Disease Differentiation and Monitoring of Anti-TNF Treatment in Rheumatoid Arthritis and Spondyloarthropathies
Abstract
:1. Introduction
2. Results
2.1. Response to Treatment
2.2. Rheumatoid Arthritis (RA) Patients
Monitoring of Treatment Response in RA Patients
2.3. Ankylosing Spondylitis (AS) Patients
Monitoring of Treatment Response in AS Patients
2.4. Psoriatic Arthritis (PsA) Patients
Monitoring of Treatment Response for PsA Patients
2.5. Metabolomic Profile of Patients at Two Time Points: Before Treatment and after 6M Treatments
Comparison of AS, RA and PsA Patients
3. Discussion
3.1. Comparison of Three Rheumatic Diseases (RA vs. AS vs. PsA) before Therapy Induction
3.2. Characterization of RA Group during the Treatment
3.3. Characterization of AS Group during the Treatment
3.4. Characterization of the PsA Group during the Treatment
3.5. Relationship between Identified Metabolites and Inflammation/Disease Activity Parameters (CRP, DAS28, VAS, BASDAI); Bioinformatic Analysis
4. Materials and Methods
4.1. Patients with Rheumatic Diseases
4.2. Metabolic Studies
4.2.1. 1D 1H NMR Measurements (CPMG) of Patient Serum Sample Preparation
4.2.2. NMR Measurements and Preprocessing
4.2.3. Metabolites Identification
4.2.4. Univariate Analysis
4.2.5. Multivariate Data Analysis
4.2.6. Bioinformatic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, E.; Perl, A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr. Opin. Rheumatol. 2019, 31, 307–315. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Li, C.; Chen, B.; Fang, Z.; Leng, Y.-F.; Wang, D.-W.; Chen, F.-Q.; Xu, X.; Sun, Z.-L. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Jt. Bone Spine 2020, 87, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Sanchez, H.; Schoenbrunner, N. Defining response to TNF-inhibitors in rheumatoid arthritis: The negative impact of anti-TNF cycling and the need for a personalized medicine approach to identify primary non-responders. Clin. Rheumatol. 2019, 38, 2967–2976. [Google Scholar] [CrossRef] [Green Version]
- Taurog, J.D.; Chhabra, A.; Colbert, R.A. Ankylosing Spondylitis and Axial Spondyloarthritis. N. Engl. J. Med. 2016, 374, 2563–2574. [Google Scholar] [CrossRef] [Green Version]
- Abdolmohammadi, K.; Pakdel, F.D.; Aghaei, H.; Assadiasl, S.; Fatahi, Y.; Rouzbahani, N.H.; Rezaiemanesh, A.; Soleimani, M.; Tayebi, L.; Nicknam, M.H. Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: A new therapeutic approach. Biomed. Pharmacother. 2019, 109, 1196–1205. [Google Scholar] [CrossRef]
- Rudwaleit, M.; Van Der Heijde, D.; Landewe, R.; Akkoç, N.; Brandt, J.; Chou, C.T.; Dougados, M.; Huang, F.; Gu, J.; Kirazli, Y.; et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 2010, 70, 25–31. [Google Scholar] [CrossRef]
- Van Der Heijde, D.; Ramiro, S.; Landewé, R.; Baraliakos, X.; Bosch, F.V.D.; Sepriano, A.; Regel, A.; Ciurea, A.; Dagfinrud, H.; Dougados, M.; et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 978–991. [Google Scholar] [CrossRef]
- Akgul, O.; Ozgocmen, S. Classification criteria for spondyloarthropathies. World J Orthop. 2011, 2, 107–115. [Google Scholar] [CrossRef]
