Role of Multiple Comorbidities and Therapies in Conditioning the Clinical Severity of DRESS: A Mono-Center Retrospective Study of 25 Cases
Abstract
:1. Introduction
2. Results
2.1. Patients Characteristics
2.2. Clinical Results
2.3. Other Laboratory Findings
2.4. Culprit Drugs
2.5. Severity of the Reaction
2.6. Patient Comorbidities and Chronic Therapies
2.7. Clinical Course
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Methods
4.2.1. Diagnosis
4.2.2. Clinical Course
4.2.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cabañas, R.; Ramírez, E.; Sendagorta, E.; Alamar, R.; Barranco, R.; Blanca-López, N.; Doña, I.; Fernández, J.; Garcia-Nunez, I.; García-Samaniego, J.; et al. Spanish Guidelines of Diagnosis, Management, Treatment and Prevention of DRESS syndrome. J. Investig. Allergol. Clin. Immunol. 2020, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; Chiu, H.C.; Chu, C.Y. Drug reaction with eosinophilia and systemic symptoms: A retrospective study of 60 cases. Arch. Dermatol. 2010, 146, 1373–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descamps, V.; Ranger-Rogez, S. DRESS syndrome. Joint Bone Spine 2014, 81, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.B.; Abe, R.; Pan, R.Y.; Wang, C.W.; Hung, S.I.; Tsai, Y.G.; Chung, W.H. An updated review of the molecular mechanisms in drug hypersensitivity. J. Immunol. Res. 2018, 2018, 6431694. [Google Scholar] [CrossRef]
- Cho, Y.T.; Yang, C.W.; Chu, C.Y. Drug reaction with eosinophilia and systemic symptoms (DRESS): An interplay among drugs, viruses, and immune system. Int. J. Mol. Sci. 2017, 18, 1243. [Google Scholar] [CrossRef] [Green Version]
- Shiohara, T.; Mizukawa, Y. Drug-induced hypersensitivity syndrome (DiHS)/drug reaction with eosinophilia and systemic symptoms (DRESS): An update in 2019. Allergol. Int. 2019, 68, 301–308. [Google Scholar] [CrossRef]
- Kardaun, S.H.; Sidoroff, A.; Valeyrie-Allanore, I.; Halevy, S.; Davidovici, B.B.; Mockenhaupt, M.; Roujeau, J.C. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: Does a DRESS syndrome really exist? Br. J. Dermatol. 2007, 156, 609–611. [Google Scholar] [CrossRef]
- Shiohara, T.; Iijima, M.; Ikezawa, Z.; Hashimoto, K. The diagnosis of a DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations. Br. J. Dermatol. 2007, 156, 1083–1084. [Google Scholar] [CrossRef]
- Shiohara, T.; Kano, Y. Drug reaction with eosinophilia and systemic symptoms (DRESS): Incidence, pathogenesis and management. Expert Opin. Drug Saf. 2017, 16, 139–147. [Google Scholar] [CrossRef]
- Mizukawa, Y.; Hirahara, K.; Kano, Y.; Shiohara, T. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms severity score: A useful tool for assessing disease severity and predicting fatal cytomegalovirus disease. J. Am. Acad Dermatol. 2019, 80, 670–678.e2. [Google Scholar] [CrossRef] [Green Version]
- Kardaun, S.H.; Sekula, P.; Valeyrie-Allanore, L.; Liss, Y.; Chu, C.Y.; Creamer, D.; Sidoroff, A.; Naldi, L.; Mockenhaupt, M.; Roujeau, J.C. Drug reaction with eosinophilia and systemic symptoms (DRESS): An original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 2013, 169, 1071–1080. [Google Scholar] [CrossRef]
- Kardaun, S.H.; Mockenhaup, M.; Roujeau, J.C. Comments on: DRESS syndrome. J. Am. Acad. Dermatol. 2014, 71, 1000–1000.e2. [Google Scholar] [CrossRef]
- Wolfson, A.R.; Zhou, L.; Li, Y.; Phadke, N.A.; Chow, O.A.; Blumenthal, K.G. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome identified in the Electronic Health Record Allergy Module. J. Allergy Clin. Immunol. Pract. 2019, 7, 633–640. [Google Scholar] [CrossRef]
- Hiransuthikul, A.; Rattananupong, T.; Klaewsongkram, J.; Rerknimitr, P.; Pongprutthipan, M.; Ruxrungtham, K. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS): 11 years retrospective study in Thailand. Allergol. Int. 2016, 65, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Sim, D.W.; Yu, J.E.; Jeong, J.; Jung, J.W.; Kang, H.R.; Kang, D.Y.; Ye, Y.M.; Jee, Y.K.; Kim, S.; Park, J.W.; et al. Variation of clinical manifestations according to culprit drugs in DRESS syndrome. Pharmacoepidemiol. Drug Saf. 2019, 28, 840–848. [Google Scholar] [CrossRef]
- Wang, L.; Mei, X.L. Drug reaction with eosinophilia and systemic symptoms: Retrospective analysis of 104 cases over one decade. Chin. Med. J. 2017, 130, 943–949. [Google Scholar] [CrossRef]
