Treating Seizures after Hypoxic-Ischemic Encephalopathy—Current Controversies and Future Directions
Abstract
:1. Neonatal Seizures after Hypoxic-Ischemic Encephalopathy
2. The Biology of Neonatal Seizures
3. Do Seizures Exacerbate Brain Damage after HIE?
4. The Physiology of Seizures
Study Aim | Animal Species and Age | Study Outcomes | Reference |
---|---|---|---|
Seizures and brain injury | Adult rat | Gas flurothyl-induced status epilepticus was associated with neuronal necrosis. | [25] |
P7 rat | High-dose lithium and pilocarpine induced status epilepticus was associated with widespread brain injury. | [26] | |
P7 and P14 rat | High-dose lithium and pilocarpine induced status epilepticus was associated with selective hippocampal damage which was exacerbated with lipopolysaccharide pretreatment. | [27] | |
P9 | Pilocarpine-induced status epilepticus at P9 was associated with impaired social behavior at P60. | [28] | |
Neonatal rat | Single episode of pilocarpine-induced status epilepticus at neonatal age was not associated with impaired cognitive function assessed at P60 to P63. | [29] | |
Near-term fetal sheep | Post-asphyxial seizures lasting longer than 3.5 min resulted in a drop in tissue PO2, but there was no further exacerbation with longer seizures. | [30] | |
Near-term fetal sheep | NMDA receptor blockade with dizocilpine at 6–24 h after global cerebral ischemia prevented seizures, improved neuronal survival in the lateral cortex and hippocampus but not the parietal cortex (most injured area). | [31] | |
P7 rat | Phenobarbital or levetiracetam suppressed high amplitude spikes after neonatal stroke, but this did not reduce brain infarction volume. | [32] | |
Neonatal piglet | Seizure activity did not increase cerebral lactate or lactate/pyruvate ratio above the increased levels seen after hypoxia-ischemia, therefore unlikely to exacerbate injury. | [33] | |
P10 rat | Kainic acid-induced seizures alone were not associated with brain injury, but the combination of hypoxia-ischemia and kainic acid increased hippocampal injury. | [34] | |
P10 rat | Preventing hyperthermia during seizures induced by hypoxia-ischemia plus kainic acid, reduced brain injury compared spontaneously hyperthermic animals. | [35] | |
Phenobarbital efficacy | P11 | Phenobarbital suppressed seizures when administered before, but not after hypoxia-ischemia. | [38] |
Phenobarbital neuroprotection | P7 rat | Early administration of phenobarbital with hypothermia after hypoxia-ischemia was associated with better sensorimotor performance, lower neuropathology scores and reduced infarct volume compared to hypothermia alone. | [39] |
P10 rat | Early administration of phenobarbital with hypothermia after hypoxia-ischemia was associated with improved motor outcome and brain injury. | [40] | |
Anticonvulsant adverse effects | Neonatal macaques | Phenobarbital infusion followed by midazolam administration was associated with widespread apoptosis, which was exacerbated with longer exposure. Further injury continued to evolve over time. | [41] |
P4 rat | Phenobarbital administration was associated with reduced proliferation, reduced expression of neuronal markers and transcription factors, and neurotrophins. | [42] | |
P0-P30 rat | Administration of phenytoin, phenobarbital, diazepam, clonazepam, vigabatrin or valproate all independently induced widespread neuronal apoptosis, which was dose-dependent. | [43] | |
P7 or P10 rat | Administration of either phenobarbital, phenytoin or lamotrigine but not levetiracetam was associated with impaired striatal synaptic development between P10 and P18. | [44] | |
P7 rat | Levetiracetam administration did not induce cell death in the brain. | [45] |
5. Anticonvulsants for the Management of Neonatal Seizures
Study Aim | Study Type | Study Outcome | Number of Participants | Reference |
---|---|---|---|---|
Seizures and outcome | Observational | High seizure burden in babies with HIE were associated with abnormal outcome, with or without hypothermia. | 47 | [4] |
Observational | HIE infants treated with hypothermia with clinical seizures had more extensive injury on MRI scans and delayed neurodevelopment at 18–24 months. | 97 | [5] | |
