Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma
Abstract
:1. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Signaling and Anti-Tumor Effect in Melanoma
1.1. General TRAIL Signaling in Melanoma
1.2. Resistance Mechanism to TRAIL in Melanoma
1.3. Combination Strategies for TRAIL
2. Arginine Deprivation Therapy (ADT) for Melanoma Cells
2.1. Signaling of and Response to Arginine Deprivation in Melanoma
2.2. Mechanisms of Resistance to ADT
2.3. Combination Strategies to Enhance ADT
3. Combination of TRAIL and ADI-PEG20 for Melanoma Cells
4. Future Perspective and Summary
4.1. TRAIL
4.2. ADI-PEG20
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASS1 | argininosuccinate synthetase |
ADI-PEG20 | arginine deiminase |
ADT | Arginine deprivation therapy |
ADI-PEG20 | arginine deiminase pegylated-20 |
AIF | apoptosis-inducing factor |
ASL | argininosuccinate lyase |
DISC | death-inducing signaling complex |
endoG | endonuclease G |
ER | endoplasmic reticulum |
FADD | Fas-associated death domain |
HIF1α | hypoxia inducible factor-1 alpha |
IAPs | inhibitors of apoptosis proteins |
MDSC | myeloid-derived suppressor cell |
mTORC1 | mammalian target of rapamycin complex 1 |
NO | nitric oxide |
OTC | ornithine transcarbamoylase |
OPG | osteoprogeterin |
rhArg1 | recombinant arginase I |
ROS | reactive oxygen species |
SAHA | suberoylanilide hydroxamic acid |
SMAC | second mitochondrial activator of caspases |
sTRAIL | soluble TRAIL |
tBID | truncated Bid |
TRAIL | tumor necrosis factor-related apoptosis-inducing ligand |
UPR | unfolded protein response |
References
- Pitti, R.M.; Marsters, S.A.; Ruppert, S.; Donahue, C.J.; Moore, A.; Ashkenazi, A. Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. J. Biol. Chem. 1996, 271, 12687–12690. [Google Scholar] [CrossRef] [Green Version]
- Wiley, S.R.; Schooley, K.; Smolak, P.J.; Din, W.S.; Huang, C.P.; Nicholl, J.K.; Sutherland, G.R.; Smith, T.D.; Rauch, C.; Smith, C.A. Identification and Characterization of a New Member of the TNF Family That Induces Apoptosis. Immunity 1995, 3, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, A.; Pai, R.C.; Fong, S.; Leung, S.; Lawrence, D.A.; Marsters, S.A.; Blackie, C.; Chang, L.; McMurtrey, A.E.; Hebert, A.; et al. Safety and Antitumor Activity of Recombinant Soluble Apo2 Ligand. J. Clin. Investig. 1999, 104, 155–162. [Google Scholar] [CrossRef]
- Daniels, R.A.; Turley, H.; Kimberley, F.C.; Liu, X.S.; Mongkolsapaya, J.; Ch’en, P.; Xu, X.N.; Jin, B.; Pezzella, F.; Screaton, G.R. Expression of TRAIL and TRAIL Receptors in Normal and Malignant Tissues. Cell Res. 2005, 15, 430–438. [Google Scholar] [CrossRef]
- Walczak, H.; Miller, R.E.; Ariail, K.; Gliniak, B.; Griffith, T.S.; Kubin, M.; Chin, W.; Jones, J.; Woodward, A.; Le, T.; et al. Tumoricidal Activity of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Vivo. Nat. Med. 1999, 5, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kimberley, F.C.; Screaton, G.R. Following a TRAIL: Update on a Ligand and Its Five Receptors. Cell Res. 2004, 14, 359–372. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, H.N.; Ashkenazi, A. Apo2L/TRAIL and Its Death and Decoy Receptors. Cell Death Differ. 2003, 10, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emery, J.G.; McDonnell, P.; Burke, M.B.; Deen, K.C.; Lyn, S.; Silverman, C.; Dul, E.; Appelbaum, E.R.; Eichman, C.; DiPrinzio, R.; et al. Osteoprotegerin Is a Receptor for the Cytotoxic Ligand TRAIL. J. Biol. Chem. 1998, 273, 14363–14367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritzker, L.B.; Scatena, M.; Giachelli, C.M. The Role of Osteoprotegerin and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Human Microvascular Endothelial Cell Survival. Mol. Biol. Cell 2004, 15, 2834–2841. [Google Scholar] [CrossRef] [Green Version]
- Mariani, S.M.; Krammer, P.H. Differential Regulation of TRAIL and CD95 Ligand in Transformed Cells of the T and B Lymphocyte Lineage. Eur. J. Immunol. 1998, 28, 973–982. [Google Scholar] [CrossRef]