- Ushigome, Y.; Kano, Y.; Ishida, T.; Hirahara, K.; Shiohara, T. Short- and long-term outcomes of 34 patients with drug-induced hypersensitivity syndrome in a single institution. J. Am. Acad. Dermatol. 2013, 68, 721–728. [Google Scholar] [CrossRef]
- Kim, D.H.; Koh, Y.I. Comparison of diagnostic criteria and determination of prognostic factors for Drug Reaction with Eosinophilia and Systemic Symptoms Syndrome. Allergy Asthma. Immunol. Res. 2014, 6, 216–221. [Google Scholar] [CrossRef]
- Avancini, J.; Maragno, L.; Santi, C.G.; Criado, P.R. Drug reaction with eosinophilia and systemic symptoms/drug induced hypersensitivity syndrome: Clinical features of 27 patients. Clin. Exp. Dermatol. 2015, 40, 851–859. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.Y.; Hahm, J.E.; Ha, J.W.; Kim, C.W.; Kim, S.S. Clinical features of drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: A study of 25 patients in Korea. Int. J. Dermatol. 2017, 56, 944–951. [Google Scholar] [CrossRef]
- De, A.; Rajagopala, M.; Sarda, A.; Das, S.; Biswas, P. Drug reaction with eosinophilia and systemic symptoms: An update and review of recent literature. Indian J. Dermatol. 2018, 63, 30–40. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kim, J.; Ham, J.; Cho, S.H.; Kang, H.R.; Kim, H.Y. Altered T cell and monocyte subsets in prolonged immune reconstitution inflammatory syndrome related with DRESS (drug reaction with eosinophilia and systemic symptoms). Asia Pac. Allergy 2020, 10, e2. [Google Scholar] [CrossRef] [Green Version]
- Mockenhaupt, M. Drug Reaction with Eosinophilia and Systemic Symptoms, Uptodate. Available online: https://www.uptodate.com/contents/drug-reaction-with-eosinophilia-and-systemic-symptoms-dress (accessed on 20 October 2020).
- Aitken, A.E.; Richardson, T.A.; Morgan, E.T. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev. Pharmacol. Toxicol. 2006, 46, 123–149. [Google Scholar] [CrossRef]
- Gandhi, A.; Moorthy, B.; Ghose, R. Drug disposition in pathophysiological conditions. Curr. Drug Metab. 2012, 13, 1327–1344. [Google Scholar] [CrossRef] [Green Version]
- Criado, P.R.; Avancini, J.; Santi, C.G.; Medrado, A.T.A.; Rodrigues, C.E.; de Carvalho, J.F. Drug reaction with eosinophilia and systemic symptoms (DRESS): A complex interaction of drugs, viruses and the immune system. Isr. Med. Assoc J. 2012, 14, 577–582. [Google Scholar] [PubMed]
- Bellón, T. Mechanisms of severe cutaneous adverse reactions: Recent advances. Drug Safety 2019, 42, 973–992. [Google Scholar] [CrossRef]
- Zhu, S.; Li, W.; Ward, M.F.; Sama, A.E.; Wang, H. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm. Allergy Drug Targets. 2010, 9, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Fujita, H.; Matsukura, S.; Watanabe, T.; Komitsu, N.; Watanabe, Y.; Takahashi, Y.; Kambara, T.; Ikezawa, Z.; Aihara, M. The serum level of HMGB1 (high mobility group box 1 protein) is preferentially high in drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Br. J. Dermatol. 2014, 171, 1585–1588. [Google Scholar] [CrossRef]
- Hashizume, H.; Fujiyama, T.; Kanebayashi, J.; Kito, Y.; Hata, M.; Yagi, H. Skin recruitment of monomyeloid precursors involves human herpesvirus-6 reactivation in drug allergy. Allergy 2013, 68, 681–689. [Google Scholar] [CrossRef]
- Nakajima, A.; Oda, S.; Yokoi, T. Allopurinol induces innate immune responses through mitogen-activated protein kinase signaling pathways in HL-60 cells. J. Appl. Toxicol. 2016, 36, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.; Gibson, A.; Park, B.K.; Naisbitt, D.J. Are drug metabolites able to cause T-cell-mediated hypersensitivity reactions? Expert Opin. Drug Metab. Toxicol. 2015, 11, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Blàzquez, A.B.; Cuesta, J.; Mayorga, C. Role of dendritic cells in drug allergy. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Pallardy, M.; Bechara, R. Chemical or drug hypersensitivity: Is the immune system clearing the danger? Toxicol. Sci. 2017, 158, 14–22. [Google Scholar] [CrossRef] [PubMed]
- The Use of the WHO-UMC System for Standardized Case Causality Assessment. Available online: www.who.int/medicine/areas/quality_safety/safety_efficacy/WHOcausality_assessment.pdf (accessed on 26 October 2020).