Observational | High seizure burden and persistent abnormal aEEG background in HIE infants treated with hypothermia was associated with poor prognosis. | 30 | [6] | |
Observational | High seizure burden was associated with higher mortality and abnormal neurological exam at discharge in infants with HIE, ischemic stroke or intracranial hemorrhage. | 426 | [8] | |
Observational | Seizure severity in newborns with perinatal asphyxia was independently associated with brain injury. | 90 | [16] | |
Observational | Clinical seizures were are associated with worse neurodevelopmental outcome, independent of hypoxic-ischemic injury severity. | 77 | [17] | |
Observational | Clinical seizures were not associated with death, disability or lower developmental scores after adjusting for HIE severity. | 208 | [21] | |
Observational | Seizures were not independently predictive of outcome, due to collinearity with HIE severity. | 486 | [20] | |
Treating electrographic and clinical seizures, or clinical seizures only | RCT | EEG monitoring for treatment of electrographic seizures in HIE infants was associated with a reduction in seizure burden. Higher seizure burden is associated with more severe brain injury and lower neurodevelopment scores at 18 to 24 months. | 69 | [18] |
RCT | Trend for reduction in seizure duration when treating electrographic seizures. Seizure duration is associated with severity of brain injury. | 42 | [19] | |
HIE and epilepsy | Observational | Infants with severe but not moderate HIE were associated with developing epilepsy at 24 months. | 92 | [23] |
Hypothermia treatment and epilepsy | Observational | Reduced rates of epilepsy up to 8 years of age in cohort treated with hypothermia for HIE. | 151 | [24] |
Phenobarbital efficacy | Observational | Subclinical seizures were more common in preterm infants. 63% of preterm and term infants with seizures failed to respond to phenobarbital. | 611 | [48] |
RCT | Phenobarbital was associated with a 27% reduction in incidence of seizures for neonates with severe asphyxia. | 31 | [59] | |
Phenobarbital vs. phenytoin efficacy | RCT | Either phenobarbital or phenytoin controlled seizures in less than half of the neonates. | 59 | [47] |
Effectiveness of levetiracetam | Observational | Levetiracetam was associated with reducing 50% of seizures in 35% of infants. | 23 | [52] |
Observational | Levetiracetam monotherapy provided seizure control in 47% of infants. | 36 | [53] | |
Phenobarbital vs. levetiracetam efficacy | RCT | Improvement in tone and posture of infants treated with levetiracetam but not phenobarbital. | 30 | [54] |
RCT | First-line levetiracetam achieved better seizure control than phenobarbital for neonatal seizures. | 100 | [55] | |
RCT | First-line phenobarbital treatment was more effective than levetiracetam for neonatal seizures. | 85 | [57] | |
Hypothermia efficacy for seizures | Observational | Hypothermia reduced seizure burden for neonates with moderate HIE. | 107 | [60] |
Observational | Hypothermia reduced seizures for infants with HIE at 6 months follow up. | 56 | [61] | |
Observational | 0/5 neonates with stroke treated with hypothermia had seizures, compared to 7/10 who were not treated with hypothermia. | 15 | [62] | |
Observational | Neonates born in a tertiary cooling center had fewer seizures and improved seizure-free survival compared to those born in a non-cooling center without active therapeutic hypothermia. | 5059 | [63] | |
Bumetanide efficacy | RCT | Bumetanide add-on to phenobarbital for treatment of neonatal seizures did not improve seizure control and increased the risk of hearing loss. | 30 | [64] |
Phenobarbital plus bumetanide for treatment of seizures in neonates with HIE showed reduced seizure burden compared to phenobarbital plus placebo. | 53 | [65] | ||
Anticonvulsant adverse effects | Observational | Phenobarbital for the treatment of febrile seizures is associated with lower language/verbal scores at school age, and did not reduce the rate of seizure reoccurrences. | 139 | [66] |
Observational | Anticonvulsant use for infants with moderate/severe HIE were independently associated with death/disability at 18 months. | 208 | [67] |
