A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa
Abstract
:1. Introduction
2. Materials and Methods
3. Nutritional Potential of Genus Mimosa
4. Ethno-Traditional Uses of Genus Mimosa
5. Pharmacological Activities of Genus Mimosa
5.1. Antimicrobial Activity
5.2. Antioxidant Activity
5.3. Anticancer Activity
5.4. Antidiabetic Activity
5.5. Wound Healing
5.6. Hypolipidemic Activity
5.7. Anti-Inflammatory and Hepatoprotective Activity
5.8. Antinociceptive Activity
5.9. Antiepileptic Activity
5.10. Neuropharmacological Activities
5.11. Antiallergic and Antihyperurisemic Activity
5.12. Larvicidal, Antiparasitic, and Molluscicidal Activity
5.13. Antispasmolytic, Antivenom, and Antiviral Activity
6. Toxicological Studies of the Genus Mimosa Concerning Hemolysis, Antimutagenic, Genotoxic, and Teratogenic Effects
Activities | Plant | Plant Part | Extract/Fraction | Assay | Model | Results/Outcome/Response | References |
---|---|---|---|---|---|---|---|
Toxicological studies | M. tenuiflora | Leaves, twigs, barks, roots | EtOH extract and fractions (Hex, DCM, EtOAc and HyOH | (1) Non-specific toxicity (2) Cytotoxicity to Vero cells by MTT assay | (1) Artemia salina L. (2) Vero cells of African green monkey kidney | Only the HyOH fraction killed 50% of the nauplii (LC50 = 793.70 μg/mL). Fractions of EtOH extract were not toxic to A. salina L. (LC50 ˃ 1000.00 μg/mL). Fractions of EtOH extract were not toxic to Vero cells (CC50 = 512.6 μg/mL) | [149] |
Stem bark | BuOH, EtOAc MeOH | In vitro | Erythrocytes | Buthanol 250 μg/mL = 74%; EtOAc 250 g/mL = 48%; MeOH 500 μg/mL = 68% | [135] | ||
EtOH | Hemolytic assay | Human erythrocytes type A, B, and O | At 1000 μg concentration, only hemolysis of erythrocyte A (3%) was observed, while at 2000 μg concentration, extract showed hemolysis on type A = 23.1%; type B = 5.17%; type O = 1.08% | [136] | |||
Bark | EtOH | Hemolytic assay | Human RBCs | % hemolysis at 1000 μg/mL = 90%, 500 μg/mL = 35%, 250 μg/mL = 17% | [137] | ||
M. pudica | Roots | EtOH | Acute toxicity | Swiss albino mice | No mortality was observed at extract dose up to 5000 mg/kg | [35] | |
Leaves | Aq. | Histoarchitecture parameters | Mature male Wistar rats/cadmium-induced toxicity | Extract doses of 200 mg/kg were found effective | [178] | ||
EtOAc | Acute toxicity | Adult Wistar rats | No mortality or signs of toxicity were observed at the dose of 2000 mg/kg | [167] | |||
EtOH | Acute toxicity | Wistar albino rats | No mortality as observed up to the dose level of 2000 mg/kg bw | [58] | |||
HyOH | In vivo toxicity/Kabir chicks | Very low toxicity observed at high dose of 5120 mg/kg | [22] | ||||
Sub-chronic toxicity observed at doses of 80, 160, 320, and 640 mg/kg | |||||||
MeOH | Brine shrimp lethality bioassay | Extract 1–500 μg/mL; LC50 = 282.3495 μg/mL), standard vincristine sulphate; LC50 = 0.45 μg/mL | [151] | ||||
M. pigra | Roots | EtOH | Acute toxicity | Adult Wistar rats | No mortality observed | [179] | |
Hematological and biochemical parameters | Adult Wistar rats | Doses greater than 500 mg/kg posed toxicological risks | |||||
M. caesalpi-niifolia | Leaves | EtOH | Body weight and serum biochemical parameters (ALP), AST, urea, and creatinine | In vivo: Male adult Wistar rats | Toxicological evaluation induced a body weight loss, which was observed at the highest tested dose of 750 mg/kg Extract did not show androgenic activity at any doses (250, 500, 750 mg/kg) | [180] | |
Brine shrimp and MTT assay | In vitro: Artemia salina and murine macrophages | LC50 = 1765 mg.L−1 (Artemia salina) LC50 = 706.5 mg.L−1 (murine macrophages) | [180] | ||||
M. albida | Roots | Aq. | Acute toxicity | Male ICR mice | No mortality observed at different extract doses (3.2, 12.5, 25.50, 100, 200, 300, and 400 mg/kg) | [106] | |
M. rubicau- lis | Stems | MeOH | Acute toxicity | Swiss albino mice | Doses (range of 500–4000 mg/kg) did not lead to acute toxicity | [122] | |
M. verruco- sa | Bark | EtOH | Hemolytic assay | Human RBCs | % hemolysis at 1000 μg/mL = 100%, 500 μg/mL = 72%, 250 μg/mL = 43% | [137] | |
M. pteridi- folia | Bark | EtOH | Hemolytic assay | Human RBCs | No activity observed | [137] | |
Antimutag-enic, genotoxic, and teratogeniceffects | M. tenuiflora | Stems, bark | crude EtOH extract | Ames mutagenic/antimutagenic test | S. typhimurium TA 97, TA 98, TA 100, TA 102 strains | Extracts at 50 and 100 μg.mL−1 did not induce mutations in any strain Extracts at 50 and 100 μg/mL showed antimutagenic effects in all strains (TA97, TA100, and TA102) | [181] |
Micronucleus test | In vivo: Erythrocytes of albino Swiss mice | Extracts at 100 and 200 μg/mL did not show significant results | |||||
Seeds | 10% of seeds | In vivo | Pregnant Wistar rats (Rattus novergicus) | 90 bone malformations were observed in 40 of the 101 rats, including scoliosis, lordosis, and a shorter head | [182] | ||
Green forage | In vivo | Fed green forage of M. tenuiflora throughout gestation period | Pregnant goats and lambs | 3 of 4 kids had abnormalities including cleft lip, unilateral corneal opacity, ocular bilateral dermoids, buphthalmos with a cloudy brownish appearance in the anterior chamber due to an iridal cyst, and segmental stenosis of the colon | [184] | ||
Green forage | In vitro | Pregnant goats | Embryonic deaths were observed | [185] | |||
Leaves and seeds | Compounds extracted from M. tenuiflora | In vitro: Pregnant rats | Soft tissue cleft palate and skeletal malformations were observed in pups | [186] | |||
M. caesalpiniifolia | Leaves | EtOH and EtOAc fraction | Comet, challenge assay, and micronucleus Test | In vivo: Wister rats | Plant extract significantly prevented genotoxicity in liver and peripheral blood cells | [32] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BuOH | Butanol |
Hex | Hexane |
ACE | Acetone |
MeOH | Methanol |
EtOAc | Ethyl acetate |
EtOH | Ethanol |
DEE | Diethyl ether |
AA | Acetic acid |
DM | Dry matter |
M. lysodeikticus | Micrococcus lysodeikticus |
E. aerogenes | Enterobacter aerogenes |
P. aeruginosa | Pseudomonas aeruginosa |
P. Mirabilis | Proteus mirabilis |
C. albicans | Candida albicans |
S. epidermidis | Staphylococcus epidermidis |
M. luteus | Micrococcus luteus |
S. typhi | Salmonella typhi |
P. variotii | Paecilomyces variotii |
P. valgaris | Proteus vulgaris |
A. niger | Aspergillus niger |
T. mentagrophytes | Trichophyton mentagrophytes |
M. gypseum | Microsporum gypseum |
B. subtilis | Bacillus subtilis |
F. moniliforme | Fusarium verticillioide |
C. diphtheria | Corynebacterium diphtheria |
M. phaseolina | Macrophomina phaseolina |
F. solani | Fusarium solani |
S. boydii | Shigella boydii |
ZOI | zone of inhibition |
ABTS | 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) |
IC50 | inhibitory concentration |
NO | Nitric oxide |
RBC | Red blood cell count |
WBC | White blood cell count |
PCV | Packed-cell volume |
ICR mice | Institute of Cancer Research |
EPC | EtOH-precipitated compounds |
VLU | venous leg ulceration |
TNFα | Tumor Necrosis factor alpha |
VCAM-1 | vascular cell adhesion molecule 1 |
TNBS | Trinitrobenzenesulfonic acid |
HyOH | Hydroalcohol |
Aq. | Aqueous |
PE | Pet. Ether |
CF | Chloroform |
Bz | Benzene |
DCM | Dichloromethane |
HyMeO | Hydromethanol |
HyEtOH | Hydroethanol |
E. coli | Escherichia coli |
S. aureus | Staphylococcus aureus |
K. pneumonia | Klebsiella pneumonia |
S. sonnei | Shigella sonnei |
S. pyogenes | Streptococcus pyogenes |
C. neoformans | Cryptococcus neoformans |
A. calcoaceticus | Acinetobacter calcoaceticus |
L. bacillus | Lacto bacillus |
F. oxysporum | Fusarium oxysporum |
B. cereus | Bacillus cereus |
A. flavus | Aspergillus flavus |
A. terreus | Aspergillus terreus |
E. floccosum | Epidermophyton floccosum |
T. rubrum | Trichophyton rubrum |
P. vulgaris | Proteus vulgaris |
R. bataticola | Rhizoctonia bataticola |
M. canis | Microsporum canis |
P. boydii | Pseudallescheria boydii |
T. schoenleinii | Trichophyton schoenleinii |
R. solani | Rhizoctonia solani |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EC50 | effective concentration |
OH | Hydroxide |
TE | Trolox equivalent |
SRB assay | sulforhodamine B |
XTT assay | Cell Proliferation Kit II |
CCl4 | Carbon tetrachloride |
CAM | Chorioallantoic membrane |
L-NAME | N-Nitro-l-arginine methyl ester hydrochloride |
COX-2 | cyclooxygenase-2 |
PAH | Hypoxic pulmonary hypertension |
References
- Ahuchaogu, A.A.; Chukwu, O.J.; Echeme, J.O. Secondary metabolites from Mimosa Pudica: Isolation, purification and nmr characterization. J. Appl. Chem. 2017, 10, 15–20. [Google Scholar] [CrossRef]
- Joyamma, V.; Rao, S.; Hrishikeshavan, H.; Aroor, A.; Kulkarni, D. Biochemical mechanisms and effects of Mimosa pudica (Linn) on experimental urolithiasis in rats. Indian J. Exp. Biol. 1990, 28, 237–240. [Google Scholar]
- Gupta, R.; Vairale, M.; Deshmukh, R.; Chaudhary, P.; Wate, S. Ethnomedicinal uses of some plants used by Gond tribe of Bhandara district, Maharashtra. Ind. J. Tradit. Know. 2010, 9, 713–717. [Google Scholar]
- Hussain, N.; Modan, M.H.; Shabbir, S.G.; Zaidi, S. Antimicrobial principles in Mimosa hamata. J. Nat. Prod. 1979, 42, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Mahmood, A.; Qureshi, R.A. Antimicrobial activities of three species of family mimosaceae. Pak. J. Pharm. Sci. 2012, 25, 203–206. [Google Scholar] [PubMed]
- Muddiman, S.; Hodkinson, I.; Hollis, D. Legume-feeding psyllids of the genus Heteropsylla (Homoptera: Psylloidea). Bull. Entomol. Res 1992, 82, 73–117. [Google Scholar] [CrossRef] [Green Version]
- Amalraj, T.; Ignacimuthu, S. Hyperglycemic effect of leaves of Mimosa pudica Linn. Fitoterapia 2002, 73, 351–352. [Google Scholar] [CrossRef]
- Silva, A.S.; Araújo, S.B.; Souza, D.C.; Silva, F.A. Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI), Brazil. An. Acad. Bras. Ciencs 2012, 84, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Camargo-Ricalde, S.L. Descripción, distribución, anatomía, composición química y usos de Mimosa tenuiflora (Fabaceae-Mimosoideae) en México. Rev. Biol. Trop. 2000, 48, 939–954. [Google Scholar]
- Galinato, M.I.; Moody, K.; Piggin, C.M. Upland rice weeds of South and Southeast Asia. IRRI Los Baños 1999, 155, 161. [Google Scholar]
- Lemes, P.G.; Castro, A.; Zanuncio, J. Oncideres ocularis (Coleoptera: Cerambycidae) Girdling Mimosa bimucronata (Fabaceae) in Brazil. Fla. Entomol. 2014, 97, 1240–1243. [Google Scholar] [CrossRef]
- Jiang, Y.; Massiot, G.; Lavaud, C.; Teulon, J.-M.; Guéchot, C.; Haag-Berrurier, M.; Anton, R. Triterpenoid glycosides from the bark of Mimosa tenuiflora. Phytochemistry 1991, 30, 2357–2360. [Google Scholar] [CrossRef]
- Ueda, M.; Takada, N.; Yamamura, S. Molecular approach to the nyctinastic movement of the plant controlled by a biological clock. Int. J. Mol. Sci. 2001, 2, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Lorenzi, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. In Nova Odessa, 2nd ed.; Editora Plantarum: Sao Paulo, Brazil, 1998; p. 10. [Google Scholar]
