuy, A.M.; Dossat, N.; Guisset, C.; Cohen, J.D.; Cristol, J.P.; Daures, J.P.; Jorgensen, C. Protein biochip array technology for cytokine profiling predicts etanercept responsiveness in rheumatoid arthritis. Clin. Exp. Immunol. 2008, 153, 188–195. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, Y.; Wang, K.; Zhu, L.; Dong, J.; Zhao, J.; Wang, Y.; Li, H.; Sun, X.; Lu, Y. Low dose IL-2 suppress osteoclastogenesis in collagen-induced arthritis via JNK dependent pathway. Immun. Inflamm. Dis. 2020, 8, 727–735. [Google Scholar] [CrossRef]
- Rosenzwajg, M.; Lorenzon, R.; Cacoub, P.; Pham, H.P.; Pitoiset, F.; El Soufi, K.; RIbet, C.; Bernard, C.; Aractingi, S.; Banneville, B.; et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 2019, 78, 209–217. [Google Scholar] [CrossRef]
- Van der Brempt, X.; Cumps, J.; Capieaux, E. Efficacité clinique du 2L®ALERG, un nouveau traitement de type immunomodulateur par voie sublinguale dans le rhume des foins: Une étude en double insu contre placebo. Rev. Fr. Allergol. 2011, 51, 430–436. [Google Scholar] [CrossRef]
- Floris, I.; Chenuet, P.; Togbe, D.; Volteau, C.; Lejeune, B. Potential Role of the Micro-Immunotherapy Medicine 2LALERG in the Treatment of Pollen-Induced Allergic Inflammation. Dose-Response 2020, 18. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Cluzel, H.; Lafon, J.; Bruhwyler, J.; Lejeune, B. Efficacy of 2LPAPI®, a micro-immunotherapy drug, in patients with high-risk papillomavirus genital infection. Adv. Infect. Dis. 2016, 06, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Floris, I.; Lechner, J.; Lejeune, B. Follow-up of patients with systemic immunological diseases undergoing fatty-degenerative osteolysis of the jawbone surgery and treated with RANTES 27CH. J. Biol. Regul. Homeost. Agents 2018, 32, 37–45. Available online: https://www.biolifesas.org/biolife/2018/10/03/follow-up-of-patients-with-systemic-immunological-diseases-undergoing-fatty-degenerative-osteolysis-of-the-jawbone-surgery-and-treated-with-rantes-27ch/ (accessed on 3 March 2021).
- Martin-Martin, L.; Giovannangeli, F.; Bizzi, E.; Massafra, U.; Ballanti, E.; Cassol, M.; Migliore, A. An open randomized active-controlled clinical trial with low-dose SKA cytokines versus DMARDs evaluating low disease activity maintenance in patients with rheumatoid arthritis. Drug Des. Dev. Ther. 2017, 11, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Floris, I.; Rose, T.; Rojas, J.A.C.; Appel, K.; Roesch, C.; Lejeune, B. Pro-inflammatory cytokines at ultra-low dose exert anti-inflammatory effect in vitro: A possible mode of action involving sub-micron particles? Dose-Response 2020, 18. [Google Scholar] [CrossRef]
- Gane, J.M.; Stockley, R.A.; Sapey, E. TNF-α autocrine feedback loops in human monocytes: The pro- and anti-inflammatory roles of the TNF-α receptors support the concept of selective TNFR1 blockade in vivo. J. Immunol. Res. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Regueiro, C.; Casares-Marfil, D.; Lundberg, K.; Knevel, R.; Acosta-Herrera, M.; Rodriguez-Rodriguez, L.; Lopez-Mejias, R.; Perez-Pampin, E.; Triguero-Martinez, A.; Nuño, L.; et al. HLA-B*08 Identified as the Most Prominently Associated Major Histocompatibility Complex Locus for Anti-Carbamylated Protein Antibody-Positive/Anti-Cyclic Citrullinated Peptide-Negative Rheumatoid Arthritis. Arthritis Rheumatol. 2020. [Google Scholar] [CrossRef]
- Aslam, M.M.; John, P.; Fan, K.-H.; Bhatti, A.; Aziz, W.; Ahmed, B.; Feingold, E.; Demirci, F.Y.; Kamboh, M.I. Investigating the GWAS-Implicated Loci for Rheumatoid Arthritis in the Pakistani Population. Dis. Markers 2020. [Google Scholar] [CrossRef]