- Bellail, A.C.; Qi, L.; Mulligan, P.; Chhabra, V.; Hao, C. TRAIL Agonists on Clinical Trials for Cancer Therapy: The Promises and the Challenges. Rev. Recent Clin. Trials 2009, 4, 34–41. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, X.X.; Fiscella, M.; Shimada, O.; Humphreys, R.; Albert, V.; Kakehi, Y. Monoclonal Antibody to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor 2 (TRAIL-R2) Induces Apoptosis in Primary Renal Cell Carcinoma Cells in Vitro and Inhibits Tumor Growth in Vivo. Int. J. Oncol. 2006, 28, 421–430. [Google Scholar] [CrossRef]
- Wajant, H. TRAIL and NFkappaB Signaling—A Complex Relationship. Vitam. Horm. 2004, 67, 101–132. [Google Scholar] [CrossRef]
- Kischkel, F.C.; Lawrence, D.A.; Chuntharapai, A.; Schow, P.; Kim, K.J.; Ashkenazi, A. Apo2L/TRAIL-Dependent Recruitment of Endogenous FADD and Caspase-8 to Death Receptors 4 and 5. Immunity 2000, 12, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Kischkel, F.C.; Lawrence, D.A.; Tinel, A.; LeBlanc, H.; Virmani, A.; Schow, P.; Gazdar, A.; Blenis, J.; Arnott, D.; Ashkenazi, A. Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8. J. Biol. Chem. 2001, 276, 46639–46646. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhu, H.; Xu, C.J.; Yuan, J. Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis. Cell 1998, 94, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X. Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors. Cell 1998, 94, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Hersey, P.; Zhang, X.D. How Melanoma Cells Evade Trail-Induced Apoptosis. Nat. Rev. Cancer 2001, 1, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Griffith, T.S.; Chin, W.A.; Jackson, G.C.; Lynch, D.H.; Kubin, M.Z. Intracellular Regulation of TRAIL-Induced Apoptosis in Human Melanoma Cells. J. Immunol. 1998, 161, 2833–2840. [Google Scholar]
- Zhang, X.D.; Franco, A.; Myers, K.; Gray, C.; Nguyen, T.; Hersey, P. Relation of TNF-Related Apoptosis-Inducing Ligand (TRAIL) Receptor and FLICE-Inhibitory Protein Expression to TRAIL-Induced Apoptosis of Melanoma. Cancer Res. 1999, 59, 2747–2753. [Google Scholar] [PubMed]
- Kurbanov, B.M.; Fecker, L.F.; Geilen, C.C.; Sterry, W.; Eberle, J. Resistance of Melanoma Cells to TRAIL Does Not Result from Upregulation of Antiapoptotic Proteins by NF-KappaB but Is Related to Downregulation of Initiator Caspases and DR4. Oncogene 2007, 26, 3364–3377. [Google Scholar] [CrossRef] [Green Version]
- Ozoren, N.; Fisher, M.J.; Kim, K.; Liu, C.X.; Genin, A.; Shifman, Y.; Dicker, D.T.; Spinner, N.B.; Lisitsyn, N.A.; El-Deiry, W.S. Homozygous Deletion of the Death Receptor DR4 Gene in a Nasopharyngeal Cancer Cell Line Is Associated with TRAIL Resistance. Int. J. Oncol. 2000, 16, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.I.; Cheriyath, V.; Jacobs, B.S.; Reu, F.J.; Borden, E.C. Reversal of Methylation Silencing of Apo2L/TRAIL Receptor 1 (DR4) Expression Overcomes Resistance of SK-MEL-3 and SK-MEL-28 Melanoma Cells to Interferons (IFNs) or Apo2L/TRAIL. Oncogene 2008, 27, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Naimi, A.; Safaei, S.; Entezari, A.; Solali, S.; Hassanzadeh, A. Knockdown of Enhancer of Zeste Homolog 2 Affects MRNA Expression of Genes Involved in the Induction of Resistance to Apoptosis in MOLT-4 Cells. Anticancer Agents Med. Chem. 2020, 20, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.W.; Punnoose, E.A.; Januario, T.; Lawrence, D.A.; Pitti, R.M.; Lancaster, K.; Lee, D.; von Goetz, M.; Yee, S.F.; Totpal, K.; et al. Death-Receptor O-Glycosylation Controls Tumor-Cell Sensitivity to the Proapoptotic Ligand Apo2L/TRAIL. Nat. Med. 2007, 13, 1070–1077. [Google Scholar] [CrossRef]
- Safa, A.R. C-FLIP, a Master Anti-Apoptotic Regulator. Exp. Oncol. 2012, 34, 176–184. [Google Scholar]