- Fernandes, G.; Ferrari, R. Fruits of Mimosa foliolosa (Fabales: Fabaceae) as Sleeping Shelter for Megachile (Pseudocentron) botucatuna (Hymenoptera: Megachilidae). Neotrop. Entomol. 2012, 41, 518–520. [Google Scholar] [CrossRef]
- Baggio, A.J.; Carpanezzi, A.A. Exploração seletiva do sub-bosque: Uma alternativa para aumentar a rentabilidade dos bracatingais. In Embrapa Florestas-Circular Técnica (Infoteca-e); Embrapa—Portuguese: Empresa Brasileira de Pesquisa Agropecuária, Brasília, Brazil, 1998. [Google Scholar]
- Nworgu, F.; Egbunike, G. Nutritional potential of Centrosema pubescens, Mimosa invisa and Pueraria phaseoloides Leaf Meals on growth performance responses of broiler chickens. Am. J. Experim. Agric. 2013, 3, 506. [Google Scholar] [CrossRef] [Green Version]
- Erkan, G.; Şengül, K.; Kaya, S. Dyeing of white and indigo dyed cotton fabrics with Mimosa tenuiflora extract. J. Saudi Chem.Soc. 2014, 18, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.M.S.; dos Santos, F.P.; Evangelista-Rodrigues, A.; da Silva, E.M.S.; da Silva, G.S.; de Novais, J.S.; dos Santos, F.d.A.R.; Camara, C.A. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Compost. Anal. 2013, 29, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Apolinário, V.; Dubeux, J., Jr.; Lira, M.; Luiz, R.; Mello, A.; Santos, M.V.F.; Sampaio, E.V.S.B.; Muir, J. Tree legumes provide marketable wood and add nitrogen in warm-climate silvopasture systems. Crop. Econ. Prod. Mang. 2015, 107, 1915–1920. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crop. Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Nghonjuyi, N.W.; Tiambo, C.K.; Taïwe, G.S.; Toukala, J.P.; Lisita, F.; Juliano, R.S.; Kimbi, H.K. Acute and sub-chronic toxicity studies of three plants used in Cameroonian ethnoveterinary medicine: Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) leaves, Carica papaya L. (Caricaceae) seeds or leaves, and Mimosa pudica L. (Fabaceae) leaves in Kabir chicks. J. Ethnopharmcol. 2016, 178, 40–49. [Google Scholar] [CrossRef]
- Rosado-Vallado, M.; Brito-Loeza, W.; Mena-Rejon, G.; Quintero-Marmol, E.; Flores-Guido, J. Antimicrobial activity of Fabaceae species used in Yucatan traditional medicine. Fitoterapia 2000, 71, 570–573. [Google Scholar] [CrossRef]
- Rivera-Arce, E.; Chávez-Soto, M.A.; Herrera-Arellano, A.; Arzate, S.; Agüero, J.; Feria-Romero, I.A.; Cruz-Guzmán, A.; Lozoya, X. Therapeutic effectiveness of a Mimosa tenuiflora cortex extract in venous leg ulceration treatment. J. Ethnopharmacol. 2007, 109, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.H.M.; Debnath, A. Ethno-botanical study at the village Pondit Para under Palash Upazila of Narsingdi District, Bangladesh. Int. J. Adv. Res. 2015, 3, 1037–1052. [Google Scholar]
- Grieve, M. A Modem Herbal; Jonathan Cope: London, UK, 1931. [Google Scholar]
- Oliveira, F.F.M.; Barbosa, K.M.K.M.; de Oliveira, G.F.; Dantas, I.M.; Camacho, R.G.V. Micropropagação de Mimosa caesalpiniaefolia Benth. a partir de segmentos nodais e ápices caulinares. Rev. Caatinga 2007, 20, 152–159. [Google Scholar]
- Nana, F.; Sandjo, L.P.; Keumedjio, F.; Kuete, V.; Ngadjui, B.T. A new fatty aldol ester from the aerial part of Mimosa invisa (Mimosaceae). Nat. Prod. Res. 2012, 26, 1831–1836. [Google Scholar] [CrossRef]
- Saxena, R.; Sharma, R.; Chandra Nandy, B.; Hardainiyan, S. The study of phenolic compound and antioxidant potential of crude extract and fractions of Mimosa Himata. International Res. J. Pharm. 2017, 8, 83–86. [Google Scholar] [CrossRef]
- Almalki, M. In-Vitro Antioxidant properties of the leaf extract of Mimosa pudica Linn. Indian J. Sci. Tech. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Parmar, F.; Kushawaha, N.; Highland, H.; George, L.-B. In vitro antioxidant and anticancer activity of Mimosa pudica linn extract and L-mimosine on lymphoma daudi cellsl. Int. J. Pharm. Pharm. Sci. 2015, 7, 100–104. [Google Scholar]
- Silva, M.J.D.; Vilegas, W.; Silva, M.A.d.; de Moura, C.F.G.; Ribeiro, F.A.P.; da Silva, V.H.P.; Ribeiro, D.A. Mimosa (Mimosa caesalpiniifolia) prevents oxidative DNA damage induced by cadmium exposure in Wistar rats. Toxicol. Mech. Methods 2014, 24, 567–574. [Google Scholar] [CrossRef]
- Chandarana, M.; Singh, R.; Jasrai, Y. Determination of the phenolic and flavonoid contents in Mimosa hamata Willd., as well as their radical scavenging activity. Int. J. Pharmacog. Phytochem. 2013, 28, 1121–1126. [Google Scholar]
- Borneo, R.; León, A.; Aguirre, A.; Ribotta, P.; Cantero, J. Antioxidant capacity of medicinal plants from the Province of Cordoba (Argentina) and their in vitro testing in model food system. Food Chem. 2009, 112, 664–670. [Google Scholar] [CrossRef]
- Prathima, C.; Shashikumara; Thippeswamy, T.; Jayanthi, M.K. Evaluation of anticonvulsant activity of Mimosa pudica root linn in swiss albino mice. Int. J. Pharm. Pharm. Sci. 2016, 8, 49–52. [Google Scholar] [CrossRef]
- Ganguly, M.; Devi, N.; Mahanta, R.; Borthakur, K.M. Effect of Mimosa pudica root extract on vaginal estrous and serum hormones for screening of antifetility activity in albino mice. Contracept 2008, 76, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; You, X.-Y.; Fu, K.-L.; Yin, W.-L. Effects of extract from Mangifera indica Leaf on monosodium urate crystal-induced gouty arthritis in rats. Evid. Based Complement. Alternat. Med. 2012, 967573. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.K.; Bairwa, K.; Gangwal, R.; Jaiswal, G.; Jachak, S.M.; Sangamwar, A.T.; Bhutani, K.K. 2′-Hydroxy flavanone derivatives as an inhibitors of pro-inflammatory mediators: Experimental and molecular docking studies. Bioorg. Med. Chem. Lett. 2015, 25, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Borsato, D.M.; Prudente, A.S.; Döll-Boscardin, P.M.; Borsato, A.V.; Luz, C.F.; Maia, B.H.; Cabrini, D.A.; Otuki, M.F.; Miguel, M.D.; Farago, P.V. Topical anti-inflammatory activity of a monofloral honey of Mimosa scabrella provided by Melipona marginata during winter in Southern Brazil. J. Med. Food 2014, 17, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, O.M.A.; Lima, S.M.C.J.D.; Torres-Rêgo, M.; Fernandes, M.J.; Silva-Júnior, D.A.A.; Tambourgi, V.D.; Fernandes-Pedrosa, F.M.D. Neutralizing Effects of Mimosa tenuiflora Extracts against Inflammation Caused by Tityus serrulatus Scorpion Venom. Biomed. Res. Int. 2014, 2014, 378235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, M.P.; Andrade, C.M.F.; Silva, K.O.; de Souza, E.P.; Yatsuda, R.; Marques, L.M.; David, J.P.; David, J.M.; Napimoga, M.H.; Clemente-Napimoga, J.T. Antinoceptive and anti-inflammatory activities of the ethanolic extract, fractions and flavones isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). PLoS ONE 2016, 11, e0150839. [Google Scholar] [CrossRef] [Green Version]
- Vikram, P.K.; Malvi, R.; Jain, D. Evaluation of analgesic and anti-inflammatory potential of Mimosa pudica Linn. Int. J. Curr. Pharm. Res. 2015, 4, 47–50. [Google Scholar]
- Elango, V.; Oliver, C.; Raghu, P.S. Antiulcer activity of the leaf ethanolic extract of Mimosa pudica in rats. Hygeia J. Drugs Med. 2012, 4, 34–40. [Google Scholar]
- Le Tran, Q.; Tezuka, Y.; Ueda, J.-y.; Nhan, N.; Maruyama, Y.; Begum, K.; Kim, H.; Wataya, Y.; Kim Tran, Q.; Kadota, S. In Vitro Antiplasmodial Activity of Antimalarial Medicinal Plants Used in Vietnamese Traditional Medicine. J. Ethnopharmacol. 2003, 86, 249–252. [Google Scholar] [CrossRef]
- Marimuthu, S.; Rahuman, A.; Rajakumar, G.; Thirunavukkarasu, S.; Kirthi, V.; Chidambaram, J.; Bagavan, A.; Abduz Zahir, A.; Elango, G.; Kamaraj, D.C. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol. Res. 2010, 108, 1541–1549. [Google Scholar] [CrossRef]
- Tunna, T.; Zaidul, I.; Ahmed, Q.; Ghafoor, K.; Al-Juhaimi, F.; Uddin, M.; Hasan, M.; Ferdous, S. Analyses and profiling of extract and fractions of neglected weed Mimosa pudica Linn. traditionally used in Southeast Asia to treat diabetes. S. Afr. J. Bot. 2015, 99, 144–152. [Google Scholar] [CrossRef]
- Sutar, N.; Sutar, U.N.; Behera, B.C. Antidiabetic activity of the leaves of Mimosa pudica Linn. in albino rats. J. Herb. Med. Toxicol. 2009, 3, 123–126. [Google Scholar]
- Jose, J.; Dhanya, A.; Haridas, K.R.; Kumar, T.S.; Jayaraman, S.; Variyar, E.J.; Sudhakaran, S. Structural characterization of a novel derivative of myricetin from Mimosa pudica as an anti-proliferative agent for the treatment of cancer. Biomed. Pharm. 2016, 84, 1067–1077. [Google Scholar] [CrossRef]
- Monção, B.N.; Araújo, Q.B.; Silva, D.J.; Lima, J.D.; Ferreira, M.P.; Airoldi, P.F.; Pessoa, C.; Citó, M.A. Assessing Chemical Constituents of Mimosa caesalpiniifolia Stem Bark: Possible Bioactive Components Accountable for the Cytotoxic Effect of M. caesalpiniifolia on Human Tumour Cell Lines. Molecules 2015, 20, 4204–4224. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.; Contreras, C.; Tellez-Alcantara, P. Mimosa pudica may possess antidepressant actions in the rat. Phytomedicine 1999, 6, 319–323. [Google Scholar] [CrossRef]
- Saifuddin Khalid, M.; Shah, J.; Suresh, D.K.; Singh, R.; Narasimha Reddy, I.V.; Kumar, S. Evaluation of anti-diarrhoeal potential of ethanolic extract of Mimosa pudica leaves. Int. J. Green Pharm. 2011, 5, 75. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Bhaskar, V.; Jayakar, B.; Sangameswaran, B. Antibacterial activity of Mimosa pudica, Aegle marmelos and Sida cordifolia. Pharm. Mag. 2006, 2, 198–199. [Google Scholar]
- Saraswat, R.; Pokharkar, R. GC-MS studies of Mimosa pudica. Int. J. Pharm. Tech. Res. 2012, 4, 93–98. [Google Scholar]
- Paul, J.; Khan, S.; Mohammed, S.; Asdaq, S. Wound healing evaluation of chloroform and methanolic extracts of mimosa pudica roots in rats. Indian J. Phys. Anthropol. Hum. Gen. 2010, 1, 223–227. [Google Scholar]
- De Souza, R.O.S.; de Albuquerque, U.P.; Monteiro, J.M.; de Amorim, E.L.C. Jurema-Preta (Mimosa tenuiflora [Willd.] Poir.): A Review of its Traditional Use, Phytochemistry and Pharmacology. Braz. Arch. Biol. Technol. 2008, 51, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Gohar, U.F.; Iqbal, I.; Shah, Z.; Mukhtar, H.; Zia-Ul-Haq, M. COVID-19: Recent Developments in Therapeutic Approaches. In Alternative Medicine Interventions for COVID-19; Zia-Ul-Haq, M., Bin-Jumah, M.N., Alothamn, S.I., Henidi, H.A., Eds.; Springer: Cham, Switzerland, 2021; pp. 249–274. [Google Scholar]
- Kumaresan, R.; Veerakumar, S.; Elango, V. A study on hepatoprotective activity of Mimosa pudica in albino rats. Int. J. Pharmacog. Phytochem. Res. 2015, 7, 337–339. [Google Scholar]
- Purkayastha, A.; Chakravarty, P.; Dewan, B. Hypolipidemic effect of ethanolic extract of Mimosa Pudica leaves on dyslipidemia following hepatic injury induced by Carbon tetrachloride in albino rats. Int. J. Pharm. Sci. Res. 2016, 7, 3284–3290. [Google Scholar] [CrossRef]
- Lin, L.-C.; Chiou, C.-T.; Cheng, J.-J. 5-Deoxyflavones with cytotoxic activity from Mimosa diplotricha. J. Nat. Prod. 2011, 74, 2001–2004. [Google Scholar] [CrossRef]
- Jain, S.; Jain, R.; Vlietinck, A. In vivo and in vitro antimicrobial efficacy of Mimosa hamata. Indian J. Biotech. 2004, 3, 271–273. [Google Scholar]