- Veale, D.J.; Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 2018, 391, 2273–2284. [Google Scholar] [CrossRef]
- Coates, L.C.; FitzGerald, O.; Helliwell, P.S.; Paul, C. Psoriasis, psoriatic arthritis, and rheumatoid arthritis: Is all inflammation the same? Semin. Arthritis Rheum. 2016, 46, 291–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolen, J.S.; Schöls, M.; Braun, J.; Dougados, M.; FitzGerald, O.; Gladman, D.D.; Kavanaugh, A.; Landewé, R.; Mease, P.; Sieper, J.; et al. Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis. 2017, 77, 3–17. [Google Scholar] [CrossRef]
- Ritchlin, C.; Colbert, R.A.; Gladman, D.D. Psoriatic Arthritis. N. Engl. J. Med. 2017, 376, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Sokolik, R.; Gębura, K.; Iwaszko, M.; Swierkot, J.; Korman, L.; Wiland, P.; Bogunia-Kubik, K. Significance of association of HLA-C and HLA-E with psoriatic arthritis. Hum. Immunol. 2014, 75, 1188–1191. [Google Scholar] [CrossRef]
- Smoleńska, Ż.; Zdrojewski, Z. Review papers Metabolomics and its potential in diagnosis, prognosis and treatment of rheumatic diseases. Reumatologia 2015, 3, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Gupta, L.; Ahmed, S.; Jain, A.; Misra, R. Emerging role of metabolomics in rheumatology. Int. J. Rheum. Dis. 2018, 21, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Zabek, A.; Swierkot, J.; Malak, A.; Zawadzka, I.; Deja, S.; Bogunia-Kubik, K.; Mlynarz, P. Application of 1 H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J. Pharm. Biomed. Anal. 2016, 117, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto-Carneiro, M.; Tóth, L.; Behnisch, R.; Urbach, K.; Klika, K.D.; Carvalho, R.; Lorenz, H.-M. Differences in the serum metabolome and lipidome identify potential biomarkers for seronegative rheumatoid arthritis versus psoriatic arthritis. Ann. Rheum. Dis. 2020, 79, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Zhang, H.; Lu, Y.; Huang, H.; Dong, X.; Chen, J.; Dong, J.; Yang, X.; Hang, H.; et al. Coiled-coil networking shapes cell molecular machinery. Mol. Biol. Cell 2012, 23, 3911–3922. [Google Scholar] [CrossRef]
- Xie, W.; Huang, Y.; Xiao, S.; Sun, X.; Fan, Y.; Zhang, Z. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: Systematic review and meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 2019, 78, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, M.S.; Tucci, P.; Candi, E.; Perricone, R.; Melino, G.; Willis, A.E.; Candi, E. Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle 2013, 12, 3025–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuppen, B.V.J.; Fu, J.; Van Wietmarschen, H.A.; Harms, A.C.; Koval, S.; Marijnissen, A.C.A.; Peeters, J.J.W.; Bijlsma, J.W.J.; Tekstra, J.; Van Laar, J.M.; et al. Exploring the Inflammatory Metabolomic Profile to Predict Response to TNF-α Inhibitors in Rheumatoid Arthritis. PLoS ONE 2016, 11, e0163087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priori, R.; Casadei, L.; Valerio, M.; Scrivo, R.; Valesini, G.; Manetti, C. 1H-NMR-Based Metabolomic Study for Identifying Serum Profiles Associated with the Response to Etanercept in Patients with Rheumatoid Arthritis. PLoS ONE 2015, 10, e0138537. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yamasaki, K.; Terui, H.; Omori, R.; Tsuchiyama, K.; Fujimura, T.; Aiba, S. Perifolliculitis capitis abscedens et suffodiens treatment with tumor necrosis factor inhibitors: A case report and review of published cases. J. Dermatol. 2019, 46, 802–807. [Google Scholar] [CrossRef]