- Chawla-Sarkar, M.; Bae, S.I.; Reu, F.J.; Jacobs, B.S.; Lindner, D.J.; Borden, E.C. Downregulation of Bcl-2, FLIP or IAPs (XIAP and Survivin) by SiRNAs Sensitizes Resistant Melanoma Cells to Apo2L/TRAIL-Induced Apoptosis. Cell Death Differ. 2004, 11, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geserick, P.; Drewniok, C.; Hupe, M.; Haas, T.L.; Diessenbacher, P.; Sprick, M.R.; Schön, M.P.; Henkler, F.; Gollnick, H.; Walczak, H.; et al. Suppression of CFLIP Is Sufficient to Sensitize Human Melanoma Cells to TRAIL- and CD95L-Mediated Apoptosis. Oncogene 2008, 27, 3211–3220. [Google Scholar] [CrossRef] [Green Version]
- Hamaï, A.; Richon, C.; Meslin, F.; Faure, F.; Kauffmann, A.; Lecluse, Y.; Jalil, A.; Larue, L.; Avril, M.F.; Chouaib, S.; et al. Imatinib Enhances Human Melanoma Cell Susceptibility to TRAIL-Induced Cell Death: Relationship to Bcl-2 Family and Caspase Activation. Oncogene 2006, 25, 7618–7634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, M.; Lee, E.-W.; Seong, D.; Seo, J.; Kim, J.-H.; Grootjans, S.; Kim, S.-Y.; Vandenabeele, P.; Song, J. USP8 Suppresses Death Receptor-Mediated Apoptosis by Enhancing FLIPL Stability. Oncogene 2017, 36, 458–470. [Google Scholar] [CrossRef]
- Lemke, J.; von Karstedt, S.; Abd El Hay, M.; Conti, A.; Arce, F.; Montinaro, A.; Papenfuss, K.; El-Bahrawy, M.A.; Walczak, H. Selective CDK9 Inhibition Overcomes TRAIL Resistance by Concomitant Suppression of CFlip and Mcl-1. Cell Death Differ. 2014, 21, 491–502. [Google Scholar] [CrossRef]
- Venza, M.; Visalli, M.; Oteri, R.; Agliano, F.; Morabito, S.; Teti, D.; Venza, I. The Overriding of TRAIL Resistance by the Histone Deacetylase Inhibitor MS-275 Involves c-Myc up-Regulation in Cutaneous, Uveal, and Mucosal Melanoma. Int. Immunopharmacol. 2015, 28, 313–321. [Google Scholar] [CrossRef]
- Xiao, C.; Yang, B.F.; Song, J.H.; Schulman, H.; Li, L.; Hao, C. Inhibition of CaMKII-Mediated c-FLIP Expression Sensitizes Malignant Melanoma Cells to TRAIL-Induced Apoptosis. Exp. Cell Res. 2005, 304, 244–255. [Google Scholar] [CrossRef]
- Zhang, H.G.; Wang, J.; Yang, X.; Hsu, H.C.; Mountz, J.D. Regulation of Apoptosis Proteins in Cancer Cells by Ubiquitin. Oncogene 2004, 23, 2009–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vucic, D.; Stennicke, H.R.; Pisabarro, M.T.; Salvesen, G.S.; Dixit, V.M. ML-IAP, a Novel Inhibitor of Apoptosis That Is Preferentially Expressed in Human Melanomas. Curr. Biol. 2000, 10, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Zhang, X.Y.; Gray, C.P.; Nguyen, T.; Hersey, P. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis of Human Melanoma Is Regulated by Smac/DIABLO Release from Mitochondria. Cancer Res. 2001, 61, 7339–7348. [Google Scholar]
- Hilmi, C.; Larribere, L.; Giuliano, S.; Bille, K.; Ortonne, J.-P.; Ballotti, R.; Bertolotto, C. IGF1 Promotes Resistance to Apoptosis in Melanoma Cells through an Increased Expression of BCL2, BCL-X(L) and Survivin. J. Investig. Dermatol. 2008, 128, 1499–1505. [Google Scholar] [CrossRef] [Green Version]
- Sarif, Z.; Tolksdorf, B.; Fechner, H.; Eberle, J. Mcl-1 Targeting Strategies Unlock the Proapoptotic Potential of TRAIL in Melanoma Cells. Mol. Carcinog. 2020. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Quast, S.-A.; Plötz, M.; Kammermeier, A.; Eberle, J. Sensitization of Melanoma Cells for TRAIL-Induced Apoptosis by BMS-345541 Correlates with Altered Phosphorylation and Activation of Bax. Cell Death Dis. 2013, 4, e477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, S.-A.; Berger, A.; Eberle, J. ROS-Dependent Phosphorylation of Bax by Wortmannin Sensitizes Melanoma Cells for TRAIL-Induced Apoptosis. Cell Death Dis. 2013, 4, e839. [Google Scholar] [CrossRef]
- Quast, S.-A.; Berger, A.; Plötz, M.; Eberle, J. Sensitization of Melanoma Cells for TRAIL-Induced Apoptosis by Activation of Mitochondrial Pathways via Bax. Eur. J. Cell Biol. 2014, 93, 42–48. [Google Scholar] [CrossRef]
- Eberle, J. Countering TRAIL Resistance in Melanoma. Cancers 2019, 11, 656. [Google Scholar] [CrossRef] [Green Version]
- Fulda, S.; Kufer, M.U.; Meyer, E.; van Valen, F.; Dockhorn-Dworniczak, B.; Debatin, K.M. Sensitization for Death Receptor- or Drug-Induced Apoptosis by Re-Expression of Caspase-8 through Demethylation or Gene Transfer. Oncogene 2001, 20, 5865–5877. [Google Scholar] [CrossRef] [Green Version]