- Huang, Z.; Niu, Q.; Yang, B.; Zhang, J.; Yang, M.; Xu, H.; Cai, B.; Hu, J.; Wu, Y.; Wang, L. Genetic polymorphism of rs9277535 in HLA-DP associated with rheumatoid arthritis and anti-CCP production in a Chinese population. Clin. Rheumatol. 2018, 37, 1799–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Y.; Jin, P.; Zhang, J.; Liu, L.; Wang, Z.; Hu, Y. Influence of HLA Class II Alleles and DRB1-DQB1 Haplotypes on Rheumatoid Arthritis Susceptibility and Autoantibody Status in the Chinese Han Population. Immunol. Investig. 2021, 1–13. [Google Scholar] [CrossRef]
- Floris, I.; Appel, K.; Rose, T.; Lejeune, B. 2LARTH®, a micro-immunotherapy medicine, exerts anti-inflammatory effects in vitro and reduces TNF-α and IL-1β secretion. J. Inflamm. Res. 2018, 11, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Floris, I.; García-González, V.; Palomares, B.; Appel, K.; Lejeune, B. The micro-immunotherapy medicine 2LARTH® reduces inflammation and symptoms of rheumatoid arthritis in vivo. Int. J. Rheumatol. 2020, 2020, 1594573. [Google Scholar] [CrossRef] [Green Version]
- Yucel, B.; Sumer, C.; Gok, I.; Karkucak, M.; Alemdaroglu, E.; Ucar, F. Associations between cytokine gene polymorphisms and rheumatoid arthritis in Turkish population. North. Clin. Istanb. 2020, 7, 563–571. [Google Scholar] [CrossRef]
- Paradowska-Gorycka, A.; Wajda, A.; Romanowska-Próchnicka, K.; Walczuk, E.; Kuca-Warnawin, E.; Kmiolek, T.; Stypinska, B.; Rzeszotarska, E.; Majewski, D.; Jagodzinski, P.P.; et al. Th17/Treg-Related Transcriptional Factor Expression and Cytokine Profile in Patients with Rheumatoid Arthritis. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Wang, P.; Chi, S.; Wang, X.; Cui, Z.; Zhang, Y. Reduction of follicular regulatory T cells is associated with occurrence and development of rheumatoid arthritis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi Chin. J. Cell. Mol. Immunol. 2021, 37, 152–157. [Google Scholar]
- Brzustewicz, E.; Henc, I.; Daca, A.; Szarecka, M.; Sochocka-Bykowska, M.; Witkowski, J.; Bryl, E. Autoantibodies, C-reactive protein, erythrocyte sedimentation rate and serum cytokine profiling in monitoring of early treatment. Cent.-Eur. J. Immunol 2017, 42, 259–268. [Google Scholar] [CrossRef]
- Simon, Q.; Grasseau, A.; Boudigou, M.; Le Pottier, L.; Bettachioli, E.; Cornec, D.; Rouvière, B.; Jamin, C.; Le Lann, L.; PRECISESADS Clinical Consortium; et al. A cytokine network profile delineates a common Th1/Be1 pro-inflammatory group of patients in four systemic autoimmune diseases. Arthritis Rheumatol. 2021. [Google Scholar] [CrossRef]
- Klatzmann, D.; Abbas, A.K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 2015, 15, 283–294. [Google Scholar] [CrossRef]
- Yang, L.; Liu, R.; Fang, Y.; He, J. Anti-inflammatory effect of phenylpropanoids from Dendropanax dentiger in TNF-α-induced MH7A cells via inhibition of NF-κB, Akt and JNK signaling pathways. Int. Immunopharmacol. 2021, 94, 107463. [Google Scholar] [CrossRef]
- Ilan, Y. Oral immune therapy: Targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin. Transl. Immunol. 2016, 5, e60. [Google Scholar] [CrossRef]
- McGhee, J.R.; Fujihashi, K. Inside the Mucosal Immune System. PLoS Biol. 2012, 5, e1001397. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, S.-X.; Yin, X.-F.; Zhang, M.-X.; Qiao, J.; Xin, X.-H.; Chang, M.-J.; Gao, C.; Li, Y.-F.; Li, X.-F. The Gut Microbiota and Its Relevance to Peripheral Lymphocyte Subpopulations and Cytokines in Patients with Rheumatoid Arthritis. J. Immunol. Res. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Mattson, M.P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinbongard, P.; Skyschally, A.; Heusch, G. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflug. Arch. 2017, 469, 159–181. [Google Scholar] [CrossRef] [PubMed]