- 2018 ISTAT Data (Istituto Nazionale di Statistica). Available online: http://dati.istat.it/Index.aspx?QueryId=15464 (accessed on 26 October 2020).
- ISS Data (Superior Institute of Health). Epicentro, Il Portale dell’Epidemiologia per la Sanità Pubblica a cura dell’Istituto Superiore di Sanità: La Sorveglianza Passi d’Argento. Available online: https://www.epicentro.iss.it/passi-argento/dati/croniche#dati (accessed on 26 October 2020).
Characteristics | Number |
---|---|
Median age, years | 66 |
Female (n, %) | 15 (60%) |
Ethnic group | |
Caucasian | 19 (76%) |
Asian | 5 (20%) |
African | 1 (4%) |
Community cases (n, %) | 19 (76%) |
Duration of hospitalization (median ± SD), days | 15 ± 10.8 |
Skin (n, %) | 25/25 (100%) |
>50% BSA | 25/25 (100%) |
Rash suggestive of DRESS * | 25/25 (100%) |
Mucosal involvement | 8/25 (32%) |
Facial edema | 9/25 (36%) |
Lymphadenopathy (n, %) | 6/25 (24%) |
Fever ≥38.5 °C (n, %) | 13/25 (52%) |
Atypical lymphocytosis (n, %) | 16/25 (64%) |
Eosinophilia | |
≥700/μL (n, %) | 21/25 (84%) |
≥1500/μL (n, %) | 12/25 (48%) |
Hematological abnormalities (n, %) | 25/25 (100%) |
Leukocytosis | 20/25 (80%) |
Neutrophilia | 16/24 (66%) |
Monocytosis | 8/19 (42%) |
Lymphocytosis | 6/24 (25%) |
Lymphocytopenia | 4/24 (16%) |
Trombocytosis | 3/24 (12.5%) |
Trombocytopenia | 7/24 (29.1%) |
Internal organ involvement (n, %) | 21 (84%) |
Liver (%) | 54.1% |
Kidney (%) | 37,5% |
Heart (%) | 12.5% |
Lung (%) | 8% |
Number of organs involved | |
1 organ (%) | 63% |
2 organs (%) | 17% |
≥3 organs (%) | 4% |
Culprit drugs | |
Certain culprit drugs (n, %) | 19 (76%) |
Latency ** (median ± SD), days | 21 ± 12.7 |
Steroid treatment | |
Overall duration (mean SD), days | 135.8 ± 226.6 |
Treatment start latency (mean SD), days | 14.75 ± 17.5 |
1 week (at least) at 1 mg/kg/day *** (n, %) | 12 (48%) |
2 weeks at 1 mg/kg/day *** (n, %) | 4 (16%) |
3 weeks at 1 mg/kg/day *** (n, %) | 1 (4%) |
Score | −1 | 0 | 1 | 2 | Min | Max |
---|---|---|---|---|---|---|
Fever ≥ 38.5 °C | No/U | Yes | −1 | 0 | ||
Lymphadenopathy | No/U | Yes | 0 | 1 | ||
Eosinophilia Eosinophils Eosinophils, if leukocytes < 4000 | 700–1499/μL 10–19.9% | ≥1500/μL ≥20% | 0 | 2 | ||
Atypical lymphocytes | No/U | Yes | 0 | 1 | ||
Skin involvement Rash extent (>50% BSA) Rash suggesting DRESS Biopsy suggesting DRESS | No No | No/U U Yes/U | Yes Yes | −2 | 2 | |
Organ involvement * Liver, kidney, lung, muscle/heart, pancreas, other organ (s) | No/U | Yes | 0 | 2 | ||
Resolution ≥ 15 days | No/U | Yes | −1 | 0 | ||
Evaluation other potential causes ANA, blood culture, serology for HVA/HBV/HCV, C./M. Pneumoniae, other serology/PCR if none are positive and ≥3 above negative | Yes | 0 | 1 | |||
TOTAL SCORE | −4 | 9 |
Cases | Certain Culprit Drug | Drug(s) Involved | HLA |
---|---|---|---|
1 | Yes | Allopurinol | HLA-B*58:01 |
2 | Yes | Allopurinol | U |