- Quast, S.-A.; Steinhorst, K.; Plötz, M.; Eberle, J. Sensitization of Melanoma Cells for Death Ligand TRAIL Is Based on Cell Cycle Arrest, ROS Production, and Activation of Proapoptotic Bcl-2 Proteins. J. Investig. Dermatol. 2015, 135, 2794–2804. [Google Scholar] [CrossRef] [Green Version]
- Jazirehi, A.R.; Kurdistani, S.K.; Economou, J.S. Histone Deacetylase Inhibitor Sensitizes Apoptosis-Resistant Melanomas to Cytotoxic Human T Lymphocytes through Regulation of TRAIL/DR5 Pathway. J. Immunol. 2014, 192, 3981–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazaana, A.; Sano, E.; Yoshimura, S.; Makita, K.; Hara, H.; Yoshino, A.; Ueda, T. Promotion of TRAIL/Apo2L-Induced Apoptosis by Low-Dose Interferon-β in Human Malignant Melanoma Cells. J. Cell. Physiol. 2019, 234, 13510–13524. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hawkins, O.E.; Vilgelm, A.E.; Pawlikowski, J.S.; Ecsedy, J.A.; Sosman, J.A.; Kelley, M.C.; Richmond, A. Combining an Aurora Kinase Inhibitor and a Death Receptor Ligand/Agonist Antibody Triggers Apoptosis in Melanoma Cells and Prevents Tumor Growth in Preclinical Mouse Models. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 5338–5348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.-T.; Deng, J.; Yue, P.; Owonikoko, T.K.; Khuri, F.R.; Sun, S.-Y. Inhibition of B-Raf/MEK/ERK Signaling Suppresses DR5 Expression and Impairs Response of Cancer Cells to DR5-Mediated Apoptosis and T Cell-Induced Killing. Oncogene 2016, 35, 459–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleten, K.G.; Florenes, V.A.; Prasmickaite, L.; Hill, O.; Sykora, J.; Maelandsmo, G.M.; Engesaeter, B. HvTRA, a Novel TRAIL Receptor Agonist, Induces Apoptosis and Sustained Growth Retardation in Melanoma. Cell Death Discov. 2016, 2, 16081. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Quast, S.-A.; Plötz, M.; Kuhn, N.-F.; Trefzer, U.; Eberle, J. RAF Inhibition Overcomes Resistance to TRAIL-Induced Apoptosis in Melanoma Cells. J. Investig. Dermatol. 2014, 134, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, D.; He, Y.; Koopmans, I.; Wiersma, V.R.; van Ginkel, R.J.; Samplonius, D.F.; Helfrich, W.; Bremer, E. Programmed Death Ligand 1 (PD-L1)-Targeted TRAIL Combines PD-L1-Mediated Checkpoint Inhibition with TRAIL-Mediated Apoptosis Induction. Oncoimmunology 2016, 5, e1202390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albaugh, V.L.; Pinzon-Guzman, C.; Barbul, A. Arginine-Dual Roles as an Onconutrient and Immunonutrient. J. Surg. Oncol. 2017, 115, 273–280. [Google Scholar] [CrossRef]
- Szefel, J.; Danielak, A.; Kruszewski, W.J. Metabolic Pathways of L-Arginine and Therapeutic Consequences in Tumors. Adv. Med. Sci. 2019, 64, 104–110. [Google Scholar] [CrossRef]
- Dillon, B.J.; Prieto, V.G.; Curley, S.A.; Ensor, C.M.; Holtsberg, F.W.; Bomalaski, J.S.; Clark, M.A. Incidence and Distribution of Argininosuccinate Synthetase Deficiency in Human Cancers: A Method for Identifying Cancers Sensitive to Arginine Deprivation. Cancer 2004, 100, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Feun, L.; Savaraj, N. Pegylated Arginine Deiminase: A Novel Anticancer Enzyme Agent. Expert Opin. Investig. Drugs 2006, 15, 815–822. [Google Scholar] [CrossRef]
- Izzo, F.; Marra, P.; Beneduce, G.; Castello, G.; Vallone, P.; De Rosa, V.; Cremona, F.; Ensor, C.M.; Holtsberg, F.W.; Bomalaski, J.S.; et al. Pegylated Arginine Deiminase Treatment of Patients with Unresectable Hepatocellular Carcinoma: Results from Phase I/II Studies. J. Clin. Oncol. 2004, 22, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Tsui, S.M.; Lam, W.M.; Lam, T.L.; Chong, H.C.; So, P.K.; Kwok, S.Y.; Arnold, S.; Cheng, P.N.; Wheatley, D.N.; Lo, W.H.; et al. Pegylated Derivatives of Recombinant Human Arginase (RhArg1) for Sustained in Vivo Activity in Cancer Therapy: Preparation, Characterization and Analysis of Their Pharmacodynamics in Vivo and in Vitro and Action upon Hepatocellular Carcinoma Cell (HCC). Cancer Cell Int. 2009, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avruch, J.; Long, X.; Ortiz-Vega, S.; Rapley, J.; Papageorgiou, A.; Dai, N. Amino Acid Regulation of TOR Complex 1. Am. J. Physiol. Endocrinol. Metab. 2009, 296, e592–e602. [Google Scholar] [CrossRef] [Green Version]