miRNA | miRNA Levels in RA | Signaling Pathways/Cytokines Involved or Biological Effects | Authors |
---|---|---|---|
126-3-p | up in RA serum | According to the QIAGEN IPA Software, these miRNAs are involved in a network of potential direct and indirect interactions impacting transcription factors and the downstream production of cytokines such as IL-1β and TNF-α. | Cunningham CC et al., 2021 [71] |
let-7d-5p | up in RA serum | ||
431-3p | up in RA serum | ||
221-3p | up in RA serum | ||
24-3p | up in RA serum | ||
130a-3p | up in RA serum | ||
339-5p | up in RA serum | ||
let-7i-5p | up in RA serum | ||
17-5p | down in RA serum | ||
17-5p | down in erosive RA | MiR-17-5p injections into the paw of arthritic mice induced a reduction of IL-6 and IL-1β, but not TNF-α. | Aurélie Najm et al., 2020 [76] |
26b-5p | down in RA serum | MiR-26b-5p mimics treatment alleviated inflammatory responses and reduced Th17 proportion in CIA mice. | Ming-Fei Zhang et al., 2021 [77] |
140-5p | ND | Their simultaneous overexpression in Osteoarthritic chondrocytes reduces NF-κb phosphorylation, as well as the expression of TLR4, IL-1β, IL-6 and TNF-α. | Ioanna Papathanasiou et al., 2020 [75] |
146a | |||
140-5p & 140-3p | down in synovial tissues and synovial fibroblasts from RA patients | Intra-articular delivery of these miRNAs ameliorates the clinical and histological features of RA. | Jia-Shiou Peng et al., 2016 [74] |
140-5p | ND | The interplay of the miR-140-5p and TNF-α was assessed in a pulmonary arterial hypertension model. The direct targeting of this miRNA towards the TNF-α 3′UTR region was confirmed by Luciferase assays. | Tian-Tian Zhu et al., 2019 [73] |
146a | up in CD4+ T cells from RA patients | MiR-146a expression is positively correlated with levels of TNF-α. In vitro studies showed that TNF-α upregulated miR-146a expression in T cells. | Jingyi Li et al., 2010 [78] |
363 | down in CD4+ T cells from RA patients | ||
498 | down in CD4+ T cells from RA patients | ||
10a | down in the fibroblast-like synoviocytes of RA patients | MiR-10a downregulation could be triggered by TNF-α and IL-1β and results in the activation of the NF-κB pathway and the promotion of IL-1β, TNF-α, IL-6, IL-8 and MCP-1 expression. | Nan Mu et al., 2016 [79] |
2LARTH® | ||
---|---|---|
Ingredients | Modulatory ULD | Inhibitory ULD |
IL-1 | 10 | 17 |
IL-2 | 10 | 12 |
TNF-α | 10 | 17 |
SNA®-ARTH | 10 | 16 |
SNA®-HLA-I | 10 | 16 |
SNA®-HLA-II | 10 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacques, C.; Floris, I.; Lejeune, B. Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH® Micro-Immunotherapy Treatment. Int. J. Mol. Sci. 2021, 22, 6717. https://doi.org/10.3390/ijms22136717
Jacques C, Floris I, Lejeune B. Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH® Micro-Immunotherapy Treatment. International Journal of Molecular Sciences. 2021; 22(13):6717. https://doi.org/10.3390/ijms22136717
Chicago/Turabian StyleJacques, Camille, Ilaria Floris, and Béatrice Lejeune. 2021. "Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH® Micro-Immunotherapy Treatment" International Journal of Molecular Sciences 22, no. 13: 6717. https://doi.org/10.3390/ijms22136717
APA StyleJacques, C., Floris, I., & Lejeune, B. (2021). Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH® Micro-Immunotherapy Treatment. International Journal of Molecular Sciences, 22(13), 6717. https://doi.org/10.3390/ijms22136717