- Mehta, B.K.; Savita Sharma, K.; Dubey, A. 4-Ethylgallic acid from two Mimosa species. Phytochemistry 1988, 27, 3004–3005. [Google Scholar] [CrossRef]
- Durgadevi, G.; Karthika, N. Screening of phytochemicals and pharmacological studies on Mimosa pudica L. Asian J. Innov. Res. 2018, 3, 19–28. [Google Scholar]
- Zia-Ul-Haq, M. Past, present and future of Carotenoids Research. In Carotenoids: Structure and Function in the Human Body; Zia-Ul-Haq, M., Dewanjee, S., Riaz, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 827–854. [Google Scholar]
- Mathew, J.J.; Vazhacharickal, P.J.; Sajeshkumar, N.K.; Joy, J.K. Phytochemical analysis and in-vitro hemostatic activity of Mimosa Pudica, Hemigraphis colorata and chromolaena Odorata leaf extracts. CIBTech J. Pharma. Scie. 2016, 5, 16–34. [Google Scholar]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Mapala, K.; Pattabi, M. Mimosa pudica flower extract mediated green synthesis of gold nanoparticles. Nano. World. J. 2017, 3, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, G.; Hussain, M.A.; Amin, M.; Hussain, S.Z.; Hussain, I.; Bukhari, S.N.A.; Hassan, M.N. Glucuronoxylan-mediated silver nanoparticles: Green synthesis, antimicrobial and wound healing applications. R. Soc. Chem. 2017, 7, 42900–42908. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, R.; Samadder, S. Jyotsana, Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation. J. Clean. Prod. 2017, 168, 1201–1210. [Google Scholar] [CrossRef]
- Raziya, S.; Durga, B.; Ganesh, R.S.; Govind, B.; Annapurna, N. Synthesis and characterization of CDS nanoparticles from Mimosa Pudica plant extract. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 2196–2203. [Google Scholar]
- Henam, P.S.; Heikham, F.D.; Henam, S.D. sustainable synthesis of ultrasmall biogenic platinum nanoparticles for selective aqueous phase conversion of glucose and effective hydrogen peroxide decomposition. Ind. Eng. Chem. Res. 2018, 57, 5190–5194. [Google Scholar] [CrossRef]
- Fatimah, I.; Pradita, R.Y.; Nurfalinda, A. Plant extract mediated of ZnO Nanoparticles by using ethanol extract of Mimosa Pudica leaves and coffee powder. Proedia Eng. 2016, 148, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Rajan, J.P.; Singh, K.B.; Kumar, S.; Mishra, R.K. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pac. J. Trop. Med. 2014, 7, S410–S414. [Google Scholar] [CrossRef] [Green Version]
- Yongpisanphop, J.; Babel, S.; Kruatrachue, M.; Pokethitiyook, P. Phytoremediation potential of plants growing on the Pb-contaminated soil at Song Tho Pb mine, Thailand. Soil Sed. Contamin. Int. J. 2017, 26, 426–437. [Google Scholar] [CrossRef]
- De Albuquerque, U.P. The use of medicinal plants by the cultural descendants of African people in Brazil. Acta Farm. Bonaer. 2001, 20, 139–144. [Google Scholar]
- Lewis, G.P. Legumes of Bahia; Royal Botanic Gardens: London, UK, 1987. [Google Scholar]
- Gaujac, A.; Martinez, S.T.; Gomes, A.A.; de Andrade, S.J.; Pinto, A.d.C.; David, J.M.; Navickiene, S.; de Andrade, J.B. Application of analytical methods for the structural characterization and purity assessment of N,N-dimethyltryptamine, a potent psychedelic agent isolated from Mimosa tenuiflora inner barks. Microchem J. 2013, 109, 78–83. [Google Scholar] [CrossRef]
- Albuquerque, U.; Medeiros, P.; Luiz S de Almeida, A.; Monteiro, J.; Lins Neto, E.; Gomes de Melo, J.; Patrícia dos Santos, J. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 2008, 114, 325–354. [Google Scholar] [CrossRef]
- Dourado, D.A.O.; Conceição, A.d.S.; Santos-Silva, J. O gênero Mimosa L. (Leguminosae: Mimosoideae) na APA Serra Branca/Raso da Catarina, Bahia, Brasil. Biota. Neotropica. 2013, 13, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.D.; Borges, W.; Mirella de Morais Andrade, M.; Valadares de Sá Barretto Sampaio, E.; de Rosália, C.; Passos, S.; Xavier, G.; Mello Mulato, B.; Lyra, M.d.C. Characteristics of nodule bacteria from Mimosa spp grown in soils of the Brazilian semiarid region. Afr. J. Microbiol. Res. 2014, 8, 788–796. [Google Scholar] [CrossRef]
- Silva, C.G.; Marinho, M.G.V.; Lucena, M.F.A.; Costa, J.G.M. Levantamento etnobotânico de plantas medicinais em área de Caatinga na comunidade do Sítio Nazaré, município de Milagres, Ceará, Brasil. Rev. Bras. Plantas Med. 2015, 17, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Agra, M.d.F.; Silva, K.N.; Basílio, I.J.L.D.; Freitas, P.F.d.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras. De Farmacogn. 2008, 18, 472–508. [Google Scholar] [CrossRef]
- Muhammad, M.; Abdullahi, K.; Shehu, K.; Shinkafi, S. Antifungal activity of Mimosa pudica leaves extracts against fungal isolates from razor bumps in Sokoto Metropolis, Nigeria. Ann. Biol. Sci. 2015, 3, 16–19. [Google Scholar]
- Ayissi Mbomo, R.-E.; Gartside, S.; Ngo Bum, E.; Njikam, N.; Okello, E.; McQuade, R. Effect of Mimosa pudica (Linn.) extract on anxiety behaviour and GABAergic regulation of 5-HT neuronal activity in the mouse. J. Psychopharmacol. 2011, 26, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Mendieta, R.M.; Rodríguez, A. Plantas medicinales del estado de Yucatán. Bol. Soc. Bot. Mex. 1981, 43, 94–95. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, S.; Karthikeyan, K.; Chandran, C. Photochemical screening and pharmacognostic studies on Mimosa pudica L (Sensitive plant). Int. J. Fauna Biol. Stud. 2017, 4, 170–175. [Google Scholar]
- Paranjpe, P. Indian Medicinal Plants: Forgotten Healers: A Guide to Ayurvedic Herbal Medicine with Identity, Habitat, Botany, Photochemistry, Ayurvedic Properties, Formulations & Clinical Usage; Chaukhamba Sanskrit Pratishthan: New Delhi, India, 2001; p. 26. [Google Scholar]
- Rajendran, R.; Hemalatha, S.; Akasakalai, K.H.; Madhukrishna, C.; Sohil, B.; Meenakshi Sundaram, R. Hepatoprotective activity of Mimosa pudica leaves against Carbontetrachloride induced toxicity. J. Nat. Prod. 2009, 2, 116–122. [Google Scholar]
- Vinothapooshan, G.; Sundar, K. Anti-ulcer activity of Mimosa pudica leaves against gastric ulcer in rats. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 606. [Google Scholar]
- Sharma, P.; Yelne, M.; Dennis, T. Database on Medicinal Plants Govt. of India; Janakpuri: Delhi, India, 2001; pp. 369–379. [Google Scholar]
- Ghani, A. Medicinal Plants of Bangladesh with Chemical Constituents and Uses, Asiatic Society of Bangladesh; Nimtali: Dhaka, Bangladesh, 2003; pp. 302–303. [Google Scholar]
- Subramani, M.; Priyagrace, S.; Vijayaraghavan, R.; Velmurugan, A.; Govindarajan, P.; Michael, A. Antitoxin activity of Mimosa pudica root extracts against Naja naja and Bangarus caerulus venoms. Bangladesh J. Pharmacol. 2009, 4, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Qu, F. Treating gynaecological disorders with traditional Chinese medicine: A review. Afr. J. Trad. Compl. Alternat. Med. 2009, 6, 494–517. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Li, Y.; Wei, H.; Xiong, C.; Liao, L.; Miao, T.-W.; Ma, B.; Fu, J.-J. Chinese oral herbal paste for the treatment of stable chronic obstructive pulmonary disease: Protocol for a systematic review and meta-analysis. Medicine 2019, 98, e16444. [Google Scholar] [CrossRef] [PubMed]
- Mbatchou, V.; Ayebila, A.J.; Apea, D.O. Antibacterial activity of phytochemicals from Acacia nilotica, Entada africana and Mimosa pigra L. on Salmonella typhi. J. Anim. Plant. Sci. 2011, 10, 1248–1258. [Google Scholar]
- Irvine, F.R. Woody Plants of Ghana: With Special Reference to Their Uses; Oxford University Press: London, UK, 1961; Volume 1, p. 868. [Google Scholar]
- Mohammed, M.S.; Khalid, H.S.; Muddathir, A.E.; El-Tahir, K.; Khan, A.A.; Algadir, H.A.; Osman, W.; Siddiqui, N.A. Effect of some plants’ extracts used in Sudanese folkloric medicines on carrageenan-induced inflammation. Pak. J. Pharm. Sci. 2015, 28, 159–165. [Google Scholar]
- Ahmed, T.; Khandaker, I.; Rahman, S.; Mou, S.M.; Choudhury, M.S.; Mahal, M.J.; Jahan, S.; Hossain, M.; Rahmatullah, M. Antihyperglycemic and antinociceptive activity of Fabaceae family plants—An evaluation of Mimosa pigra L. stems. Adv. Nat. Appl. Sci. 2012, 6, 1490–1495. [Google Scholar]
- Saeed, M.E.M.; Abdelgadir, H.; Sugimoto, Y.; Khalid, H.E.; Efferth, T. Cytotoxicity of 35 medicinal plants from Sudan towards sensitive and multidrug-resistant cancer cells. J. Ethnopharmacol. 2015, 174, 644–658. [Google Scholar] [CrossRef]
- Grosvenor, P.W.; Gothard, P.K.; McWilliam, N.C.; Supriono, A.; Gray, D.O. Medicinal plants from Riau Province, Sumatra, Indonesia. Part 1: Uses. J. Ethnopharmacol. 1995, 45, 75–95. [Google Scholar] [CrossRef]
- Carvalho, P. Sabiá-Mimosa caesalpiniifolia. Embrapa Florestas-Circular Técnica (Infoteca-E). Embrapa Florestas. Circ. Técnica. 2007, 135, 10. [Google Scholar]
- Saxena, R.; Sharma, R.; Nandy, B.; Jasuja, D.N. Qualitative and quantitative estimation of bioactive compounds in Mimosa hamata. Int. J. Pharm. Pharm. Sci. 2014, 6, 72–75. [Google Scholar]
- Nadkarni, A. Nadkarni’s Indian Materia Medica; Popular Prakashan Private Ltd.: Bombay, India, 1954. [Google Scholar]
- Chopra, R.N.; Nayar, S.L.; Chopra, I.C.; Asolkar, L.V.; Kakkar, K.K.; Chakre, O.J.; Varma, B.S.; Council of Scientific & Industrial, Research. Glossary of Indian Medicinal Plants; [with] Supplement; Council of Scientific & Industrial Research: New Delhi, India, 1956; Volume 3, pp. 1956–1992. [Google Scholar]
- Gupta, M.; Arias, T.; Etheart, J.; Hatfield, G. The occurrence of tryptamine and N-methyltryptamine in Mimosa somnians. J. Nat. Prod. 1979, 42, 234–236. [Google Scholar] [CrossRef]
- Aguiar, L.C.G.G.; Barros, R.F.M. Plantas medicinais cultivadas em quintais de comunidades rurais no domínio do cerrado piauiense (Municipio de Demerval Lobao, Piauí, Brasil). Rev. Bras. De Plantas Med. 2012, 14, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Rejón-Orantes, J.P.; Perdomo Suaréz, D.; Rejón-Rodríguez, A.; Hernández Hernández, S.; García Liévano, O.E.; López Rodríguez, D.; Perez de la Mora, M. Aqueous root extracts from Mimosa albida Humb. & Bonpl. ex Willd display antinociceptive activity in mice. J. Ethnopharmacol. 2013, 149, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Ticktin, T.; Dalle, S.P. Medicinal plant use in the practice of midwifery in rural Honduras. J. Ethnopharmacol. 2005, 96, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Zippel, J.; Deters, A.; Hensel, A. Arabinogalactans from Mimosa tenuiflora (Willd.) Poiret bark as active principles for wound-healing properties: Specific enhancement of dermal fibroblast activity and minor influence on HaCaT keratinocytes. J. Ethnopharmacol. 2009, 124, 391–396. [Google Scholar] [CrossRef]
- Sanchez-León, V.; Yashté, L. Plantas de Xhiapas, Sus Usos, Valores e Importancia: El tepescohuite Tuxtla Gutierrez; Chippas. Editorial Instituto de Historia Natural, Depto: De Botanica, Mexico, 1991; p. 4. [Google Scholar]
- Camargo-Ricalde, S.; Grether, R.; Martínez-Bernal, A. Uso medicinal del “tepescohuite”, Mimosa tenuiflora (Leguminoseae) en Mexico. Contacto 1994, 5, 29–34. [Google Scholar]