6. Should We Try to Prevent Seizures?
7. Therapeutic Hypothermia and Seizures
8. Are Anticonvulsants Toxic in the Developing Brain?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 1, CD003311. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.D.; Brocklehurst, P.; Gunn, A.J.; Halliday, H.; Juszczak, E.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: Synthesis and meta-analysis of trial data. BMJ 2010, 340, c363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, J.O.; Wassink, G.; van den Heuij, L.G.; Bennet, L.; Gunn, A.J. Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy—Where to from here? Front. Neurol. 2015, 6, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharoshankaya, L.; Stevenson, N.J.; Livingstone, V.; Murray, D.M.; Murphy, B.P.; Ahearne, C.E.; Boylan, G.B. Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev. Med. Child Neurol. 2016, 58, 1242–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.K.; Hwang-Bo, S.; Seo, Y.M.; Youn, Y.A. Clinical seizures and unfavorable brain MRI patterns in neonates with hypoxic ischemic encephalopathy. Medicine 2021, 100, e25118. [Google Scholar] [CrossRef]
- Basti, C.; Maranella, E.; Cimini, N.; Catalucci, A.; Ciccarelli, S.; Del Torto, M.; Di Luca, L.; Di Natale, C.; Mareri, A.; Nardi, V.; et al. Seizure burden and neurodevelopmental outcome in newborns with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: A single center observational study. Seizure 2020, 83, 154–159. [Google Scholar] [CrossRef]
- Davidson, J.O.; Bennet, L.; Gunn, A.J. Evaluating anti-epileptic drugs in the era of therapeutic hypothermia. Pediatr. Res. 2019, 85, 931–933. [Google Scholar] [CrossRef]
- Glass, H.C.; Shellhaas, R.A.; Wusthoff, C.J.; Chang, T.; Abend, N.S.; Chu, C.J.; Cilio, M.R.; Glidden, D.V.; Bonifacio, S.L.; Massey, S.; et al. Contemporary Profile of Seizures in Neonates: A Prospective Cohort Study. J. Pediatr. 2016, 174, 98–103.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazipov, R.; Khalilov, I.; Tyzio, R.; Morozova, E.; Ben-Ari, Y.; Holmes, G.L. Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur. J. Neurosci. 2004, 19, 590–600. [Google Scholar] [CrossRef]
- Payne, J.A.; Rivera, C.; Voipio, J.; Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 2003, 26, 199–206. [Google Scholar] [CrossRef]
- Pond, B.B.; Berglund, K.; Kuner, T.; Feng, G.; Augustine, G.J.; Schwartz-Bloom, R.D. The chloride transporter Na(+)-K(+)-Cl- cotransporter isoform-1 contributes to intracellular chloride increases after in vitro ischemia. J. Neurosci. 2006, 26, 1396–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardou, R.; Ferrari, D.C.; Ben-Ari, Y. Mechanisms and effects of seizures in the immature brain. Semin. Fetal Neonatal Med. 2013, 18, 175–184. [Google Scholar] [CrossRef]
- Jantzie, L.L.; Getsy, P.M.; Denson, J.L.; Firl, D.J.; Maxwell, J.R.; Rogers, D.A.; Wilson, C.G.; Robinson, S. Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone. Front. Cell. Neurosci. 2015, 9, 347. [Google Scholar] [CrossRef] [Green Version]
- Jensen, F.E. Neonatal seizures: An update on mechanisms and management. Clin. Perinatol. 2009, 36, 881–900. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Sun, H.; Klein, P.M.; Jensen, F.E. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons. Front. Cell. Neurosci. 2015, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.P.; Weiss, J.; Barnwell, A.; Ferriero, D.M.; Latal-Hajnal, B.; Ferrer-Rogers, A.; Newton, N.; Partridge, J.C.; Glidden, D.V.; Vigneron, D.B.; et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 2002, 58, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, H.C.; Glidden, D.; Jeremy, R.J.; Barkovich, A.J.; Ferriero, D.M.; Miller, S.P. Clinical Neonatal Seizures are Independently Associated with Outcome in Infants at Risk for Hypoxic-Ischemic Brain Injury. J. Pediatr. 