- Ou, J.; Xiao, M.; Huang, Y.; Tu, L.; Chen, Z.; Cao, S.; Wei, Q.; Gu, J. Serum Metabolomics Signatures Associated with Ankylosing Spondylitis and TNF Inhibitor Therapy. Front. Immunol. 2021, 12, 630791. [Google Scholar] [CrossRef]
- Bogunia-Kubik, K.; Świerkot, J.; Malak, A.; Wysoczańska, B.; Nowak, B.; Białowąs, K.; Gębura, K.; Korman, L.; Wiland, P. IL-17A, IL-17F and IL-23R Gene Polymorphisms in Polish Patients with Rheumatoid Arthritis. Arch. Immunol. Ther. Exp. 2015, 63, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Harms, A.C.; Van Wijk, E.; Wang, M.; Berger, R.; Koval, S.; Hankemeier, T.; Van Der Greef, J. Role of amino acids in rheumatoid arthritis studied by metabolomics. Int. J. Rheum. Dis. 2017, 22, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Surowiec, I.; Gjesdal, C.G.; Jonsson, G.; Norheim, K.B.; Lundstedt, T.; Trygg, J.; Omdal, R. Metabolomics study of fatigue in patients with rheumatoid arthritis naïve to biological treatment. Rheumatol. Int. 2016, 36, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Setton, L.; Kensicki, E.; Bolognesi, M.; Toth, A.; Nettles, D. Global metabolic profiling of human osteoarthritic synovium. Osteoarthr. Cartil. 2012, 20, 64–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Chengping, W.; Hu, C.; Xie, Z.; Li, H.; Wei, S.; Wang, D.; Wen, C.; Xu, G. Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2016, 127, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, B.; Plewa, S.; Klupczynska, A.; Sikorska, D.; Samborski, W.; Kokot, Z.J. Serum free amino acid levels in rheumatoid arthritis according to therapy and physical disability. Cytokine 2019, 113, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The Human Serum Metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zosel, A.; Egelhoff, E.; Heard, K. Severe Lactic Acidosis After an Iatrogenic Propylene Glycol Overdose. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 219. [Google Scholar] [CrossRef] [Green Version]
- Stumvoll, M.; Perriello, G.; Meyer, C.; Gerich, J. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 1999, 55, 778–792. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Chen, T.; Feng, H.; Zhang, Y.; Li, L.; Zhao, A.; Niu, X.; Liang, F.; Wang, M.; Zhan, J.; et al. Serum Metabolic Signatures of Four Types of Human Arthritis. J. Proteome Res. 2013, 12, 3769–3779. [Google Scholar] [CrossRef]
- Simic, M.; Ajdukovic, N.; Veselinovic, I.; Mitrovic, M.; Djurendic-Brenesel, M. Endogenous ethanol production in patients with Diabetes Mellitus as a medicolegal problem. Forensic Sci. Int. 2012, 216, 97–100. [Google Scholar] [CrossRef]