- Grether, R. Nota sobre la identidad del tepexcohuite en México. Bol. Soc. Bot. Mexico 2017, 48, 151–152. [Google Scholar] [CrossRef] [Green Version]
- Vepsäläinen, J.J.; Auriola, S.; Tukiainen, M.; Ropponen, N.; Callaway, J. Isolation and characterization of yuremamine, a new phytoindole. Planta Medica 2005, 71, 1053–1057. [Google Scholar] [CrossRef] [Green Version]
- Lauriola, M.; Corazza, M. Allergic contact dermatitis caused by argan oil, neem oil, and Mimosa tenuiflora: Allergic contact dermatitis caused by herbal therapies. Contact Dermatitis. 2016, 75, 388–390. [Google Scholar] [CrossRef]
- Evans, S.; Hofmann, A. Plantas de los dioses. In Orígenes Del Uso De Los Alucinógenos; Fondo de Cultura: México City, México, 2008. [Google Scholar]
- Genest, S.; Kerr, C.; Shah, A.; Rahman, M.M. Comparative bioactivity studies on two Mimosa species. Bol. Latinoam. Caribe Plantas Med. Aromat. 2008, 7, 38–43. [Google Scholar]
- Racadio, S.P. The medicinal prospects of Makahiya (Mimosa Pudica Linn) plant. Adv. Life Sci. 2016, 6, 7–12. [Google Scholar] [CrossRef]
- Molina, G.G.V. Inhibitory activity of Makahiya (Mimosa pudica Linn) leaf extract of three test organisms. Int. J. Sci. Eng. Res. 2015, 6, 150–158. [Google Scholar] [CrossRef]
- Vaidyaratanm, P.S. Indian Medicinal Plants Database Kottakkal; Arya Vidyashala: Kerala, India; Orient Longman: Hyderabad, Telangana, 2001; Volume 2, pp. 36–37. [Google Scholar]
- Podadera, D.S.; Engel, V.L.; Parrotta, J.A.; Machado, D.L.; Sato, L.M.; Durigan, G. Influence of removal of a non-native tree species Mimosa caesalpiniifolia Benth. on the regenerating plant communities in a tropical semideciduous forest under restoration in Brazil. Environ. Manag. 2015, 56, 1148–1158. [Google Scholar] [CrossRef]
- Sousa, S.; Campos Reis, A.; Facio Viccini, L. Polyploidy, B chromosomes, and heterochromatin characterization of Mimosa caesalpiniifolia Benth. (Fabaceae-Mimosoideae). Tree Genet. Gen. 2012, 9, 613–619. [Google Scholar] [CrossRef]
- Ribaski, J.; Lima, P.C.F.; de Oliveira, V.R.; Drumond, M.A. Sabiá (Mimosa caesalpiniaefolia) árvore de múltiplo uso no Brasil. In Embrapa Florestas-Comunicado Técnico (INFOTECA-E); Embrapa—Portuguese; Empresa Brasileira de Pesquisa Agropecuária: Brasília, Brazil, 2003; p. 4. [Google Scholar]
- Nandipati, M.C.; Sumalatha, G.; Baburao, C.; Babu, J.R.; Sridevi, C. Antitumor activity of Mimosa Rubicaulis Lam against Ehrlich Ascites carcinoma in swiss albino mice. Int. J. Pharm. Sci. Res. 2014, 5, 1514. [Google Scholar] [CrossRef]
- Umadevi, S.; Gopi, V.; Elangovan, V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem. Biol Int. 2014, 208, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Schlickmann, F.; Boeing, T.; Mariano, L.N.B.; da Silva, L.M.; de Andrade, S.F.; de Souza, P.; Cechinel-Filho, V. Gallic acid, a phenolic compound isolated from Mimosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 649–655. [Google Scholar] [CrossRef]
- Berhaut, J. Flore illustrée du Sénégal, tome IV. Preface de M. Leopold Sendar Senghor. J. Agric. Trop. Bot. Appl. 1975, 21, 269–270. [Google Scholar]
- Bouquet, A. Féticheurs et Médecines Traditionnelles du Congo (Brazzaville); Orstom: Paris, France, 1969; Volume 36, p. 282. [Google Scholar]
- Manosroi, J.; Zaruwa, M.; Manosroi, A. Potent hypoglycemic effect of Nigerian anti-diabetic medicinal plants. J. Complement. Integr. Med. 2011, 8, 1–14. [Google Scholar] [CrossRef]
- Jayanegara, A.; Kreuzer, M.; Wina, E.; Leiber, F. Significance of phenolic compounds in tropical forages for the ruminal bypass of polyunsaturated fatty acids and the appearance of biohydrogenation intermediates as examined in vitro. Anim. Prod. Sci. 2011, 51, 1127–1136. [Google Scholar] [CrossRef]
- Valencia-Gómez, L.E.; Martel-Estrada, S.A.; Vargas-Requena, C.; Rivera-Armenta, J.L.; Alba-Baena, N.; Rodríguez-González, C.; Olivas-Armendáriz, I. Chitosan/Mimosa tenuiflora films as potential cellular patch for skin regeneration. Inter. J. Biol. Macromol. 2016, 93, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- De Souza Araújo, E.; Pimenta, A.; Feijó, F.; Castro, R.; Fasciotti, M.; Monteiro, T.; de Lima, K. Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J. App. Micro. 2018, 124, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Alves Filho, A.; Menezes, H. Estudo comparativo da atividade antimicrobiana de extratos de algumas árvores nativas. Arq. Inst. Biol. 2005, 72, 353–358. [Google Scholar]
- Padilha, I.Q.; Pereira, A.V.; Rodrigues, O.G.; Siqueira-Júnior, J.P.; Pereira, M.d.S.V. Antimicrobial activity of Mimosa tenuiflora (Willd.) Poir. from Northeast Brazil against clinical isolates of Staphylococcus aureus. Rev. Bras. Farmacogn. 2010, 20, 45–47. [Google Scholar] [CrossRef]
- Heinrich, M.; Kuhnt, M.; Wright, C.W.; Rimpler, H.; Phillipson, J.D.; Schandelmaier, A.; Warhurst, D.C. Parasitological and microbiological evaluation of Mixe Indian medicinal plants (Mexico). J. Ethnopharmcol. 1992, 36, 81–85. [Google Scholar] [CrossRef]
- Lozoya, X.; Navarro, V.; Arnason, J.; Kourany, E. Experimental evaluation of mimosa tenuiflora (willd.) poir.(Tepescohuite) I. Screening of the antimicrobial properties of bark extracts. Arch. Investig. Med. 1989, 20, 87–93. [Google Scholar]
- Meckes Lozoya, M.; Lozoya, X.; González, J.L. Propiedades farmacológicas in vitro de algunos extractos de Mimosa tenuiflora (tepescohuite). Arch. Investig. Med. (Mex) 1990, 21, 163–169. [Google Scholar]
- De Morais Leite, S.C.; Medeiros, C.; Soares, A.I.; Maia, P.C.G.G.S.; Magalhães, M.I.S.; Freitas, F.O.R.; Pessôa, H.D.L.F.; Nogueira, T.B.D.S.; Sousa, A.; de Morais, A.M.B.; et al. Antibacterial and hemolytic activities of Mimosa tenuiflora (Willd) Poir.(Mimosoidea). Afr. J. Microbiol. Res. 2015, 9, 2166–2171. [Google Scholar] [CrossRef]
- Silva, S.A.d.N.M.; Barros, A.B.; Souza, J.M.T.; Moura, A.F.; Araújo, A.R.d.; Mendes, M.G.A.; Daboit, T.C.; Silva, D.A.d.; Araújo, A.J.; Marinho Filho, J.D.B. Phytochemical and biological prospection of Mimosa genus plants extracts from Brazilian northeast. Phytochem. Lett. 2020, 39, 173–181. [Google Scholar] [CrossRef]
- Nagarajan, K.; Saravanararaja, M.; Aruna Devi, S.P. Antibacterial Efficiency of Fabaceae Plants of a Tropical Freshwater Lake. Int. J. Res. Sci. 2015, 2, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Abirami, S.G.; Mani, K.S.; Devi, M.N.; Devi, P.N. The antimicrobial activity of Mimosa pudica L. Int. J. Ayur. Pharma Res. 2014, 2, 105–108. [Google Scholar]
- Sheeba, D.G.; Gomathi, K.S.; Citarasu, D. Anti-mycobacterial and phytochemical investigation of methanol extracts of few medicinal plants. J. Chem. Pharm. Sci. 2015, 8, 480–486. [Google Scholar]
- Kakad, S.L.; Tungikar, V.V.; Dhembare, A.J. Evaluation of antibacterial activity of plant extracts against bacterial pathogen. Der Pharm. Sin. 2015, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Pradhan, P.; Sharma, Y.; Bhateja, P. Pharmacognostical, physiochemical and antimicrobial action of mimosa pudica leaves. J. Pharma. Res. 2016, 5, 52–55. [Google Scholar]
- Le Thoa, N.T.; Nam, P.C.; Nhat, D.M. Antibacterial activities of the extracts of Mimosa pudica L. an in-vitro study. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 358–361. [Google Scholar] [CrossRef]
- Dhanya, K.; Thangavel, M. Analysis of Phytochemicals and Mimosine from Mimosa Pudica. Int. J. 2015, 3, 672–676. [Google Scholar]
- Ahuchaogu, A.; Chukwu, J.; Obike, A.; Ugonna Oha, T.; Bull, J.; Echeme, O. Quantitative determination of secondary metabolites and antibacterial activity of Mimosa Pudica. Int. J. Med. Plants Nat. Prod. 2017, 3, 1–5. [Google Scholar] [CrossRef]
- Chukwu, O.J.; Ahuchaogu, A.A.; Ukaogo, P.; Obike, A.; Echeme, J.B.O. Antifungal activity of Mimosa pudica, isolation and NMR characterization of bioactive components. Asian J. Chem. Sci. 2017, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- De Morais, C.B.; Scopel, M.; Pedrazza, G.P.R.; da Silva, F.K.; Dalla Lana, D.F.; Tonello, M.L.; Miotto, S.T.S.; Machado, M.M.; de Oliveira, L.F.S.; Fuentefria, A.M.; et al. Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). J. Mycol. Med. 2017, 27, 530–538. [Google Scholar] [CrossRef]
- Ali, M.; Azhar, I.; Ahmad, F.; Ahmad, V.; Usmanghani, K. Antimicrobial screening of Mimoaceous plants. Pharm. Biol. 2001, 39, 43–46. [Google Scholar] [CrossRef]
- Magalhães, F.E.A.; Batista, F.L.A.; Serpa, O.F.; Moura, L.F.W.G.; Lima, M.d.C.L.; da Silva, A.R.A.; Guedes, M.I.F.; Santos, S.A.A.R.; de Oliveira, B.A.; Nogueira, A.B.; et al. Orofacial antinociceptive effect of Mimosa tenuiflora (Willd.) Poiret. Biomed. Pharmacother. 2018, 97, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ul-Haq, M. Historical and introductory aspects of carotenoids. In Carotenoids: Structure and Function in the Human Body; Zia-Ul-Haq, M., Dewanjee, S., Riaz, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–42. [Google Scholar]
- Das, K.; Yasin, M.; Mahbub, N.U.; Islam, M.S.; Mahbuba, N. Evaluation of antioxidant and cytotoxic activity of methanolic extract of Mimosa pudica leaves. Pharm. Innov. 2014, 3, 32. [Google Scholar]
- Chimsook, T. Bioactivities of Mimosa pudica and Phyllanthus niruri crude extracts collected from the locality of Chaiyaphum, Thailand. Adv. Mat. Res. 2014, 12–15. [Google Scholar] [CrossRef]
- Jose, J.; Sudheesh, S.; Dhanya, A.; Kumar, T.S.; Sony, J.; Variyar, E.J. In vitro studies of immunomodulatory and free radical scavenging activities of flavonoid isolated from Mimosa pudica. Int. J. Pharm. Sci. Res. 2014, 5, 4254–4261. [Google Scholar] [CrossRef]
- Ittiyavirah, S.P.; Pullochal, I. Adaptogenic and nootropic activity of Mimosa pudica in albino wistar rats. Int. J. Nutr. Pharmacol. Neurol. Dis. 2014, 4, 231. [Google Scholar] [CrossRef]
- Rakotomalala, G.; Agard, C.; Tonnerre, P.; Tesse, A.; Derbré, S.; Michalet, S.; Hamzaoui, J.; Rio, M.; Cario-Toumaniantz, C.; Richomme, P. Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension. J. Ethnopharmacol. 2013, 148, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Jain, S.C.; Jasrai, Y. Antioxidant activity and total phenolic content of various extracts from Mimosa hamata Willd., Mimosaceae. Int. J. Phytomed. 2012, 4, 314. [Google Scholar]
- Jiménez, N.; Carrillo-Hormaza, L.; Pujol, A.; Álzate, F.; Osorio, E.; Lara-Guzman, O. Antioxidant capacity and phenolic content of commonly used anti-inflammatory medicinal plants in Colombia. Ind. Crop. Prod. 2015, 70, 272–279. [Google Scholar] [CrossRef]
- Silva, M.; Carvalho, A.; Rocha, C.; Vilegas, W.; Silva, M.; Gouvêa, C. Ethanolic extract of Mimosa caesalpiniifolia leaves: Chemical characterization and cytotoxic effect on human breast cancer MCF-7 cell line. S. Afr. J. Bot. 2014, 93, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Piyapong, Y.; Ampa, K. Hypoglycemic and hypolipidemic activities of ethanolic extract from Mimosa pudica L. in normal and streptozotocin-induced diabetic rats. Pharmacogn. J. 2017, 9, 834–837. [Google Scholar] [CrossRef] [Green Version]