2009, 155, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Srinivasakumar, P.; Zempel, J.; Trivedi, S.; Wallendorf, M.; Rao, R.; Smith, B.; Inder, T.; Mathur, A.M. Treating EEG Seizures in Hypoxic Ischemic Encephalopathy: A Randomized Controlled Trial. Pediatrics 2015, 136, e1302–e1309. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, L.G.; Toet, M.C.; van Huffelen, A.C.; Groenendaal, F.; Laan, W.; Zecic, A.; de Haan, T.; van Straaten, I.L.; Vrancken, S.; van Wezel, G.; et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: Randomized, controlled trial. Pediatrics 2010, 125, e358–e366. [Google Scholar] [CrossRef] [PubMed]
- Peeples, E.S.; Rao, R.; Dizon, M.L.V.; Johnson, Y.R.; Joe, P.; Flibotte, J.; Hossain, T.; Smith, D.; Hamrick, S.; DiGeronimo, R.; et al. Predictive models of neurodevelopmental outcomes after neonatal hypoxic-ischemic encephalopathy. Pediatrics 2021, 147, e2020022962. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.M.; Guillet, R.; Shankaran, S.; Laptook, A.R.; McDonald, S.A.; Ehrenkranz, R.A.; Tyson, J.E.; O’Shea, T.M.; Goldberg, R.N.; Donovan, E.F.; et al. Clinical seizures in neonatal hypoxic-ischemic encephalopathy have no independent impact on neurodevelopmental outcome: Secondary analyses of data from the neonatal research network hypothermia trial. J. Child Neurol. 2011, 26, 322–328. [Google Scholar] [CrossRef]
- Holmes, G.L. The long-term effects of neonatal seizures. Clin. Perinatol. 2009, 36, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Pisani, F.; Orsini, M.; Braibanti, S.; Copioli, C.; Sisti, L.; Turco, E.C. Development of epilepsy in newborns with moderate hypoxic-ischemic encephalopathy and neonatal seizures. Brain Dev. 2009, 31, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jary, S.; Cowan, F.; Thoresen, M. Reduced infancy and childhood epilepsy following hypothermia-treated neonatal encephalopathy. Epilepsia 2017, 58, 1902–1911. [Google Scholar] [CrossRef] [PubMed]
- Nevander, G.; Ingvar, M.; Auer, R.; Siesjo, B.K. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann. Neurol. 1985, 18, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Torolira, D.; Suchomelova, L.; Wasterlain, C.G.; Niquet, J. Widespread neuronal injury in a model of cholinergic status epilepticus in postnatal day 7 rat pups. Epilepsy Res. 2016, 120, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Sankar, R.; Auvin, S.; Mazarati, A.; Shin, D. Inflammation contributes to seizure-induced hippocampal injury in the neonatal rat brain. Acta Neurol. Scand. 2007, 115 (Suppl 4), 16–20. [Google Scholar] [CrossRef]
- Castelhano, A.S.; Ramos, F.O.; Scorza, F.A.; Cysneiros, R.M. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination. J. Neural Transm. 2015, 122, 349–355. [Google Scholar] [CrossRef]
- Barbosa, G.H.L.; Batista, S.P.; Dos Santos, P.B.; Thomaz, C.R.C.; Scorza, F.A.; Cysneiros, R.M. Single neonatal status epilepticus does not impair cognitive function in rats. Epilepsy Behav. 2017, 72, 200–202. [Google Scholar] [CrossRef]
- Gonzalez, H.; Hunter, C.J.; Bennet, L.; Power, G.G.; Gunn, A.J. Cerebral oxygenation during post-asphyxial seizures in near-term fetal sheep. J. Cereb. Blood Flow Metab. 2005, 25, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.K.; Williams, C.E.; Gunn, A.J.; Mallard, C.E.; Gluckman, P.D. Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep. Ann. Neurol. 1992, 32, 677–682. [Google Scholar] [CrossRef]