- Joneja, J.M.; Ayre, E.A.; Paterson, K. Abnormal Gut Fermentation: The ‘Auto-Brewery’ syndrome. J. Can. Diet. Assoc. 1997, 58, 97–100. [Google Scholar]
- Logan, B.K.; Jones, A.W. Endogenous Ethanol ‘Auto-Brewery Syndrome’ as a Drunk-Driving Defence Challenge. Med. Sci. Law 2000, 40, 206–215. [Google Scholar] [CrossRef]
- Gatt, J.; Matthewman, P. Autobrewing: Fact or fantasy? Sci. Justice 2000, 40, 211–215. [Google Scholar] [CrossRef]
- Ostrovsky, Y. Endogenous ethanol—Its metabolic, behavioral and biomedical significance. Alcohol 1986, 3, 239–247. [Google Scholar] [CrossRef]
- Thiele, G.M.; Duryee, M.J.; Anderson, D.R.; Klassen, L.W.; Mohring, S.M.; Young, K.A.; Benissan-Messan, D.; Sayles, H.; Dusad, A.; Hunter, C.D.; et al. Malondialdehyde-acetaldehyde adducts and anti-malondialdehyde-acetaldehyde antibodies in rheumatoid arthritis. Arthritis Rheumatol. 2014, 67, 645–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P.; Lu, C.; Zhang, F.; Sang, P.; Yang, D.; Li, X.; Kong, H.; Yin, P.; Tian, J.; Lu, X.; et al. Integrated GC–MS and LC–MS plasma metabonomics analysis of ankylosing spondylitis. Analyst 2008, 133, 1214–1220. [Google Scholar] [CrossRef]
- Zarling, E.J.; Ruchim, M.A. Protein origin of the volatile fatty acids isobutyrate and isovalerate in human stool. J. Lab. Clin. Med. 1987, 109, 566–570. [Google Scholar] [PubMed]
- Smith, E.; Macfarlane, G. Dissimilatory Amino Acid Metabolism in Human Colonic Bacteria. Anaerobe 1997, 3, 327–337. [Google Scholar] [CrossRef]
- Granado-Serrano, A.B.; Martín-Garí, M.; Sánchez, V.; Solans, M.R.; Berdún, R.; Ludwig, I.A.; Rubió, L.; Vilaprinyó, E.; Portero-Otin, M.; Serrano, J.C.E. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 2019, 9, 1772. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Lemmey, A.B.; Jones, J.G.; Sheikh, F.; Ahmad, Y.A.; Chitale, S.; Maddison, P.J.; O’Brien, T.D. Can Creatine Supplementation Improve Body Composition and Objective Physical Function in Rheumatoid Arthritis Patients? A Randomized Controlled Trial. Arthritis Rheum. 2016, 68, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Possik, E.; Madiraju, S.M.; Prentki, M. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie 2017, 143, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Rosser, E.C.; Piper, C.J.; Matei, D.E.; Blair, P.A.; Rendeiro, A.; Orford, M.; Alber, D.G.; Krausgruber, T.; Catalan, D.; Klein, N.; et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metab. 2020, 31, 837–851.e10. [Google Scholar] [CrossRef] [PubMed]
- Karban, A.S.; Okazaki, T.; Panhuysen, C.I.; Gallegos, T.; Potter, J.J.; Bailey-Wilson, J.E.; Silverberg, M.S.; Duerr, R.H.; Cho, J.H.; Gregersen, P.K.; et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum. Mol. Genet. 2004, 13, 35–45. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, I.