- Jewell, J.L.; Guan, K.L. Nutrient Signaling to MTOR and Cell Growth. Trends Biochem. Sci. 2013, 38, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tsun, Z.Y.; Wolfson, R.L.; Shen, K.; Wyant, G.A.; Plovanich, M.E.; Yuan, E.D.; Jones, T.D.; Chantranupong, L.; Comb, W.; et al. Metabolism. Lysosomal Amino Acid Transporter SLC38A9 Signals Arginine Sufficiency to MTORC1. Science 2015, 347, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Onodera, J.; Ohsumi, Y. Autophagy Is Required for Maintenance of Amino Acid Levels and Protein Synthesis under Nitrogen Starvation. J. Biol. Chem. 2005, 280, 31582–31586. [Google Scholar] [CrossRef] [Green Version]
- Poillet-Perez, L.; Xie, X.; Zhan, L.; Yang, Y.; Sharp, D.W.; Hu, Z.S.; Su, X.; Maganti, A.; Jiang, C.; Lu, W.; et al. Autophagy Maintains Tumour Growth through Circulating Arginine. Nature 2018, 563, 569–573. [Google Scholar] [CrossRef]
- Savaraj, N.; You, M.; Wu, C.; Wangpaichitr, M.; Kuo, M.T.; Feun, L.G. Arginine Deprivation, Autophagy, Apoptosis (AAA) for the Treatment of Melanoma. Curr. Mol. Med. 2010, 10, 405–412. [Google Scholar] [CrossRef]
- You, M.; Savaraj, N.; Kuo, M.T.; Wangpaichitr, M.; Varona-Santos, J.; Wu, C.; Nguyen, D.M.; Feun, L. TRAIL Induces Autophagic Protein Cleavage through Caspase Activation in Melanoma Cell Lines under Arginine Deprivation. Mol. Cell Biochem. 2013, 374, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.H.; Coates, J.M.; Bowles, T.L.; McNerney, G.P.; Sutcliffe, J.; Jung, J.U.; Gandour-Edwards, R.; Chuang, F.Y.; Bold, R.J.; Kung, H.J. Arginine Deiminase as a Novel Therapy for Prostate Cancer Induces Autophagy and Caspase-Independent Apoptosis. Cancer Res. 2009, 69, 700–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delage, B.; Luong, P.; Maharaj, L.; O’Riain, C.; Syed, N.; Crook, T.; Hatzimichael, E.; Papoudou-Bai, A.; Mitchell, T.J.; Whittaker, S.J.; et al. Promoter Methylation of Argininosuccinate Synthetase-1 Sensitises Lymphomas to Arginine Deiminase Treatment, Autophagy and Caspase-Dependent Apoptosis. Cell Death Dis. 2012, 3, e342. [Google Scholar] [CrossRef]
- Syed, N.; Langer, J.; Janczar, K.; Singh, P.; Lo Nigro, C.; Lattanzio, L.; Coley, H.M.; Hatzimichael, E.; Bomalaski, J.; Szlosarek, P.; et al. Epigenetic Status of Argininosuccinate Synthetase and Argininosuccinate Lyase Modulates Autophagy and Cell Death in Glioblastoma. Cell Death Dis. 2013, 4, e458. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.P.; Jungbluth, A.A.; Wu, B.W.; Bomalaski, J.; Old, L.J.; Ritter, G. Arginine Deiminase PEG20 Inhibits Growth of Small Cell Lung Cancers Lacking Expression of Argininosuccinate Synthetase. Br. J. Cancer 2012, 106, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bean, G.R.; Kremer, J.C.; Prudner, B.C.; Schenone, A.D.; Yao, J.C.; Schultze, M.B.; Chen, D.Y.; Tanas, M.R.; Adkins, D.R.; Bomalaski, J.; et al. A Metabolic Synthetic Lethal Strategy with Arginine Deprivation and Chloroquine Leads to Cell Death in ASS1-Deficient Sarcomas. Cell Death Dis. 2016, 7, e2406. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, Y.R.; Liu, X.; Chu, C.Y.; Shen, L.J.; Xu, J.; Gaur, S.; Forman, H.J.; Zhang, H.; Zheng, S.; et al. Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells. Sci. Signal. 2014, 7, ra31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Shi, X.; Li, Y.; Zeng, X.; Fan, J.; Sun, Y.; Xian, Z.; Zhang, G.; Wang, S.; Hu, H.; et al. Involvement of Autophagy in Recombinant Human Arginase-Induced Cell Apoptosis and Growth Inhibition of Malignant Melanoma Cells. Appl. Microbiol. Biotechnol. 2014, 98, 2485–2494. [Google Scholar] [CrossRef]