- Konsue, A.; Picheansoonthon, C.; Talubmook, C. Fasting Blood Glucose Levels and Hematological Values in Normal and Streptozotocin-Induced Diabetic Rats of Mimosa pudica L. Extracts. Pharmacogn. J. 2017, 9, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Ao, S.; Kc, O.; Ukwueze, S. Evaluation of the antidiabetic potential of ethanol root extract of Mimosa pigra Linn (Fabaceae) in alloxan-induced diabetic albino rats. Int. J. Curr. Res. 2015, 7, 15577–15581. [Google Scholar]
- Choi, J.; Park, Y.-G.; Yun, M.-S.; Seol, J.-W. Effect of herbal mixture composed of Alchemilla vulgaris and Mimosa on wound healing process. Biomed. Pharmacother. 2018, 106, 326–332. [Google Scholar] [CrossRef]
- Liu, G.; Ren, G.; Zhao, L.; Cheng, L.; Wang, C.; Baoguo, S. Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes. Food Cont. 2017, 73, 854–861. [Google Scholar] [CrossRef]
- Emanuella Sales da Silva-Leite, K.; Silva Queiroz, C.; Da Costa Madeira, J.; Marcos Gomes Soares, P.; Pereira, M.; Assreuy, A.M. Polysaccharide extract of Mimosa tenuiflora stem barks stimulates acute inflammatory response via nitric oxide. Acta Sci. Biol. Sci. 2016, 38, 473. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, J.; Yue, F.; Yan, X.; Wang, F.; Bloszies, S.; Wang, Y. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 2018, 194, 495–503. [Google Scholar] [CrossRef]
- Silva, M.; Vilegas, W.; Aparecido da Silva, M.; Paula Ribeiro Paiotti, A.; Mercaldi Pastrelo, M.; Luiz Menin Ruiz, P.; de Moura, C.; Tizuko Fujiyama Oshima, C.; Araki Ribeiro, D. The anti-inflammatory potential of Mimosa caesalpiniifolia Following experimental colitis: Role of COX-2 and TNF-Alpha expression. Drug Res. 2017, 68, 196–204. [Google Scholar] [CrossRef]
- Patro, G.; Bhattamisra, S.K.; Mohanty, B.K. Analgesic, antiepileptic, and behavioral study of Mimosa pudica (Linn.) on experimental rodents. Int. J. Nutr. Pharmacol. Neurol. Dis. 2015, 5, 144. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, S. Antibacterial activity and mechanism of lacidophilin from Lactobacillus pentosus against Staphylococcus aureus and Escherichia coli. Front. Microbiol. 2016, 34, 71–79. [Google Scholar] [CrossRef]
- Kishore, R.N.; Sri, A.T.; Anjaneyulu, N.; Ramanikanth, C.; Divya, A.; Sainath, K.; Suri, L.S. Study of the CNS Activities of Mimosa Pudica Linn. in animals model. Indo Am. J. Pharm. Sci. 2017, 4, 760–764. [Google Scholar] [CrossRef]
- Mahadevan, M.V.; Ramaswamy, R.S.; Banumathi, V. Mimosa pudica exerts Neuroprotection against MPP+ induced neurotoxicity in SHSY5Y cell lines-An in vitro model of anti-parkinsonism. Int. J. Pharm. Pharm. Sci. 2016, 9, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Sumiwi, S.A.; Abdassah, M.; Muthiarani, R.; Krishnan, K.G.; Akhsanitami, R.; Zuhrotun, A.; Levita, J. Inhibition of Uric Acid Formation By Mimosa pudica L. Herb Extract Tablets. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 236–242. [Google Scholar]
- Oliveira, L.M.B.; Macedo, I.T.F.; Vieira, L.S.; Camurça-Vasconcelos, A.L.F.; Tomé, A.R.; Sampaio, R.A.; Louvandini, H.; Bevilaqua, C.M.L. Effects of Mimosa tenuiflora on larval establishment of Haemonchus contortus in sheep. Vet. Parasitol. 2013, 196, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Bautista, E.; Calzada, F.; Ortega, A.; Yépez-Mulia, L. Antiprotozoal activity of flavonoids isolated from Mimosa tenuiflora (Fabaceae-Mimosoideae). J. Mex. Chem. Soc. 2011, 55, 251–253. [Google Scholar]
- Santos, E.A.d.; Carvalho, C.M.d.; Costa, A.L.S.; Conceicao, A.S.; Moura, F.P.; Santana, A.E.G. Bioactivity evaluation of plant extracts used in indigenous medicine against the snail, Biomphalaria glabrata, and the larvae of Aedes aegypti. Evid. Based Complement. Alternat. Med. 2012, 9, 846583. [Google Scholar] [CrossRef] [Green Version]
- Shamsuddini, S.; Rajab Alian, S.; Mirzayi, M.; Boroufiei, M. Efficacy of Mimosa tenuiflora extract on growth of Leishmania protozoa in vitro. Iran. J. Dermatol. 2006, 9, 173–178. [Google Scholar]
- Surendra Kumar, M.; Akshaya, M.; Irfana, C.P.; Rajpriya, U.; Shabeerali, A.; Babu, G. Evaluation of Mimosa Pudica Linn and Discorea alata Linn for its larvicidal activity. World J. Pharm. Pharm. Sci. 2016, 5, 1967–1970. [Google Scholar]
- Brito, D.R.B.; Costa-Júnior, L.M.; Garcia, J.L.; Torres-Acosta, J.F.J.; Louvandini, H.; Cutrim-Júnior, J.A.A.; Araújo, J.F.M.; Soares, E.D.S. Supplementation with dry Mimosa caesalpiniifolia leaves can reduce the Haemonchus contortus worm burden of goats. Vet. Parasitol. 2018, 252, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Edem Ekpenyong, E.; Linus Anderson, E.; Adewale Abdullateef, T.; Adebanji Modupe, A.; Kunlere, O. The impact of Mimosa Pudica on the Histoarchitecture –pituitary-testicular axis cadium treated rats. World J. Pharm. Pharm. Sci. 2015, 4, 169–179. [Google Scholar]
- Shorinwa Olusayo, A.; Nnamdi, E.; Afieroho Ozadheoghene, E. Evaluation of Mimosa Pigra roots on Haematological and biochemical parameters of Albino rats. Int. J. Curr. Res. 2016, 7, 15577–15581. [Google Scholar] [CrossRef]
- Monçao, N.B.N.; Costa, L.M.; Arcanjo, D.D.R.; Araújo, B.Q.; Lustosa, M.C.G.; da França Rodrigues, K.A.; de Amorim Carvalho, F.A.; Costa, A.P.R.; Citó, A.M.d.G.L. Chemical constituents and toxicological studies of leaves from Mimosa caesalpiniifolia Benth., a Brazilian honey plant. Pharmacogn. Mag. 2014, 10, S456. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.A.; Gonçalves, G.F.; Pereira, M.S.; Gomes, I.F.; Freitas, A.F.; Diniz, M.F.; Pessôa, H.L. Assessment of mutagenic, antimutagenic and genotoxicity effects of Mimosa tenuiflora. Rev. Bras. Farmacogn. 2013, 23, 329–334. [Google Scholar] [CrossRef]
- Medeiros, R.M.T.; de Figueiredo, A.P.M.; Benício, T.M.A.; Dantas, F.P.M.; Riet-Correa, F. Teratogenicity of Mimosa tenuiflora seeds to pregnant rats. Toxicon 2008, 51, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, L.E.A.; Correa, F.R.; Gardner, D.; Panter, K.E.; Dantas, A.F.M.; Medeiros, R.M.T.; Mota, R.A.; Araújo, J.A.S. Mimosa tenuiflora as a cause of malformations in ruminants in the Northeastern Brazilian semiarid rangelands. Vet. Pathol. 2007, 44, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Correa, F.; Medeiros, R.; Tokarnia, C.; Döbereiner, J. Toxic Plants for Livestock in Brazil: Economic Impact, Toxic Species, Control Measures and Public Health Implications; Poisonous Plants: Global Research and Solutions; CAB International: Wallingford, UK, 2007; pp. 2–14. [Google Scholar] [CrossRef]
- Dantas, A.F.M.; Riet-Correa, F.; Medeiros, R.M.T.; Lopes, J.R.; Gardner, D.R.; Panter, K.; Mota, R.A. Embryonic death in goats caused by the ingestion of Mimosa tenuiflora. Taxicon 2012, 59, 555–557. [Google Scholar] [CrossRef]
- Gardner, D.; Riet-Correa, F.; Lemos, D.; Welch, K.; Pfister, J.; Panter, K. Teratogenic effects of Mimosa tenuiflora in a rat model and possible role of N-methyl-and N, N-dimethyltryptamine. J. Agric. Food Chem. 2014, 62, 7398–7401. [Google Scholar] [CrossRef] [PubMed]
Plant | Plant Parts | Country | Common Names in Different Languages | Uses | References |
---|---|---|---|---|---|
M. tenuiflora | Stem bark | Mexico | Tepescohuite | Used for to treat cutaneous wounds, burns, and inflammations | [9,24,108,109,110,111] |
Stem bark, leaves, flowers | Northeastern Brazil, Venezuela | Skin tree, jurema-preta, calumbi | Used for injury, odontalgia, inflammations, fever, menstrual colic, headache, hypertension, bronchitis, cough, external ulcers | [41,55,76,77,78,79,80,81] | |
Root bark | Northeastern Brazil | Jurema preta, black jurema, Vinho de jurema | Used for Jurema, a psychoactive beverage consumed for medicoreligious purposes | [74,75] | |
Bark | NortheasternBrazil | Some indigenous tribes use it as a miraculous drink | [55,112] | ||
Italy | Used for eczema | [113] | |||
Whole plant | Mexico | Used for hallucinogenic compounds | [114] | ||
M. pudica | Whole plant | Cameroon, Mexico | English—“Touch me not”; Urdu—Chhimui; Punjabi—Lajan; Hindi—Lajauni, Chhuimui; Marathi—Lajalu; Gujrati—Lajavanti, Risamani, Lajamani; Bengali—Lajjavanti, Lajaka; Telugu—Mudugudamara; Tamil- Tottavadi, Tottalchurungi; Oriya—Lajakuri; Kannada—Lajjavati, Muttidasenui, Machikegida; Sanskrit—Namaskari, Samanga, Varakranta; Malayalam—Thottavati | Used for to treat headaches, insomnia, depression, anxiety, premenstrual syndrome, hemorrhoids, skin wounds, menorrhagia, diarrhea, rheumatoid arthritis | [50,82,83,84,85] |
Roots | India | Used for to treat fever, dysentery, piles, jaundice, uterine and vaginal illnesses, burning sensation, leucoderma, asthma, inflammations, leprosy, fatigue, blood infections | [86] | ||
Stem | Touch-me-not | Aphrodisiac properties, antivenom activities, antihepatotoxic effect, diuretic effect, hyperglycemic effect, wound-healing effect | [115] | ||
Leaves | Bangladesh | Used for to treat piles, diarrhea, persistent dysentery, convulsion of children | [90] | ||
Philippines | Iloko—Bain bain; Tagalog—Makahiya | [116,117] | |||
Leaves and roots | India | Namaskari, Lajjalu | In Unani and Ayurvedic methods of medication, M. Pudica is used for treatment of ulcers, bile, leprosy, fever, small pox, jaundice, piles, ulcers, inflammation, burning sensations, asthma, hemorrhoids, spasmodic fistula, strangury, hydrocele, scrofula, conjunctivitis, wounds, hemorrhages | [87,88,89,118] | |
Whole plant | Used internally to treat vesicle calculi and externally to treat myalgia, rheumatism, uterus tumors, odema-type disorders | [89] | |||
Roots | Bangladesh | Antivenom effects | [91] | ||
Bark | China | Treatment of traumatic injury to dissipate blood stasis | [93] | ||
Herb | China | In women is used in vagina-narrowing solution | [92] | ||
Paste | China | Used in dental powder to treat gingiva and bad breath | [93] | ||
Seeds+5 g sugar | India | Chunimui | Venereal diseases | [72] | |
Leaves | Used to cure skin infections | ||||
M. pigra | Shrub | Africa | Used for asthma, respiratory diseases, diarrhea, typhoid fever, genitourinary tract infections | [94] | |
Roots, leaves, stem | Madagascar, tropical Africa, South America, Indonesia | Used for head colds, mouthwash for toothaches, eye medicines | [96] | ||
Leafy stem fruits | Africa | Antivenom effects | [95] | ||
Leaves | Mexico | Used in Mayan medicine for treatment of diarrhea | [23] | ||
Bangladesh | Used to lower blood sugar in diabetic patients and for the treatment of pain | [97] | |||
Roasted and ground leaves | Indonesia | English name—bashful plant; vernacular name—Alfas | Used to treat a weak heart or weak pulse | [98,99] | |
M. caesalipiniifolia | Bark and flowers | Northeastern Brazil | Cascudo, sabia | Used for bronchitis, skin infections, injuries, inflammation, hypertension, cough, gastritis | [27,77,100,105,119,120,121] |
M. hamata | Whole plant | India | Jinjani, hooked | Used to treat jaundice, diarrhea, coagulant, fever, dysentery, wounds. Used as a blood-purifier and as a tonic for urinary complaints and piles | [3] |
Leaves | Used for treatment of burns, glandular swelling, sores, piles. Used as a sinus dressing and contraceptive | [101,102] | |||