-M.; Verdrengh, M.; Brisslert, M.; Lindblad, S.; Bokarewa, M.; Islander, U.; Carlsten, H.; Ohlsson, C.; Nandakumar, K.S.; Holmdahl, R.; et al. Ethanol prevents development of destructive arthritis. Proc. Natl. Acad. Sci. USA 2007, 104, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Bogunia-Kubik, K.; Wysoczańska, B.; Piątek, D.; Iwaszko, M.; Ciechomska, M.; Świerkot, J. Significance of Polymorphism and Expression of miR-146a and NFkB1 Genetic Variants in Patients with Rheumatoid Arthritis. Arch. Immunol. Ther. Exp. 2016, 64, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gębura, K.; Świerkot, J.; Wysoczańska, B.; Korman, L.; Nowak, B.; Wiland, P.; Bogunia-Kubik, K. Polymorphisms within Genes Involved in Regulation of the NF-κB Pathway in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2017, 18, 1432. [Google Scholar] [CrossRef] [PubMed]
- Picart-Armada, S.; Fernández-Albert, F.; Vinaixa, M.; Yanes, O.; Perera-Lluna, A. FELLA: An R package to enrich metabolomics data. BMC Bioinform. 2018, 19, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Z.; Zhou, G.; Chong, J.; Xia, J. Comprehensive Meta-Analysis of COVID-19 Global Metabolomics Datasets. Metabolites 2021, 11, 44. [Google Scholar] [CrossRef]
- Tomasi, G.; Berg, F.V.D.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. 2004, 18, 231–241. [Google Scholar] [CrossRef]
- Savorani, F.; Tomasi, G.; Engelsen, S.B. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 2010, 202, 190–202. [Google Scholar] [CrossRef]
- Cloarec, O.; Dumas, M.-E.; Craig, A.; Barton, R.H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J.; Holmes, E.; et al. Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic1H NMR Data Sets. Anal. Chem. 2005, 77, 1282–1289. [Google Scholar] [CrossRef]
- Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al. BioMagResBank. Nucleic Acids Res. 2007, 36, D402–D408. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Allison, P.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Qi, Q.; Yan, L.; Tian, L. Testing equality of means in partially paired data with incompleteness in single response. Stat. Methods Med Res. 2018, 28, 1508–1522. [Google Scholar] [CrossRef] [PubMed]
Comparison | Model Type | PC/LV | N = | R2X (cum) | R2Y (cum) | Q2 (cum) | CV-ANOVA p Value |
---|---|---|---|---|---|---|---|
BT vs. 3M vs. 6M | PCA | 5 | 62 | 0.627 | − | − | − |
BT vs. 3M | PLS-DA | 3 | 52 | 0.482 | 0.726 | 0.494 | 5.23 × 10−6 |
BT vs. 6M | PLS-DA | 4 | 36 | 0.594 | 0.902 | 0.577 | 9.25 × 10−4 |
3M vs. 6M | PLS-DA | 2 | 36 | 0.384 | 0.563 | 0.235 | 7.21 × 10−2 |
Comparison | Model Type | PC/LV | N = | R2X (cum) | R2Y (cum) | Q2 (cum) | CV-ANOVA p Value |
---|---|---|---|---|---|---|---|
BT vs. 3M vs. 6M | PCA-X | 4 | 76 | 0.564 | - | - | - |
BT vs. 3M | PLS-DA | 3 | 59 | 0.476 | 0.679 | 0.347 | 4.09 × 10−4 |
BT vs. 6M | PLS-DA | 4 | 46 | 0.536 | 0.897 | 0.702 | 5.49 × 10−8 |
3M vs. 6M | PLS-DA | 2 | 47 | 0.343 | 0.588 | −0.0994 | 1.00 |
Comparison | Model Type | PC/LV | N = | R2X(cum) | R2Y(cum) | Q2(cum) | CV-ANOVA p Value |
---|---|---|---|---|---|---|---|
BT vs. 3M vs. 6M | PCA-X | 5 | 50 | 0.643 | − | − | − |
BT vs. 3M | PLS-DA | 2 | 40 | 0.305 | 0.522 | −0.00191 | 1 |
BT vs. 6M | PLS-DA | 2 | 33 | 0.344 | 0.554 | 0.0492 | 0.999 |
3M vs. 6M | PLS-DA | 2 | 27 | 0.249 | 0.604 | −0.21 | 1 |
Comparison | Model Type | PC/LV | N = | R2X(cum) | R2Y(cum) | Q2(cum) | CV-ANOVA p Value |