- Morin, L.; Enderlin, J.; Leger, P.L.; Perrotte, G.; Bonnin, P.; Dupuis, N.; Baud, O.; Charriaut-Marlangue, C.; Auvin, S. Different response to antiepileptic drugs according to the type of epileptic events in a neonatal ischemia-reperfusion model. Neurobiol. Dis. 2017, 99, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Thoresen, M.; Hallstrom, A.; Whitelaw, A.; Puka-Sundvall, M.; Loberg, E.M.; Satas, S.; Ungerstedt, U.; Steen, P.A.; Hagberg, H. Lactate and pyruvate changes in the cerebral gray and white matter during posthypoxic seizures in newborn pigs. Pediatr. Res. 1998, 44, 746–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirrell, E.C.; Armstrong, E.A.; Osman, L.D.; Yager, J.Y. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr. Res. 2001, 50, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, J.Y.; Armstrong, E.A.; Jaharus, C.; Saucier, D.M.; Wirrell, E.C. Preventing hyperthermia decreases brain damage following neonatal hypoxic-ischemic seizures. Brain Res. 2004, 1011, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, J.S.; Gluckman, P.D.; Liu, P.Y.; Azzopardi, D.; Ballard, R.A.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 2007, 119, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Laptook, A.; Tyson, J.; Shankaran, S.; McDonald, S.; Ehrenkranz, R.; Fanaroff, A.; Donovan, E.; Goldberg, R.; O’Shea, T.M.; Higgins, R.D.; et al. Elevated temperature after hypoxic-ischemic encephalopathy: Risk factor for adverse outcomes. Pediatrics 2008, 122, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johne, M.; Römermann, K.; Hampel, P.; Gailus, B.; Theilmann, W.; Ala-Kurikka, T.; Kaila, K.; Löscher, W. Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia 2021, 62, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Barks, J.D.; Liu, Y.Q.; Shangguan, Y.; Silverstein, F.S. Phenobarbital augments hypothermic neuroprotection. Pediatr. Res. 2010, 67, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Hutton, A.; Aronowitz, E.; Moore, H.; Vannucci, S.J. The effects of adding prophylactic phenobarbital to therapeutic hypothermia in the term-equivalent hypoxic-ischemic rat. Pediatr. Res. 2018, 83, 506–513. [Google Scholar] [CrossRef]
- Noguchi, K.K.; Fuhler, N.A.; Wang, S.H.; Capuano, S., III; Brunner, K.R.; Larson, S.; Crosno, K.; Simmons, H.A.; Mejia, A.F.; Martin, L.D.; et al. Brain pathology caused in the neonatal macaque by short and prolonged exposures to anticonvulsant drugs. Neurobiol. Dis. 2021, 149, 105245. [Google Scholar] [CrossRef] [PubMed]
- Endesfelder, S.; Weichelt, U.; Schiller, C.; Winter, K.; von Haefen, C.; Buhrer, C. Caffeine Protects against Anticonvulsant-Induced Impaired Neurogenesis in the Developing Rat Brain. Neurotox. Res. 2018, 34, 173–187. [Google Scholar] [CrossRef]
- Bittigau, P.; Sifringer, M.; Genz, K.; Reith, E.; Pospischil, D.; Govindarajalu, S.; Dzietko, M.; Pesditschek, S.; Mai, I.; Dikranian, K.; et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. USA 2002, 99, 15089–15094. [Google Scholar] [CrossRef] [Green Version]
- Forcelli, P.A.; Janssen, M.J.; Vicini, S.; Gale, K. Neonatal exposure to antiepileptic drugs disrupts striatal synaptic development. Ann. Neurol. 2012, 72, 363–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Kondratyev, A.; Gale, K. Antiepileptic Drug-Induced Neuronal Cell Death in the Immature Brain: Effects of Carbamazepine, Topiramate, and Levetiracetam as Monotherapy versus Polytherapy. J. Pharmacol. Exp. Ther. 2007, 323, 165–173. [Google Scholar] [CrossRef]
- Shetty, J. Neonatal seizures in hypoxic-ischaemic encephalopathy—Risks and benefits of anticonvulsant therapy. Dev. Med. Child Neurol. 2015, 57 (Suppl. 3), 40–43. [Google Scholar] [CrossRef] [PubMed]