3 | No | Allopurinol, ceftriaxone | U |
4 | Yes | Allopurinol | HLA-B*58:01 |
5 | Yes | Allopurinol | U |
6 | Yes | Phenytoin | U |
7 | Yes | Allopurinol | U |
8 | Yes | Allopurinol | HLA-B*51:06 HLA-B*15:02 |
9 | Yes | Carbamazepine | HLA-B*35:08 HLB-B*39:01 |
10 | No | Allopurinol, cefpodoxime | U |
11 | Yes | Carbamazepine | U |
12 | Yes | Thiamazole | U |
13 | Yes | Allopurinol | U |
14 | Yes | Allopurinol | U |
15 | No | Carbamazepine, Lamotrigine, and Gabapentin | U |
16 | Yes | Allopurinol | HLA-B*58:01 |
17 | Yes | Carbamazepine | HLA-B*18:01 HLA-B*40:01 |
18 | Yes | Ticlopidine | U |
19 | Yes | Ciprofloxacin | U |
20 | Yes | Allopurinol | HLA-B*58:01 |
21 | Yes | Allopurinol | U |
22 | No | Meropenem, Vancomycin, and Dalteparin | U |
23 | No | Allopurinol, Meropenem, Vancomycin, Bactrim (TMP/SMX), and Fluconazole | U |
24 | Yes | Allopurinol | HLA-B*58:01 |
25 | No | Aripiprazole, Baclofen, Vortioxetine | U |
Our Study | Wolfsong 2019 | Kardaun 2013 | Hirans. 2016 | Sim 2019 | Wang 2017 | Ushigome 2012 | Kim 2014 | |
---|---|---|---|---|---|---|---|---|
N° patients | 25 | 69 | 117 | 52 | 123 | 104 | 34 | 48 |
Age (mean/median) | 66 (median) | 60 (median) | 48 (median) | 33 (median) | 54.3 | 52 (mean) | 55.5 (mean) | |
Hypertension | 13 (52%) | 38 (55%) | 13 (25%) | 55 (45%) | 22 (21.2%) | 15 (31%) | ||
Hyperuricemia | 13 (52%) | 8 (15.4%) | 7 (6.7%) | 4 (12%) | 6 (12.5%) | |||
DM | 4 (16%) | 12 (17%) | 14 (12%) | 8 (15.4%) | 20 (16%) | 10 (9.6%) | 2 (4%) | |
CKD/kidney diseases | 4 (16%) | 8 (12%) | 7 (6%) | 4 (7.7%) | 9 (7%) | 4 (3.8%) | 2 (4%) | |
CAD | 3 (12%) | 9 (13%) | ||||||
CHF | 7 (10%) | 3 (6%) | ||||||
Other CVD | 4 (16%) | |||||||
Structural heart diseases | 6 (24%) | |||||||
Arrhythmia | 4 (16%) | 1 (3%) | ||||||
Neoplasms | 5 (20%) | 8 (12%) | 6 (5.1%) | 11 (9%) | 2 (1.9%) | 1 (3%) | 2 (4%) | |
Stroke | 1 (4%) | 5 (15%) | ||||||
Neurological diseases | 7 (28%) | 13 (19%) | 23 (20%) | 12 (23.1%) | 4 (3.8%) | 11 (33%) | 3 (6%) | |
Autoimmune diseases | 5 (20%) | 7 (10%) | 10 (8.5%) | 4 (3.8%) | 3 (9%) | |||
Lung diseases | 2 (8%) | 10 (14%) | 1 (1%) | 2 (6%) | 1 (2%) | |||
Psychiatric disorders | 2 (8%) | 6 (9%) | 4 (8%) | |||||
Hematological diseases | 4 (16%) | 1 (2%) | ||||||
Endocrinological diseases | 7 (28%) | |||||||
Gastroenterological diseases | 4 (16%) | 6 (5.1%) | 7 (6.7%) | 1 (3%) | ||||
Arthrosis | 1 (4%) | |||||||
Dyslipidemia | 6 (24%) | 9 (17.3%) | ||||||
HIV | 3 (4%) | 1 (1.3%) | 15 (28.8%) | |||||
Tuberculosis | 4 (3.8%) | 6 (12.5%) | ||||||
Recent infectious disease | 25 (22.9%) | |||||||
Drug addiction | 7 (10%) | |||||||
Allergic rhinitis | 1 (1%) | |||||||
Atopic dermatitis | 1 (1%) | |||||||
N° comorbidities 1 2 ≥3 >4 | 3 (12%) 7 (28%) 15 (60%) | 31 (45%) * 29 (42%) # 9 (13%) | 31 (91%) 2 (6%) 1 (3%) |
N | Drugs Involved | Severity | RegiSCAR Score | Complications |
---|---|---|---|---|