---|---|---|---|---|---|---|---|
RA vs. AS vs. PsA | PCA | 2 | 78 | 0.417 | - | - | - |
RA vs. AS | PLS-DA | 2 | 55 | 0.335 | 0.638 | 0.431 | 8.48 × 10−6 |
RA vs. PsA | PLS-DA | 2 | 49 | 0.387 | 0.400 | −0.028 | 1.00 |
AS vs. PsA | PLS-DA | 2 | 52 | 0.282 | 0.457 | −0.0513 | 1.00 |
Metabolite | p Value | Central Tendency | ||
---|---|---|---|---|
RA | AS | PsA | ||
Ethanol (a) | 2.70 × 10−3 | 0.253 | 0.306 | 0.276 |
Isoleucine (b) | 2.90 × 10−3 | 0.212 | 0.262 | 0.279 |
Leucine (b) | 5.94 × 10−3 | 0.752 | 0.849 | 0.928 |
Unk_7 (1.444 ppm) (d) (a) | 8.04 × 10−3 | 0.213 | 0.260 | 0.276 |
Valine (a) | 8.15 × 10−3 | 0.852 | 0.921 | 0.982 |
Proline (a) | 9.69 × 10−3 | 0.176 | 0.202 | 0.217 |
Alanine (a) | 1.02 × 10−2 | 2.246 | 2.796 | 3.034 |
Histidine (b) | 1.34 × 10−2 | 0.183 | 0.198 | 0.214 |
Unk 4 (1.074 ppm) (s) (a) | 1.52 × 10−2 | 0.043 | 0.055 | 0.053 |
sn-G3PC (a) | 3.27 × 10−2 | 1.357 | 1.455 | 1.332 |
Unk_8 (2.050 ppm) (m) (a) | 4.14 × 10−2 | 1.224 | 1.399 | 1.316 |
Unk_3 (0.967 ppm) (s) (b) | 4.21 × 10−2 | 0.084 | 0.095 | 0.105 |
Metabolite | p Value | Central Tendency | ||
---|---|---|---|---|
RA | AS | PsA | ||
Ethanol (b) | 1.46 × 10−3 | 0.122 | 0.239 | 0.154 |
Glutamate (b) | 9.12 × 10−3 | 0.802 | 1.054 | 0.844 |
Acetone (a) | 6.31 × 10−3 | 0.084 | 0.064 | 0.063 |
Creatine (b) | 9.67 × 10−3 | 0.968 | 0.728 | 0.552 |
Unk_16 (7.334 ppm) (t) (b) | 1.27 × 10−2 | 0.957 | 0.858 | 0.716 |
Lysine (a) | 3.90 × 10−2 | 1.074 | 0.986 | 0.852 |
sn-Glycero-3-phosphocholine (a) | 4.24 × 10−2 | 1.516 | 1.611 | 1.372 |
Unk_14 (3.246 ppm) (s) (b) | 4.33 × 10−2 | 0.336 | 0.290 | 0.248 |
Acetate (a) * | 6.07 × 10−2 | 0.629 | 0.684 | 0.520 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogunia-Kubik, K.; Wojtowicz, W.; Swierkot, J.; Mielko, K.A.; Qasem, B.; Wielińska, J.; Sokolik, R.; Pruss, Ł.; Młynarz, P. Disease Differentiation and Monitoring of Anti-TNF Treatment in Rheumatoid Arthritis and Spondyloarthropathies. Int. J. Mol. Sci. 2021, 22, 7389. https://doi.org/10.3390/ijms22147389
Bogunia-Kubik K, Wojtowicz W, Swierkot J, Mielko KA, Qasem B, Wielińska J, Sokolik R, Pruss Ł, Młynarz P. Disease Differentiation and Monitoring of Anti-TNF Treatment in Rheumatoid Arthritis and Spondyloarthropathies. International Journal of Molecular Sciences. 2021; 22(14):7389. https://doi.org/10.3390/ijms22147389
Chicago/Turabian StyleBogunia-Kubik, Katarzyna, Wojciech Wojtowicz, Jerzy Swierkot, Karolina Anna Mielko, Badr Qasem, Joanna Wielińska, Renata Sokolik, Łukasz Pruss, and Piotr Młynarz. 2021. "Disease Differentiation and Monitoring of Anti-TNF Treatment in Rheumatoid Arthritis and Spondyloarthropathies" International Journal of Molecular Sciences 22, no. 14: 7389. https://doi.org/10.3390/ijms22147389
APA StyleBogunia-Kubik, K., Wojtowicz, W., Swierkot, J., Mielko, K. A., Qasem, B., Wielińska, J., Sokolik, R., Pruss, Ł., & Młynarz, P. (2021). Disease Differentiation and Monitoring of Anti-TNF Treatment in Rheumatoid Arthritis and Spondyloarthropathies. International Journal of Molecular Sciences, 22(14), 7389. https://doi.org/10.3390/ijms22147389