- Painter, M.J.; Scher, M.S.; Stein, A.D.; Armatti, S.; Wang, Z.; Gardiner, J.C.; Paneth, N.; Minnigh, B.; Alvin, J. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N. Engl. J. Med. 1999, 341, 485–489. [Google Scholar] [CrossRef]
- Glass, H.C.; Shellhaas, R.A.; Tsuchida, T.N.; Chang, T.; Wusthoff, C.J.; Chu, C.J.; Cilio, M.R.; Bonifacio, S.L.; Massey, S.L.; Abend, N.S.; et al. Seizures in preterm neonates: A multicenter observational cohort study. Pediatr. Neurol. 2017, 72, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, D.J.; Levene, M.I.; Tsakmakis, M. Anticonvulsants for preventing mortality and morbidity in full term newborns with perinatal asphyxia. Cochrane Database Syst. Rev. 2007, CD001240. [Google Scholar] [CrossRef]
- Falsaperla, R.; Scalia, B.; Giugno, A.; Pavone, P.; Motta, M.; Caccamo, M.; Ruggieri, M. Treating the symptom or treating the disease in neonatal seizures: A systematic review of the literature. Ital. J. Pediatr. 2021, 47, 85. [Google Scholar] [CrossRef]
- Meehan, A.L.; Yang, X.; McAdams, B.D.; Yuan, L.; Rothman, S.M. A new mechanism for antiepileptic drug action: Vesicular entry may mediate the effects of levetiracetam. J. Neurophysiol. 2011, 106, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Abend, N.S.; Gutierrez-Colina, A.M.; Monk, H.M.; Dlugos, D.J.; Clancy, R.R. Levetiracetam for treatment of neonatal seizures. J. Child Neurol. 2011, 26, 465–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreimer, A.M.; Littrell, R.A.; Gibson, J.B.; Leung, N.R. Effectiveness of Levetiracetam as a First-Line Anticonvulsant for Neonatal Seizures. J. Pediatr. Pharmacol. Ther. 2019, 24, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Falsaperla, R.; Mauceri, L.; Pavone, P.; Barbagallo, M.; Vitaliti, G.; Ruggieri, M.; Pisani, F.; Corsello, G. Short-Term Neurodevelopmental Outcome in Term Neonates Treated with Phenobarbital versus Levetiracetam: A Single-Center Experience. Behav. Neurol. 2019, 2019, 3683548. [Google Scholar] [CrossRef] [Green Version]
- Gowda, V.K.; Romana, A.; Shivanna, N.H.; Benakappa, N.; Benakappa, A. Levetiracetam versus Phenobarbitone in Neonatal Seizures—A Randomized Controlled Trial. Indian Pediatr. 2019, 56, 643–646. [Google Scholar] [CrossRef]
- Hooper, R.G.; Ramaswamy, V.V.; Wahid, R.M.; Satodia, P.; Bhulani, A. Levetiracetam as the first-line treatment for neonatal seizures: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2021. [Google Scholar] [CrossRef]
- Sharpe, C.; Reiner, G.E.; Davis, S.L.; Nespeca, M.; Gold, J.J.; Rasmussen, M.; Kuperman, R.; Harbert, M.J.; Michelson, D.; Joe, P.; et al. Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial. Pediatrics 2020, 145, e20193182. [Google Scholar] [CrossRef]
- Sharpe, C.; Davis, S.L.; Reiner, G.E.; Lee, L.I.; Gold, J.J.; Nespeca, M.; Wang, S.G.; Joe, P.; Kuperman, R.; Gardner, M.; et al. Assessing the Feasibility of Providing a Real-Time Response to Seizures Detected with Continuous Long-Term Neonatal Electroencephalography Monitoring. J. Clin. Neurophysiol. 2019, 36, 9–13. [Google Scholar] [CrossRef]
- Hall, R.T.; Hall, F.K.; Daily, D.K. High-dose phenobarbital therapy in term newborn infants with severe perinatal asphyxia: A randomized, prospective study with three-year follow-up. J. Pediatr. 1998, 132, 345–348. [Google Scholar] [CrossRef]
- Low, E.; Boylan, G.B.; Mathieson, S.R.; Murray, D.M.; Korotchikova, I.; Stevenson, N.J.; Livingstone, V.; Rennie, J.M. Cooling and seizure burden in term neonates: An observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F267–F272. [Google Scholar] [CrossRef]