Seeds | Blood purifier | [33,103] | |||
M. rubicaulis | Whole plant | India | Commonly known as Mimosa himalayan; korinda, putta korinda in Telugu | Used to treat leucoderma, leprosy, chronic diarrhea, rheumatism, treatment of snake bite, fungal infections, cuts and wounds | [122] |
M.somnians | Whole plant | Central America | Dormidera, sensitive plant | [104] | |
M. bimucronata | Leaves | Brazil | Cardiovascular, renal system, diuresis, and saluresis treatment in rats | [123,124] | |
M. linguis | Whole plant | Diuretic | [26] | ||
M. humilis | Whole plant | Rheumatism treatment | |||
M. invisa | Leaves | Nigeria | Idon zakara, Nila grass | Used to treat bronchitis, and asthma and to relieve tooth pain, has antidiabetic properties | [125,126,127,128] |
M. arenosa | Bark | Brazil | Used for asthma | [77] | |
M. ophthalmo-centra | Bark | Brazil | Jurema | Used for bronchitis, cough | |
M. verrucosa | Stem bark | Brazil | Jurema-preta | Used for gastritis, ulcer, asthma, inflammation of the uterus | [77,105] |
M. albida | Roots, leaves and flowers | Mexico | Used for pain and anxiety, chronic pain | [106] | |
Roots | Honduras | Used for abortion | [107] |
Activities | Plant | Plant Part | Extract/ Fraction | Assay | Model | Results/Outcome/Response | References |
---|---|---|---|---|---|---|---|
Antimicro-bialactivity | M. tenuiflora | Bark and chitosan | Biocomposite film | Turbidimetry method | E. coli, M. lysodeikticus | Chitosan/M. Tenuiflora film showed potent antibacterial activity | [129] |
Wood | Pyroligneous acid | Agar diffusion method | E. coli, C. albicans, P. aeruginosa, S. aureus, C. neoformans | Significant inhibition obtained at all concentrations | [130] | ||
Bark | HyOH extracts | Agar diffusion method | E. coli, S. aureus, E. aerogenes, K. pneumoniae, Providencia, P. aeruginosa, P. Mirabilis, S. sonnei, S. pyogenes, Staphylococcus spp. | Actively inhibited the growth of bacteria | [131] | ||
EtOH | Agar dilution method, time-kill assay | S. aureus | Bactericidal effect was observed | [132] | |||
EtOH 95% | Disc diffusion method | E. coli, B. subtilis, M. luteus, P. oxalicum | Significant results obtained. Active doses of extract: E. coli = 5.0 ug/disk; B. subtilis = 10.0 ug/disk; M. luteus = 20.0 ug/disk; P. oxalicum = 10.0 ug/disk | [133] | |||
EtOH 95% | Minimum inhibitory concentration (MIC) | S. epidermidis, A. calcoaceticus, S. aureus, M. luteus, E. coli, K. pneumonia, P. aeruginosa, C. albicans | Active doses of extract S. epidermidis, A. calcoaceticus = MIC >10.0 μg/mL, S. aureus, M. luteus MIC = 10.0 μg/mL, E. coli, K. pneumonia MIC = 20.0 μg/mL, C. albicans MIC = 70.0 μg/mL | [134] | |||
BuOH | Well diffusion method | S. aureus, E. coli | Active doses of extract: S. aureus = 5.0 mg/well; E. coli = 15.0 mg/well | [135] | |||
MeOH | S. aureus, E. coli | Active doses of extract: S. aureus = 5.0 ug/well; E. coli = 30.0 ug/well | |||||
EtOAc | E. coli, C. albicans | Active doses of extract: E. coli = 10.0 mg/well; C. albicans = 30.0 mg//well | |||||
EtOH extract | Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) | S. aureus ATCC 25.925 and ATCC 25.213, E. coli ATCC 8859 and ATCC 2536, P. aeruginosa ATCC 25.619 | For S. aureus (ATCC 25.925) and P. aeruginosa (ATCC 25.619), MIC = 128 and MBC = 256 μg/mL), respectively; for S. aureus ATCC 25.213 (MIC = 512, MBC = 1024 μg/mL), E. coli ATCC 8859, and E. coli ATCC 2536 (MIC = 1024, MBC ≥1024 μg/mL) | [136] | |||
EtOH | Minimum inhibitory concentration (MIC) | S. aureus, E. coli, C. albicans, T. interdigitale | Active dose of extract showed MIC against S. aureus = 15.6 μg/mL,E. coli = 1000 μg/mL, C. albicans = 156.28 μg/mL, T. interdigitale = 156.28 μg/mL | [137] | |||
M. pudica | Leaves | EtOH extract | Disc diffusion method | S. aureus, B. subtilis, C. albicans | ZOI; S.aureus = 4.61%, B. subtilis = 4.5%, C. albicans = 1.96% | [116,117] | |
Aq. | Disc diffusion method | E. coli, staphylococcus sp., Bacillus sp., Pseudomonas sp. Streptococci sp. | ZOI: E. coli =18 mm > Bacillus sp. = 12.5 mm > Pseudomonas sp. = 12 mm >Staphylococcus sp. = 11 mm > Streptococci sp. = 9 mm | [138] | |||
ACE, EtOAc, PE, Aq. | Well diffusion method | E. coli, P. aeurogiosa, L. bacillus, S. typhi, S. aureus, P. foedians, F. oxysporum, P. variotii | Concentration (30–120 μL/mL) antibacterial activity of extract increased with increasing dose of extract. At 120 μL/mL, more ZOI was observed | [139] | |||
Aq. | Agar well diffusion method | B. cereus, E. coli, P. valgaris, S. aureus, P. auroginosa, A. flavus, A. niger, Fusarium sp., Penicillium sp., A. terreus, | ZOI at 25 and 100 mg concentration against B. cereus = 5 and 10 mm, E. coli = 9 and 22 mm, P. valgaris = 0 and 9 mm, P. auroginosa = 4 and 15 mm, S. aureus = 11 and 18 mm; A. flavus = 5 and 25 mm, A. niger = 5 and 14 mm, A. terreus = 8 and 17 mm, Fusarium sp. = 6 and 15 mm, Penicillium sp. = 6 and 11 mm | [62] | |||
MeOH | Disc diffusion method | P. aeruginosa, S. aureus, V. harveyi | At 100 μL concentration ZOI showed by extract against P. aeruginosa = 8.66 mm, S.aureus = 10.66 mm, V. harveyi = 8.00 mm; ampicillin used as standard | [140] | |||
MeOH | Agar well diffusion method | B. subtilis, S. aureus, P. vulgeris, S. typhi, P. aeroginosa | ZOI B. subtilis = 14 mm; S. aureus = 12 mm, P. vulgeris = 11 mm; S. typhi = 15 mm; P. aeroginosa = 12 mm; penicillium (100 μg/disc) and gentamicin (10 μg/disc) used as standards | [141] | |||
EtOH and Aq. | Agar well diffusion method | T. verrucosum, M. ferrugineum, T. schoenleinii, T. rubrum, M. canis, M. gypseum, T. concentricum, T. soudanense | ZOI at 150–300 mg/mL in EtOH extract = 0–6 mm, in Aq. extract = 0–7 mm | [82] | |||
MeOH | Disc diffusion and agar well diffusion method | M. tuberculosis | ZOI in disc diffusion method = 7.00 mm, agar well diffusion method = 4.33 mm, streptomycin = 25 mm | [140] | |||
HyOH | Disc diffusion method | E. coli, S. aureus, P. aeruginosa, B. cereus | Extract showed significant results at 25, 50, and 100 mL/disk concentrations. | [142] | |||
Leaves and stems | EtOH and Aq. extracts | Agar well diffusion method | In vitro/E.coli, S.aureus, B. cereus, S. typhi | At 100 μL of EtOH extract, ZOI against E. coli = 11 mm; S.aureus = 19 mm; B. cereus = 17 mm; S. typhi = 16 mm. In Aq. extract, S. aureus = 14 mm; B. cereus = 15 mm | [143] | ||
Leaves, flowers, roots | EtOH, CF, MeOH | Disc diffusion method | S. aureus, E. coli, Pseudomonas sps, M. phaseolina, A. niger, R. solani | ZOI in leaves: S.aureus = 23.5 mm, E.coli = 20 mm, Pseudomonas sps. = 14 mm; In flower; Pseudomonas sps = 22.5 mm E.coli = 14 mm, S.aureus = 12 mm; in roots: R. solani = 29 mm, A. niger = 2 1 mm, M. phaseolina = 17.7 mm | [144] | ||
Whole plant | EtOH 98% | Disc Diffusion method | S. aureus, E. faecalis, P. aeroginosa, E. coli, M. smegmatis | ZOI at 25 mg/mL concentration; S. aureus = 3.5 mg/mL; P. aeroginosa = 12.0 mg/mL; E. coli = 5.5 mg/mL. At 100 mg/mL concentration S. aureus = 9.8 mg/mL; P. aeroginosa = 18.0 mg/mL; E. coli = 14.0 mg/mL. Standard chloramphenicol at 100 mg/mL showed significant results | [145] | ||
Absolute EtOH | Disc diffusion method | A. flavus, T. rubrum | ZOI at 100 mg/mL concentration of extract against A. flavus = 22 mm; T. rubrum = 17 mm. At 25 mg/mL concentration of extract: A. flavus = 13 mm; T. rubrum 11 mm | [146] | |||
M pigra | Leaves | MeOH and Aq. extract | Agar well diffusion method | S. aureus, E. coli, A. niger, P. aeruginosa, B. subtilis, C. albicans | Plant was found to be active against all strains except E. coli, A. niger | [23] | |
MeOH 60% | Broth microdilution method | In vitro: T. mentagrophytes, E. floccosum, M. gypseum, T. rubrum | All strains showed antifungal activity except E. floccosum | [147] | |||
MeOH 60%, Hex, DCM, EtOAc fractions | Minimal inhibitory concentration (MIC) | Significant results were observed against strains | |||||
Crude MeOH extract | Agar tube diffusion method | B. subtilis, A. niger, P. aeruginosa, E. coli, K. pneumonia, A. flavus. | Potent activity was obtained against bacteria, while no activity was found against fungi | [5] | |||
M. hamata | Whole plant and callus tissue | EtOH extract and its fractions (Aq, CF, PE, BZ) | Disc diffusion method | E. coli, K. pneumoniae, A. flavus, P. aeruginosa, P. vulgaris, S. aureus, F.moniliforme, R. bataticola | EtOH extract and Aq. fraction showed significant activity against all tested strains PE found to be active against fungi | [60] | |
Whole plant | Crude Hex, MeOH extracts | B. cereus, C. diphteriae, E. coli, A. niger, T. simii, P. aeroginosa, M. canis M. phaseolina, P. boydii, M. canis, F. solani, T. schoenleinii, S. sonii, S. typhi, S. pyogenes, T. longifuses, P. mirabillis, S. boydii, S. aureus, S. pyogenes, R. solani, C. albicans | % inhibition of crude Hex extract against B. cereus (29.75%), C. diphteriae (1.40%), P. aeroginosa (74.11%), A. niger (30.50%), M. canis (36.21%), and M. phaseolina (89.95%). Crude MeOH extract; B. cereus, (59.49%), C. diphteriae (30.16%), E. coli (6.31%), S. sonii (73.13%), P. aeroginosa (32.74%), S. typhi (16.84%), S. pyogenes (57.18%), T. longifuses (67.26%), P. boydii (95.10%), M. canis (45.31%), T. simii (75.00%), F. solani (54.75%), T. schoenleinii (84.18%), while standard ampicillin and rifampicin showed 99–100% growth inhibition | [148] | |||
M.verrucosa | Barks | EtOH | Minimum inhibitory concentration (MIC) | S. aureus, E. coli, C. albicans, T. interdigitale | Active dose of extract showed MIC against S. aureus = 250 μg/mL, E. coli = 1000 μg/mL, C. albicans = 1250 μg/mL, T. interdigitale = 78.13 μg/mL | [137] | |
M.pteridi- folia | Barks | EtOH | Minimum inhibitory concentration (MIC) | S. aureus, E. coli, C. albicans, T. interdigitale | Active dose of extract showed MIC against S. aureus = 500 μg/mL, E. coli = 1000 μg/mL, C. albicans = 625 μg/mL, T. interdigitale = 312.5 μg/mL | [137] | |
Antioxidant activity | M.tenuiflora | Leaves, twigs, barks, roots | EtOH extract and fractions (Hex, DCM, EtOAc, HyOH | DPPH radical and ABTS radical cation scavenging assay | In EtOH extract: DPPH (EC50) = 132.99 μg/mL; ABTS (EC50) = 189.14 μg/mL. EtOAc fraction: DPPH (EC50) =141.20 μg/mL; ABTS (EC50) = 273.00 μg/mL | [149] | |
Bark | EtOH | DPPH radical and ABTS radical cation scavenging assay | DPPH (IC50) = 17.21 μg/mL, ABTS (IC50) = 3.75 μg/mL | [137] | |||
M. pudica | Leaves | n-Hex | DPPH, OH, NO, and superoxide radical scavenging assays | n-Hex at 5–25 mM concentration showed DPPH (IC50 = 20.83 mM); OH (IC50 = 19.37 mM); NO (IC50 = 21.62 mM), O2- (IC50 = 22.19 mM); BHT and vitamin C used as standards | [30] | ||
ACE-Aq-AA (8.0 mL, 70:29.5:0.5) | ORAC assay, DPPH free radical scavenging activity | ORAC = 1187.9 μmol TE g−1 FW), DPPH EC50 = 243.2 mg/kg), vitamin C content = 259.1 μg/g FW) | [150] | ||||
Aq. 1.0% | Hydrogen peroxide scavenging, reducing power assays | H2O2 scavenging for 0.2 and 1.0% extract concentration = 34.6 and 58.3%, respectively. Reducing power for 0.2 and 1.0% extract = 59.8 and 94.7% activity, respectively; while standard thiobarbitaric acid extract at 0.2 and 1.0% = 59.7 and 86.3% activity, respectively | [62] | ||||