- Fultang, L.; Vardon, A.; De Santo, C.; Mussai, F. Molecular Basis and Current Strategies of Therapeutic Arginine Depletion for Cancer. Int. J. Cancer 2016, 139, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senft, D.; Ronai, Z.A. UPR, Autophagy, and Mitochondria Crosstalk Underlies the ER Stress Response. Trends Biochem. Sci. 2015, 40, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobak, Y.; Kurlishchuk, Y.; Vynnytska-Myronovska, B.; Grydzuk, O.; Shuvayeva, G.; Redowicz, M.J.; Kunz-Schughart, L.A.; Stasyk, O. Arginine Deprivation Induces Endoplasmic Reticulum Stress in Human Solid Cancer Cells. Int. J. Biochem. Cell Biol. 2016, 70, 29–38. [Google Scholar] [CrossRef]
- Santos, C.X.; Tanaka, L.Y.; Wosniak, J.; Laurindo, F.R. Mechanisms and Implications of Reactive Oxygen Species Generation during the Unfolded Protein Response: Roles of Endoplasmic Reticulum Oxidoreductases, Mitochondrial Electron Transport, and NADPH Oxidase. Antioxid. Redox Signal. 2009, 11, 2409–2427. [Google Scholar] [CrossRef]
- Tsai, W.B.; Long, Y.; Park, J.R.; Chang, J.T.; Liu, H.; Rodriguez-Canales, J.; Savaraj, N.; Feun, L.G.; Davies, M.A.; Wistuba, I.; et al. Gas6/Axl Is the Sensor of Arginine-Auxotrophic Response in Targeted Chemotherapy with Arginine-Depleting Agents. Oncogene 2015, 35, 1632–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Changou, C.A.; Chen, Y.R.; Xing, L.; Yen, Y.; Chuang, F.Y.; Cheng, R.H.; Bold, R.J.; Ann, D.K.; Kung, H.J. Arginine Starvation-Associated Atypical Cellular Death Involves Mitochondrial Dysfunction, Nuclear DNA Leakage, and Chromatin Autophagy. Proc. Natl. Acad. Sci. USA 2014, 111, 14147–14152. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, J.D.; Kaufman, R.J. ER Stress and Its Functional Link to Mitochondria: Role in Cell Survival and Death. Cold Spring Harb. Perspect. Biol. 2011, 3, a004424. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zolzer, F.; von Recklinghausen, G.; Rossler, J.; Breit, S.; Havers, W.; Fotsis, T.; Schweigerer, L. Arginine Deiminase Inhibits Cell Proliferation by Arresting Cell Cycle and Inducing Apoptosis. Biochem. Biophys. Res. Commun. 1999, 261, 10–14. [Google Scholar] [CrossRef]
- Gong, H.; Zolzer, F.; von Recklinghausen, G.; Havers, W.; Schweigerer, L. Arginine Deiminase Inhibits Proliferation of Human Leukemia Cells More Potently than Asparaginase by Inducing Cell Cycle Arrest and Apoptosis. Leukemia 2000, 14, 826–829. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.-L.; Wong, G.K.Y.; Chow, H.-Y.; Chong, H.-C.; Chow, T.-L.; Kwok, S.-Y.; Cheng, P.N.M.; Wheatley, D.N.; Lo, W.-H.; Leung, Y.-C. Recombinant Human Arginase Inhibits the in Vitro and in Vivo Proliferation of Human Melanoma by Inducing Cell Cycle Arrest and Apoptosis. Pigment. Cell Melanoma Res. 2011, 24, 366–376. [Google Scholar] [CrossRef]
- Lam, T.L.; Wong, G.K.; Chong, H.C.; Cheng, P.N.; Choi, S.C.; Chow, T.L.; Kwok, S.Y.; Poon, R.T.; Wheatley, D.N.; Lo, W.H.; et al. Recombinant Human Arginase Inhibits Proliferation of Human Hepatocellular Carcinoma by Inducing Cell Cycle Arrest. Cancer Lett. 2009, 277, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Li, Y.Y.; Xu, S.; Leung, L.L.U.K.P.; Zheng, Y.F.; Cheng, P.N.; Ho, J.C. Growth Suppressive Effect of Pegylated Arginase in Malignant Pleural Mesothelioma Xenografts. Respir. Res. 2017, 18, 80. [Google Scholar] [CrossRef] [Green Version]
- Maletzki, C.; Rosche, Y.; Riess, C.; Scholz, A.; William, D.; Classen, C.F.; Kreikemeyer, B.; Linnebacher, M.; Fiedler, T. Deciphering Molecular Mechanisms of Arginine Deiminase-Based Therapy—Comparative Response Analysis in Paired Human Primary and Recurrent Glioblastomas. Chem. Biol. Interact. 2017, 278, 179–188. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Savaraj, N.; Wangpaichitr, M.; Wu, C.; Kuo, M.T.; Varona-Santos, J.; Nguyen, D.M.; Feun, L. The Combination of ADI-PEG20 and TRAIL Effectively Increases Cell Death in Melanoma Cell Lines. Biochem. Biophys. Res. Commun. 2010, 394, 760–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowles, T.L.; Kim, R.; Galante, J.; Parsons, C.M.; Virudachalam, S.; Kung, H.J.; Bold, R.J. Pancreatic Cancer Cell Lines Deficient in Argininosuccinate Synthetase Are Sensitive to Arginine Deprivation by Arginine Deiminase. Int. J. Cancer 2008, 123, 1950–1955. [Google Scholar] [CrossRef] [Green Version]