- Ghosh, S.; Tran, L.; Shuster, J.J.; Zupanc, M.L. Therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy is associated with short-term reduction of seizures after discharge from the neonatal intensive care unit. Childs Nerv. Syst. 2017, 33, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Harbert, M.J.; Tam, E.W.; Glass, H.C.; Bonifacio, S.L.; Haeusslein, L.A.; Barkovich, A.J.; Jeremy, R.J.; Rogers, E.E.; Glidden, D.V.; Ferriero, D.M. Hypothermia is correlated with seizure absence in perinatal stroke. J. Child Neurol. 2011, 26, 1126–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipley, L.; Mistry, A.; Sharkey, D. Outcomes of neonatal hypoxic-ischaemic encephalopathy in centres with and without active therapeutic hypothermia: A nationwide propensity score-matched analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2021. [Google Scholar] [CrossRef]
- Pressler, R.M.; Boylan, G.B.; Marlow, N.; Blennow, M.; Chiron, C.; Cross, J.H.; de Vries, L.S.; Hallberg, B.; Hellstrom-Westas, L.; Jullien, V.; et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): An open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 2015, 14, 469–477. [Google Scholar] [CrossRef]
- Soul, J.S.; Bergin, A.M.; Stopp, C.; Hayes, B.; Singh, A.; Fortuno, C.R.; O’Reilly, D.; Krishnamoorthy, K.; Jensen, F.E.; Rofeberg, V.; et al. A Pilot Randomized, Controlled, Double-Blind Trial of Bumetanide to Treat Neonatal Seizures. Ann. Neurol. 2021, 89, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Sulzbacher, S.; Farwell, J.R.; Temkin, N.; Lu, A.S.; Hirtz, D.G. Late cognitive effects of early treatment with phenobarbital. Clin. Pediatr. 1999, 38, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, G.; Shankaran, S.; Laptook, A.R.; McDonald, S.A.; Pappas, A.; Hintz, S.R.; Das, A. Association between sedation-analgesia and neurodevelopment outcomes in neonatal hypoxic-ischemic encephalopathy. J. Perinatol. 2018, 38, 1060–1067. [Google Scholar] [CrossRef]
- Young, L.; Berg, M.; Soll, R. Prophylactic barbiturate use for the prevention of morbidity and mortality following perinatal asphyxia. Cochrane Database Syst. Rev. 2016, CD001240. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Bennet, L.; Gunning, M.I.; Gluckman, P.D.; Gunn, T.R. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr. Res. 1999, 46, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Wassink, G.; Gunn, E.R.; Drury, P.P.; Bennet, L.; Gunn, A.J. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 2014, 8, 40. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.Q.; McDouall, A.; Drury, P.P.; Lear, C.A.; Cho, K.H.T.; Bennet, L.; Gunn, A.J.; Davidson, J.O. Treating Seizures after Hypoxic-Ischemic Encephalopathy—Current Controversies and Future Directions. Int. J. Mol. Sci. 2021, 22, 7121. https://doi.org/10.3390/ijms22137121
Zhou KQ, McDouall A, Drury PP, Lear CA, Cho KHT, Bennet L, Gunn AJ, Davidson JO. Treating Seizures after Hypoxic-Ischemic Encephalopathy—Current Controversies and Future Directions. International Journal of Molecular Sciences. 2021; 22(13):7121. https://doi.org/10.3390/ijms22137121
Chicago/Turabian StyleZhou, Kelly Q., Alice McDouall, Paul P. Drury, Christopher A. Lear, Kenta H. T. Cho, Laura Bennet, Alistair J. Gunn, and Joanne O. Davidson. 2021. "Treating Seizures after Hypoxic-Ischemic Encephalopathy—Current Controversies and Future Directions" International Journal of Molecular Sciences 22, no. 13: 7121. https://doi.org/10.3390/ijms22137121
APA StyleZhou, K. Q., McDouall, A., Drury, P. P., Lear, C. A., Cho, K. H. T., Bennet, L., Gunn, A. J., & Davidson, J. O. (2021). Treating Seizures after Hypoxic-Ischemic Encephalopathy—Current Controversies and Future Directions. International Journal of Molecular Sciences, 22(13), 7121. https://doi.org/10.3390/ijms22137121