MeOH | DPPH free radical scavenging assay | DPPH scavenging; IC50 = 126.71 μg/mL, ascorbic acid; IC50 = 20.13 μg/mL; total antioxidant capacity of extract = 5.038 mg (mg AAE/g) | [151] | ||||
PE, EtOAc, EtOH, Aq. extract | ABTS assay | PE; EC50 = 40.6 μg/mL, EtOAc; EC50 = 27.2 μg/mL; EtOH; EC50 = 73.8 μg/mL; Aq.; EC50 = 13.2 μg/mL, ascorbic acid; EC50 = 11.5 μg/mL | [152] | ||||
Whole plant | HyEtOH extract and L-Mimosine compound | DPPH radical scavenging assay | At concentration 31.25–250 μg/mL, HyEtOH extract (IC50 = 103.88 μg/mL), L-mimosine (IC50 = 233.06 μM) | [31] | |||
Isolated flavonoids from EtOAc-soluble fractions of MeOH | DPPH free radical, OH radical scavenging assays | DPPH = % inhibition at 20–140 µg/mL, standard ascorbic acid at 0–100 µg/mL, OH radical scavenging at 240–1000 µg/mL; quercetin standard at 0–300 µg/mL showed significant results | [153] | ||||
EtOH | Hydrogen peroxides and superoxide scavenging assay | H2O2 assay; extract (IC50 = 19 mg/mL) ascorbic acid; IC50 = 5.2 mg/mL, O2- assay; extract (IC50 = 80.4 mg/mL), gallic acid; IC50 = 50.10 mg/mL | [154] | ||||
Aerial parts | MeOH extract and fractions (Hex, EtOAc, ACE, and MeOH) | DPPH free radical scavenging activity | DPPH assay; MeOH extract = (IC50 7.18 μg/mL) Fractions; MeOH = (IC50 158.4 μg/mL); Hex = (IC50 92.30 μg/mL); EtOAc = (IC50 49.59 μg/mL); ACE = (IC50 45.63 μg/mL). Ascorbic acid = IC50 20.13 μg/mL | [46] | |||
M. caesalpi- niifolia | Leaves | EtOH and EtOAc fractions | DPPH free radical scavenging assay | EtOH extract = 35.3 g vitamin C.eq /kg; EtOAc fraction = 65.3 g vitamin C eq/kg | [32] | ||
M. pigra | Leaves | HyMeOH | DPPH free radical scavenging activity, oxygen radical absorbance capacity (ORAC) | DPPH = 1268 µmol TE/g; ORAC = 2287 µmol TE/g; chlorogenic acid (reference drug), DPPH = 2927 µmol TE/µmol; ORAC = 11.939 µmol TE/µmol; quercetin (reference drug); DPPH = 6724 µmol TE/µmol; ORAC = 22,218 µmol TE/µmol | [155] | ||
M. hamata | Whole plant | Crude EtOH extract and sub-fraction (EtOAc and diethyl ether) | DPPH radical scavenging, hydrogen peroxide scavenging assay | % inhibition at 100 μg/mL; DPPH scavenging; crude EtOH extract = 76.01% EtOAc, diethyl ether sub-fraction = 96.63%; ascorbic acid = 93.52%; H2O2 scavenging; extract = 67.81% EtOAc, diethyl ether sub-fraction = 88.43%; ascorbic acid = 86.87% scavenging activity | [29] | ||
Stem | MeOH, cycloHex, and EtOAc | DPPH free radical scavenging assay, ABTS scavenging assay | In vitro | DPPH radical scavenging assay IC50; MeOH = 0.70 μg/mL, EtOAc = 0.85 μg/mL, cycloHex = 0.95 μg/mL, ascorbic acid = 0.60 μg/mL; ABTS assay IC50; MeOH = 0.35 μg/mL, EtOAc = 0.37 μg/mL; cycloHex = 0.40 μg/mL; ascorbic acid = 0.32 μg/mL | [33] | ||
Leaves, stems, roots, seeds | PE, CF, BuOH, and Aq. | DPPH free radical scavenging assay | IC50; leaves = 51.30–56.50 μg/mL, stems = 51.80–61.80 μg/mL, roots = 26.33–73.16 μg/mL, seeds = 16.60–51.16 μg/mL | [156] | |||
M. albida | Whole fresh plant | Aq. | DPPH radical, ferric reducing antioxidant power (FRAP), Trolox-equivalent antioxidant capacity (TEAC), oxygen radical absorption capacity (ORAC), low-density lipoprotein (LDL) assays | DPPH = 1540 µmol TE/g FRAP = 1070 µmol TE/g, TEAC = 1770 µmol TE/g, ORAC = 1870 µmol TE/g LDL = 50% inhibition | [157] | ||
M. invisa | Leaves | Aq. Extract | DPPH radical scavenging assay | In vitro | Aq. extract IC50 = 0.119 mg/mL Ascorbic acid IC50 = 0.058 mg/mL | [127] | |
M. verrucosa | Bark | EtOH | DPPH radical and ABTS radical cation scavenging assay | - | DPPH (IC50) = 33.22 μg/mL, ABTS (IC50) = 4.91 μg/mL | [137] | |
M. pteridifo- lia | Bark | EtOH | DPPH radical and ABTS radical cation scavenging assay | DPPH (IC50) = 51.82 μg/mL, ABTS (IC50) = 4.88 μg/mL | [137] | ||
Anticancer activity | M. tenuiflora | Biofilm of cortex and chitosan | Biocomposite film | (3T3) fibroblast by MTT assays | Cells decreased significantly in the 90:10 and 80:20 chitosan/M. tenuiflora films. Cytotoxicity increased in high-concentration M. tenuiflora (70:30) and chitosan films (100:0) | [129] | |
Bark | EtOH | MTT assay | Human tumor cell lines HL-60 (acute myeloid leukemia), HCT-116 (Colorectal carcinoma), PC-3 (prostate adenocarcinoma), SF-295 (glioblastoma) | Extract displayed IC50 ≥ 50 μg/mL against all cell lines, while no activity was observed against HCT-116 | [137] | ||
M. pudica | Leaves | PE, EtOAc, EtOH, Aq. extract | MTT assay | In vitro: Human cancer cell lines from lungs (CHAGO), liver (HepG2), colon (SW620) | CHAGO cell; absolute EtOAc (IC50 = 29.74 μM), SW620 cell; EtOAc (IC50 = 11.12 μM) and absolute EtOH (IC50 = 5.85 μM); HepG2 cell; EtOAc (IC50 = 2 29.81 μM) and absolute EtOH (IC50 = 10.11 μM) | [152] | |
Whole plant | HyEtOH extract and L-mimosine compound | MTT assay | In vitro: Daudi cell line | At concentration of 12.5–400 μg/mL; Extract showed IC50 = 201.65 μg/mL and L- Mimosine (IC50 = 86.61 μM) | [31] | ||
M. pigra | Leaves | HyMeOH | MTT assay | In vitro: Male Wistar rats, endothelial and aortic smooth muscle cell | Extract (0.01–1 mg/mL) showed no significant effect on cellular viability/proliferation | [155] | |
Fruit | Intake orally | Active against tumor | [98] | ||||
M. caesalpi- niifolia | Leaves | EtOH | SRB assay | Human breast cancer cell line MCF-7 | Extract showed maximum effect at 320.0 μg/mL. | [158] | |
Stems, bark | EtOH extract, n-Hex, DCM, EtOAc, Aq. fractions | MTT assay | HCT-116 (colon), OVCAR-8 (ovarian), SF-295 (glioblastoma) tumor cell lines | EtOAc and Aq. fractions showed minimum inhibition of cell proliferation while EtOH showed = 69.5–84.8%, n-Hex fraction = 65.5–86.4%, DCM fraction and betulinic acid ≤ 86.5%., doxorubicin ≥ 83.0% | [49] | ||
M. rubicauli- slam | Stems | MeOH | Hematological parameters (hemoglobin content, RBC, WBC, PCV) | Ehrlich ascites carcinoma (EAC) tumor model, Swiss albino mice | At a dose of 400 mg/kg, the level of WBC increased, with decreases in RBC, PCV as compared to standard drug 5-FU 20 mg/kg,iP | [122] | |
XTT assay (EAC, MCF-7, MDA-MB 435S cell lines | In vivo: Swiss albino mice | At dose of 200 mg/kg; IC50 values of extract; EAC = 72.326 µg/mL, MCF-7 = 69.692 µg/mL, MDA-MB 435S = 80.565 µg/mL; IC50 tamoxifen (stranded), EAC = 22.42µg/mL, MCF-7 = 20.7 µg/mL, MDA-MB 435S = 20.87µg/mL | |||||
M. verrucosa | Barks | EtOH | MTT assay | Human tumor cell lines HL-60 (acute myeloid leukemia), HCT-116 (colorectal carcinoma), PC-3 (prostate adenocarcinoma), SF-295 (glioblastoma) | Extract displayed IC50 ≥ 50 μg/mL against all cell lines | [137] | |
M. pteridifo-lia | Barks | EtOH | MTT assay | Human tumor cell lines HL-60 (acute myeloid leukemia), HCT-116 (colorectal carcinoma), PC-3 (prostate adenocarcinoma), SF-295 (glioblastoma) | Extract displayed IC50 ≥ 50 μg/mL against all cell lines | [137] | |
Antidiabetic activity | M. pudica | Aerial parts | MeOH extract and fractions (Hex, EtOAc, ACE, and MeOH) | α-Amylase inhibitory assay, α-glucosidase inhibitory assay | In vitro | % inhibition in α- amylase and α-glucosidase inhibitory assays showed by MeOH extract = 33.86 and 95.65% (fractions; Hex = 10.583 & 0.884%, EtOAc = 18.65 and 51.87%, ACE = 15.64 and 16.04%, MeOH= 27.21 and 4.83%), respectively. Standard acarbose = 28.24 and 36.93% | [46] |
Whole plant | 80% EtOH | Oral glucose tolerance test (OGTT) and fasting blood glucose test | Streptozotocin (STZ)-induced diabetic male albino Wistar rats | Extract 500 mg/kg bw did not decrease blood glucose in STZ-induced diabetic rats as compared to 0.5 mg/kg bw. After 1 week, blood glucose reduction shown by extract (500 mg/kg bw) = 421.00 mg/dL, glybenclamide (0.5 mg/kg bw) = 572.67 mg/dL | [159] | ||
Whole plant | Aq. and HyEtOH extracts | Fasting blood glucose test (FBG) | Streptozotocin (STZ)-induced diabetic male albino Wistar rats | Significantly decreased FBG levels At 250 mg/kg bw concentration of Aq. = 517 mg/dL, Hy-EtOH = 484.00 mg/dL. At 500 mg/kg bw concentration Aq. = 309.88 mg/dL, HyEtOH = 484.00 mg/dL, glibenclamide (0.5 mg/kg bw) = 419.00 mg/dL | [160] | ||
Leaves | ACE–Aq.–AA (8.0 mL, 70:29.5:0.5) | α-Amylase and α-glucosidase inhibitory assay | In vitro | α-Amylase = 189.3 μmol AE/g; α-glucosidase = 6.6 μmol AE/g. Acarbose was used as the positive control. | [150] | ||
M. pigra | Aq. extracts | Leaves | Fasting blood glucose (FBG) | Normoglycemic male ICR mice | Significant FBG reduction in aq. extract (200 mg/kg/bw) = 14.84%, (100 mg/kg bw) = 16.60% (400 mg/kg bw) = 9.28%, insulin (0.5 IU /kg) = 54.05%, glibenclamide (1 mg/kg) = 31.39% | [127] | |
Diabetic male ICR mice | Extract (100 mg/kg bw) = 25.01%, insulin (0.5 IU /kg) = 56.62%, glibenclamide (1 mg/kg) = 18.51% | ||||||
Stems | MeOH | Glucose oxidase method | Swiss albino male mice | Significant blood glucose reduction by extract at 400 mg/kg/bw = 50.50%, glibenclamide (10 mg/ kg/bw) = 56.33% | [97] | ||
Roots | EtOH | Fasting blood glucose (FBG) | Albino rats | Significant blood glucose reduction in acute study extract (250 and 500 mg/kg) = 360.00 and 391.80 mg/dL respectively; glibenclamide (10 mL/kg) = 485.8 mg/dL. In prolonged study, extract (250 and 500 mg/kg) = 140.00 and 125.00 mg/dL, respectively. Glibenclamide (10 mL/kg) = 273.60 mg/dL | [161] | ||
Wound-healing effects | M. tenuiflora | Leaves | Herbal mix of leaf extract (20%) and A. Vulgaris (20%) | In vitro/scratch assay | In vivo: Human keratinocyte (HaCaT) and umbilical vein endothelial cells (HUVECs), mouse fibroblast 3T3-L1 cells | Rapid wound healing observed | [162] |
Bark | Aq. extracts, EtOH-precipitated compounds (EPC) | Mitochondrial activity (MTT, WST-1), proliferation (BrdU incorporation), necrosis (LDH) | In vitro: Human primary dermal fibroblasts and HaCaT keratinocytes | Aq. extract (10 and 100 µg/mL) loss of cell viability was observed proliferation in dermal fibroblasts. EPC (10 µg/mL) only stimulated mitochondrial activity and proliferation of dermal fibroblasts. EPC at 100 µg/mL showed minor stimulation of human kerationocytes | [108] | ||
Whole plant | 10% concentration | Adult human external use | Significant results observed | [50] | |||
Whole plant | MeOH | Chorioallantoic membrane (CAM) model | Ex vivo: Fertilized chick eggs | Significant results observed | [163] | ||
Crude EtOH cortex extract standardized in its tannin concentration (1.8%) | Double-blind, randomized, placebo-controlled clinical trial | Patients diagnosed withvenous leg ulceration (VLU) | Ulcer size was reduced by 92% | [24] | |||
Hypolipide-mic activity | M. pudica | Whole plant | 80% EtOH | TC, TG, HDL, LDL | Streptozotocin (STZ)-induced diabetic male albino Wistar rats | Extract at 500 mg/kg bw increased HDL level = 46.33 mg/dL but decreased TC = 111.67 mg/dL, TG = 121.67 mg/dL, LDL = 41.00 mg/dL in the diabetic rats as compared to standard glybenclamide (0.5 mg/kg bw) | [159] |
Leaves | EtOH | TG, TC, VLDL, LDL, HDL | Wistar albino rats, induced hepatic injury by (CCl4) | Extract at the dose of 400 mg/kg showed significant decreases in TG 96.8 mg/dL, TC = 98.7 mg/dL, VLDL = 26.9 mg/dL, LDL = 37.4 mg/dL, HDL = 34.3 mg/dL | [58] | ||