1 | Allopurinol, Cefpodoxime | Moderate | Probable | Hemolytic anemia and AITP |
2 | Allopurinol | Severe | Probable | Congestive heart failure |
3 | Allopurinol, Ceftriaxone | Moderate | Definite | Congestive heart failure |
4 | Allopurinol | Severe | Probable | Gastrointestinal bleeding |
5 | Allopurinol | Moderate | Definite | Hepato-renal decompensation |
6 | Allopurinol | Severe | Definite | Sepsis by Gemella |
7 | Thiamazole | Severe | Probable | Septic pneumonia turned out to be fatal |
Values | Score | |
---|---|---|
Fixed parameters | ||
Age (years) | ≤40/41–74/≥75 | −1/0/2 |
Duration of drug exposure after onset (days) | 0–6/≥7 | 0/1 |
Atypical lymphocytes | NO/YES | 0/1 |
Variable parameters | ||
Pulsed prednisone * | NO/YES | 0/2 |
Skin involvement erythema (% BSA) erosion (% BSA) | <70/≥70/erythroderma <10/10–29/≥30 | 0/1/2 0/1/3 |
Fever ≥ 38.5 °C (days duration) | 0 or 1/2–6/≥7 | 0/1/2 |
Appetite loss (≤70% of regular food intake), days | 0–4/≥ 5 | 0/1 |
Renal dysfunction (creatinine), mg/dL | <1.0/1.0–2.0/≥2.1 or HD | 0/1/3 |
Liver dysfunction (ALT), IU/L | <400/400-1000/>1000 | 0/1/2 |
C-reactive protein (mg/dL) | ≤2/<2–<10/≥10–<15/≥15 | −1/0/1/2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toniato, A.; Gamba, C.; Schroeder, J.W.; Fabbri, V.; Bernal Ortiz, S.V.; Borgonovo, L.; Piantanida, M.; Scibilia, J.; Balossi, L.; Brusamolino, E.; et al. Role of Multiple Comorbidities and Therapies in Conditioning the Clinical Severity of DRESS: A Mono-Center Retrospective Study of 25 Cases. Int. J. Mol. Sci. 2021, 22, 7072. https://doi.org/10.3390/ijms22137072
Toniato A, Gamba C, Schroeder JW, Fabbri V, Bernal Ortiz SV, Borgonovo L, Piantanida M, Scibilia J, Balossi L, Brusamolino E, et al. Role of Multiple Comorbidities and Therapies in Conditioning the Clinical Severity of DRESS: A Mono-Center Retrospective Study of 25 Cases. International Journal of Molecular Sciences. 2021; 22(13):7072. https://doi.org/10.3390/ijms22137072
Chicago/Turabian StyleToniato, Andrea, Chiara Gamba, Jan Walter Schroeder, Valeria Fabbri, Scarlett Valeria Bernal Ortiz, Linda Borgonovo, Marta Piantanida, Joseph Scibilia, Luca Balossi, Eleonora Brusamolino, and et al. 2021. "Role of Multiple Comorbidities and Therapies in Conditioning the Clinical Severity of DRESS: A Mono-Center Retrospective Study of 25 Cases" International Journal of Molecular Sciences 22, no. 13: 7072. https://doi.org/10.3390/ijms22137072
APA StyleToniato, A., Gamba, C., Schroeder, J. W., Fabbri, V., Bernal Ortiz, S. V., Borgonovo, L., Piantanida, M., Scibilia, J., Balossi, L., Brusamolino, E., Bonoldi, E., Caputo, V., Nichelatti, M., & Pastorello, E. A. (2021). Role of Multiple Comorbidities and Therapies in Conditioning the Clinical Severity of DRESS: A Mono-Center Retrospective Study of 25 Cases. International Journal of Molecular Sciences, 22(13), 7072. https://doi.org/10.3390/ijms22137072