Anti-infla-mmatory and hepato-protective activities | M. tenuflora | Bark | MeOH/NaOH and EtOH precipitation polysaccride | Edematogenic effect | Wistar rats of acute inflammation (paw edema and peritonitis) | Edematogenic effect at 1 mg/kg−concentration of polysaccharides extracted from M. tenuiflora bark was = 40x as compared to saline, while inhibited by L-NAME = 52%, dexamethasone = 26% | [164] |
M. pudica | Leaves | Aq. | Bovine serum albumin, egg | In vitro | Reduced activity of extract in serum albumin at 0.2 and 1.0% concentration = 59.7 and 83.7%, respectively; while drug diclofenac sodium = 51.5%; In egg at 0.2 and 1.0% conc = 39.6 and 76.7%, respectively. Standard drug diclofenac sodium = 42. 5% | [62] | |
Leaves | Aq. | Sperm motility, sperm morphology, sperm count | Adult male Sprague–Dawley rats, cadmium-induced testicular damage | (1) Significant activation of sperm motility shown by extract at 250 mg/kg = 13.00%; 500 mg/kg = 9.00%, control group (Aq.) = 15.00%. (2) Both doses showed significant effects on sperm morphology. (3) Sperm counts were significantly increased at 250 mg/kg = 4.18 × 106/cc; 500 mg/kg = 2.54 × 106/cc; control group = 12.78 × 106/cc | [165] | ||
Whole plant | Crude powder | ALP, ACP, LPO, γ-GT, AST, ALT. | Male albino rats, induced jaundice by (CCl4) | 100 mg/kg dose of extract significantly reduced the levels of all parameters and protected the hepatic cells | [57] | ||
M. caesalpi- niifolia | Leaves | HyOH extract, EtOAc fraction | Histopathological analysis | In vivo: Adult male Wistar rats | HyOH extract (125 and 250 mg/kg), EtOAc fraction (25 and 50 mg/kg) were effective | [166] | |
M. pigra | Leaves | HyMeOH | TNFα-induced | In vitro: male Wistar rats, endothelial cells | Extract (0.01–1 mg/mL) inhibited 90% and pyrrolidine dithiocarbamate (200 mM) inhibited 98% TNFα | [155] | |
Chronic hypoxic PAH | In vivo: Male Wistar rats | Decreased pulmonary arterial pressure = 22.3%, pulmonary artery = 20.0%, cardiac remodeling = 23.9% was observed | [155] | ||||
Antinoci-ceptive activity | M. pudica | Leaves | EtOAc | Hot plate test, tail flick test, AA-induced writhing test | Adult Wistar rats | Hot plate test after 30 min significantly increased analgesic activity by extract at 100 mg/kg = 8.03, 200 mg/kg = 8.51; 400 mg/kg = 8.93; standard diclofenac sod. = 9.66. Tail flick test after 30 mins significantly increased analgesic activity at 100 mg/kg extract = 6.78, 200 mg/kg = 8.16; 400 mg/kg = 7.98; standard diclofenac sod. = 8.11. Significant reduced writhing shown by extract at 100, 200, and 400 mg/kg = 20.18, 33.42, and 43.46%, respectively; standard diclofenac sodium = 52.01% | [167] |
M. Pigra | Stems | MeOH | AA-induced writhing test | Swiss albino mice male | Significant reduction in writhing; extract (400 mg/kg/bw) = 85.01%, aspirin (400 mg/kg/bw) = 59.97% | [97] | |
M. albida | Roots | Aq. | AA-induced writhing test, hot plate test | Male ICR mice | Extract (50 mg/kg) and dypirone (500 mg/kg) reduced writhing. Fentanyl (0.1 mg/kg) and extract at variable concentrations showed pain latency | [106] | |
Antiepile-ptic activity | M. pudica | Leaves | EtOAc | Electric shocks, PTZ-induced convulsions, INH-induced convulsions | Swiss albino mice | In electric shock test, extract at 100, 200, and 400 mg/kg and diazepam 04 mg/kg exhibited delayed onset time of convulsion = 1.87, 2.69, 3.21, and 3.53 s, as well as decreased duration of convulsion of 68.09, 53.54, 42.21, and 38.89 s, respectively. In PTZ-induced convulsion test, extract at 100, 200, and 400 mg/kg and diazepam 04 mg/kg showed delayed onset time of convulsion = 5.38, 6.08, 6.98, and 7.81 min and decreased duration of convulsion of 14.76, 12.65,11.13, and 9.39 min, respectively. In INH-induced convulsion test, extract at 100 mg/kg = 37.21, 200 mg/kg = 45.49, 400 mg/kg = 58.62 min, diazepam 04 mg/kg = 69.14 min delayed convulsion latency | [167] |
Roots | EtOH | Maximal-electroshock-induced seizures (MES) and pentylenetetrazole (PTZ)-induced seizures | Adult Swiss albino mice | In MES, the % inhibition of convulsions in mice at different doses (1000 mg/kg = 42.41%; 2000 mg/kg = 52.35%) were noted and standard valproate showed 73.86% inhibition at 200 mg/kg. In PTZ-induced seizure, the clonic convulsion onset time, duration of clonic convulsions, and postictal depression were observed for a period of 30 min. Extract (1000 and 2000 mg/kg) showed significant decreases in numbers and durations of myoclonic jerks, clonic seizures, and postictal depression. | [35] | ||
Neurophar-macological activities | M. tenuiflora | Whole plant | MeOH | Acetylcholinesterase inhibitory therapy | Ex vivo | Plant showed anti-Alzheimer’s properties | [163] |
M. pudica | Whole plant | EtOH | Swimming endurance test, radial arm maze, Morris Aq. maze and retention phase | In vivo: Albino Wister rats suffering from chronic Alzheimer’s | Oral dose of 500 mg/kg of extract and 2 mg/kg diazepam standard were effective in swimming endurance test. In all other tests, extract was found to effective in reducing stress as compared to standard D-galactose + Piracetam | [154] | |
Whole plant | Aq. | Vertical grid test, horizontal grid test, immunohistochemistry | In vitro: Male C57BL/6J mice | In vertical grid test, extract at 100 and 300 mg/kg significantly increased time taken to climb the grid. In horizontal grid test, extract at 100 and 300 mg/kg decreased the hang time, extract at 100 and 300 mg/kg decreased SYN and increased DAT and TH-positive cells | [168] | ||
Leaves | EtOAc | Locomotor activity, rotarod and traction test | Swiss albino mice | Significant decreased in locomotor activity was observed in extract at 100 mg/kg = 362.43, 200 mg/kg = 331.24, 400 mg/kg = 276.12, diazepam 04 mg/kg = 152.41.In rotarod test, the fall time was decreased significantly by extract at 100 mg/kg = 173.45, 200 mg/kg = 149.13, 400 mg/kg = 121.43, diazepam 04 mg/kg = 19.21. In traction test, the holding time of mice was significantly decreased by extract at 100 mg/kg = 4.83, 200 mg/kg = 3.47, 400 mg/kg = 2.75, diazepam 04 mg/kg = 1.03 | [167] | ||
Leaves | Aq. | Locomotor activity, elevated plus maze test, rotarod test | Adult Swiss albino mice | % change in locomotor activity shown by extract 200 mg/kg = 56.33%, while standard diazepam 0.5 mg/kg = 79.61%. Elevated maze test; extract 200 kg/mg and diazepam 0.5 mg/kg; increased number of open arm entries = 67.92% and 78.59%; decreased time spent in closed arms = 7.32% and 8.64%. In rotarod test, the fall time was decreased significantly by extract 200 kg/mg = 152.1 and diazepam 0.5 mg/kg 157.6 | [169] | ||
Whole plant | Aq. | Cell viability or MTT assay | In vitro: Human neuroblastoma SH-SY5Y cells | At 300 µg, extract showed IC50 = 211.05 μg/mL against parkinsonism | [170] | ||
M. albida | Roots | Aq. | Elevated plus maze hole board test, open field test, rotarod test | Male ICR mice | In both elevated plus maze and hold board tests, the extract showed non-significant results at (3.2, 12.5, 25, and 50 mg/kg concentration, while diazepam (1 mg/kg.ip) showed significant results. In open field test, the significant effects at variable concentrations (50, 100, 200 mg/kg) extract of 200 mg/kg and diazepam (1 mg/kg.ip) showed significant results in rotarod test | [106] | |
Antiallergic and antihyper-uricemic activities | M. tenuiflora | Bark | Glyceric extract | Patch test | Women suffering from acute eczema | Positive result was observed | [113] |
M. pudica | Leaves | EtOH 70% | Inhibitory activity assay | In vitro: Male rats (Rattus norvegicus) | Inhibition % of uric acid formation in M. pudica tablet IC50 = 68.04 ppm, extract IC50 =32.75 ppm, allopurinol (standard) IC50 = 18.73 ppm | [171] | |
Ex vivo: Swiss–Webster mice (Mus musculus) | Inhibitory activity on uric acid formation shown by M. pudica tablet 125 mg/kg = 36%, extract = 43% | ||||||
Laravicidal, antiparasitic, and molluscici-dal activities | M. tenuiflora | Leaves and stem | Parasitological and histological analysis | Female lambs | No significant effect observed | [172] | |
Leaves | Hex, ACE, MeOH | Antiprotozoal assay | In vitro: E. histolytica, G. lamblia | At concentration of 2.5–200 µg/mL; E. histolytica and G. lamblia showed activities in Hex (IC50) = 65.9 and 80.2 μg/mL, ACE = 80.7 and 116.8 μg/mL, MeOH = 73.5 and 95.5 μg/mL, respectively | [173] | ||
Stems | EtOH | In vitro: Biomphalaria glabrata | At 100 μg/mL; LC10 = 6.59 mg/L; LC50 = 20.22 mg/L; LC90 = 62.05 mg/L | [174] | |||
MTT assay and counting parasites | In vitro: Human leishmaniases | Extract of Mimosa at concentrations of 500 and 1000 mg/L rapidly reduced parasite proliferation | [175] | ||||
M. pudica | Leaves | Aq. | Larvicidal assay | Larvae (Aedes aegypti) | Poor larvicidal action at dose of 2000 mg/kg | [176] | |
M. caesalpiniifolia | Leaves | Dry plant leaves and condensed tannin | Worm burden | In vivo: Goats | Significantly controlled the gastrointestinal nematodes (Haemonchus, Tricho strongylus, Oesophagostomum) in goats | [177] | |
Antispasmo-lytic, antivenom, and antiviral activities | M. tenuiflora | Bark | BuOH, EtOAc, MeOH | In vitro | Guinea pigs and rats | Buthanol, EtOAc, and MeOH at 30.0 μg/mL showed significant results. | [135] |
Aq. extract and fractions (DCM, BuOH and EtOAc) | Envenomation | Male BALB/c mice (in vitro) | Inhibition (%) at 30 mg/kg Aq. extract = 76%; at 40 mg/kg; DCM fraction = 73% butyl alcohol, fraction = 81%; EtOAc fraction = 86% | [40] | |||
M. hamta | Whole plant and callus tissue | EtOH extract, Fractions, Aq., CF, PE, BZ | Plaque inhibition method | In vivo: H. simplex, Poliomyelitis type 1, V. stomatitis | EtOH extract showed significant activities against all three viruses, while PE and CF fractions were found to be active against V. stomatitis | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, I.; Rizwan, K.; Ashar, A.; Rasheed, T.; Amarowicz, R.; Kausar, H.; Zia-Ul-Haq, M.; Marceanu, L.G. A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa. Int. J. Mol. Sci. 2021, 22, 7463. https://doi.org/10.3390/ijms22147463
Majeed I, Rizwan K, Ashar A, Rasheed T, Amarowicz R, Kausar H, Zia-Ul-Haq M, Marceanu LG. A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa. International Journal of Molecular Sciences. 2021; 22(14):7463. https://doi.org/10.3390/ijms22147463
Chicago/Turabian StyleMajeed, Ismat, Komal Rizwan, Ambreen Ashar, Tahir Rasheed, Ryszard Amarowicz, Humaira Kausar, Muhammad Zia-Ul-Haq, and Luigi Geo Marceanu. 2021. "A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa" International Journal of Molecular Sciences 22, no. 14: 7463. https://doi.org/10.3390/ijms22147463
APA StyleMajeed, I., Rizwan, K., Ashar, A., Rasheed, T., Amarowicz, R., Kausar, H., Zia-Ul-Haq, M., & Marceanu, L. G. (2021). A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa. International Journal of Molecular Sciences, 22(14), 7463. https://doi.org/10.3390/ijms22147463