- Beloussow, K.; Wang, L.; Wu, J.; Ann, D.; Shen, W.C. Recombinant Arginine Deiminase as a Potential Anti-Angiogenic Agent. Cancer Lett. 2002, 183, 155–162. [Google Scholar] [CrossRef]
- Park, I.S.; Kang, S.W.; Shin, Y.J.; Chae, K.Y.; Park, M.O.; Kim, M.Y.; Wheatley, D.N.; Min, B.H. Arginine Deiminase: A Potential Inhibitor of Angiogenesis and Tumour Growth. Br. J. Cancer 2003, 89, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.D.; Bhaumik, J.; Babykutty, S.; Banerjee, U.C.; Fukumura, D. Arginine Dependence of Tumor Cells: Targeting a Chink in Cancer’s Armor. Oncogene 2016, 35, 4957–4972. [Google Scholar] [CrossRef]
- Al-Koussa, H.; El Mais, N.; Maalouf, H.; Abi-Habib, R.; El-Sibai, M. Arginine Deprivation: A Potential Therapeutic for Cancer Cell Metastasis? A Review. Cancer Cell Int. 2020, 20, 150. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Scala, S.; Castello, G.; Daponte, A.; Simeone, E.; Ottaiano, A.; Beneduce, G.; De Rosa, V.; Izzo, F.; Melucci, M.T.; et al. Pegylated Arginine Deiminase Treatment of Patients with Metastatic Melanoma: Results from Phase I and II Studies. J. Clin. Oncol. 2005, 23, 7660–7668. [Google Scholar] [CrossRef]
- Brin, E.; Wu, K.; Lu, H.-T.; He, Y.; Dai, Z.; He, W. PEGylated Arginine Deiminase Can Modulate Tumor Immune Microenvironment by Affecting Immune Checkpoint Expression, Decreasing Regulatory T Cell Accumulation and Inducing Tumor T Cell Infiltration. Oncotarget 2017, 8, 58948–58963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, M.; Ramirez, M.E.; Sierra, R.A.; Raber, P.; Thevenot, P.; Al-Khami, A.A.; Sanchez-Pino, D.; Hernandez, C.; Wyczechowska, D.D.; Ochoa, A.C.; et al. L-Arginine Depletion Blunts Antitumor T-Cell Responses by Inducing Myeloid-Derived Suppressor Cells. Cancer Res. 2015, 75, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.; Koschke, M.; Leuchtner, N.; Luckner-Minden, C.; Habermeier, A.; Rupp, J.; Heinrich, C.; Conradi, R.; Closs, E.I.; Munder, M. Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression. Front. Immunol. 2017, 8, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riess, C.; Shokraie, F.; Classen, C.F.; Kreikemeyer, B.; Fiedler, T.; Junghanss, C.; Maletzki, C. Arginine-Depleting Enzymes—An Increasingly Recognized Treatment Strategy for Therapy-Refractory Malignancies. Cell Physiol. Biochem. 2018, 51, 854–870. [Google Scholar] [CrossRef]
- Feun, L.G.; Marini, A.; Walker, G.; Elgart, G.; Moffat, F.; Rodgers, S.E.; Wu, C.J.; You, M.; Wangpaichitr, M.; Kuo, M.T.; et al. Negative Argininosuccinate Synthetase Expression in Melanoma Tumours May Predict Clinical Benefit from Arginine-Depleting Therapy with Pegylated Arginine Deiminase. Br. J. Cancer 2012, 106, 1481–1485. [Google Scholar] [CrossRef]
- Manca, A.; Sini, M.C.; Izzo, F.; Ascierto, P.A.; Tatangelo, F.; Botti, G.; Gentilcore, G.; Capone, M.; Mozzillo, N.; Rozzo, C.; et al. Induction of Arginosuccinate Synthetase (ASS) Expression Affects the Antiproliferative Activity of Arginine Deiminase (ADI) in Melanoma Cells. Oncol. Rep. 2011, 25, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.B.; Aiba, I.; Lee, S.Y.; Feun, L.; Savaraj, N.; Kuo, M.T. Resistance to Arginine Deiminase Treatment in Melanoma Cells Is Associated with Induced Argininosuccinate Synthetase Expression Involving C-Myc/HIF-1alpha/Sp4. Mol. Cancer Ther. 2009, 8, 3223–3233. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.-B.; Aiba, I.; Long, Y.; Lin, H.-K.; Feun, L.; Savaraj, N.; Kuo, M.T. Activation of Ras/PI3K/ERK Pathway Induces c-Myc Stabilization to Upregulate Argininosuccinate Synthetase, Leading to Arginine Deiminase Resistance in Melanoma Cells. Cancer Res. 2012, 72, 2622–2633. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.B.; Long, Y.; Chang, J.T.; Savaraj, N.; Feun, L.G.; Jung, M.; Chen, H.H.W.; Kuo, M.T. Chromatin Remodeling System P300-HDAC2-Sin3A Is Involved in Arginine Starvation-Induced HIF-1alpha Degradation at the ASS1 Promoter for ASS1 Derepression. Sci. Rep. 2017, 7, 10814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szlosarek, P.W.; Klabatsa, A.; Pallaska, A.; Sheaff, M.; Smith, P.; Crook, T.; Grimshaw, M.J.; Steele, J.P.; Rudd, R.M.; Balkwill, F.R.; et al. In Vivo Loss of Expression of Argininosuccinate Synthetase in Malignant Pleural Mesothelioma Is a Biomarker for Susceptibility to Arginine Depletion. Clin. Cancer Res. 2006, 12, 7126–7131. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, L.J.; Smith, P.R.; Hiller, L.; Szlosarek, P.W.; Kimberley, C.; Sehouli, J.; Koensgen, D.; Mustea, A.; Schmid, P.; Crook, T. Epigenetic Silencing of Argininosuccinate Synthetase Confers Resistance to Platinum-Induced Cell Death but Collateral Sensitivity to Arginine Auxotrophy in Ovarian Cancer. Int. J. Cancer 2009, 125, 1454–1463. [Google Scholar] [CrossRef]
- Huang, H.Y.; Wu, W.R.; Wang, Y.H.; Wang, J.W.; Fang, F.M.; Tsai, J.W.; Li, S.H.; Hung, H.C.; Yu, S.C.; Lan, J.; et al. ASS1 as a Novel Tumor Suppressor Gene in Myxofibrosarcomas: Aberrant Loss via Epigenetic DNA Methylation Confers Aggressive Phenotypes, Negative Prognostic Impact, and Therapeutic Relevance. Clin. Cancer Res. 2013, 19, 2861–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Tsai, W.B.; Wangpaichitr, M.; Tsukamoto, T.; Savaraj, N.; Feun, L.G.; Kuo, M.T. Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence, and Glutamine Addiction. Mol. Cancer Ther. 2013, 12, 2581–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremer, J.C.; Prudner, B.C.; Lange, S.E.S.; Bean, G.R.; Schultze, M.B.; Brashears, C.B.; Radyk, M.D.; Redlich, N.; Tzeng, S.C.; Kami, K.; et al. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Rep. 2017, 18, 991–1004. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.S.; Lu, S.N.; Chao, Y.; Sheen, I.S.; Lin, C.C.; Wang, T.E.; Chen, S.C.; Wang, J.H.; Liao, L.Y.; Thomson, J.A.; et al. A Randomised Phase II Study of Pegylated Arginine Deiminase (ADI-PEG 20) in Asian Advanced Hepatocellular Carcinoma Patients. Br. J. Cancer 2010, 103, 954–960. [Google Scholar] [CrossRef]
- Glazer, E.S.; Piccirillo, M.; Albino, V.; Di Giacomo, R.; Palaia, R.; Mastro, A.A.; Beneduce, G.; Glazer, E.; Piccirillo, M.; Albino, V.; et al. Phase II Study of Pegylated Arginine Deiminase for Nonresectable and Metastatic Hepatocellular Carcinoma. J. Clin. Oncol. 2010, 28, 2220–2226. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Li, Y.; Fan, J.; Zeng, X.; Xian, Z.; Wang, Z.; Sun, Y.; Wang, S.; Song, P.; et al. Blocking Autophagy Enhanced Cytotoxicity Induced by Recombinant Human Arginase in Triple-Negative Breast Cancer Cells. Cell Death Dis. 2014, 5, e1563. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Zhang, X.; Fu, X.; Fan, J.; Luan, J.; Cao, Z.; Yang, P.; Xu, Z.; Ju, D. A Novel and Promising Therapeutic Approach for NSCLC: Recombinant Human Arginase Alone or Combined with Autophagy Inhibitor. Cell Death Dis. 2017, 8, e2720. [Google Scholar] [CrossRef]
- Daylami, R.; Muilenburg, D.J.; Virudachalam, S.; Bold, R.J. Pegylated Arginine Deiminase Synergistically Increases the Cytotoxicity of Gemcitabine in Human Pancreatic Cancer. J. Exp. Clin. Cancer Res. 2014, 33, 102. [Google Scholar] [CrossRef]
- Liu, J.; Ma, J.; Wu, Z.; Li, W.; Zhang, D.; Han, L.; Wang, F.; Reindl, K.M.; Wu, E.; Ma, Q. Arginine Deiminase Augments the Chemosensitivity of Argininosuccinate Synthetase-Deficient Pancreatic Cancer Cells to Gemcitabine via Inhibition of NF-KappaB Signaling. BMC Cancer 2014, 14, 686. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Tsai, W.B.; Chang, J.T.; Estecio, M.; Wangpaichitr, M.; Savaraj, N.; Feun, L.G.; Chen, H.H.; Kuo, M.T. Cisplatin-Induced Synthetic Lethality to Arginine-Starvation Therapy by Transcriptional Suppression of ASS1 Is Regulated by DEC1, HIF-1alpha, and c-Myc Transcription Network and Is Independent of ASS1 Promoter DNA Methylation. Oncotarget 2016, 7, 82658–82670. [Google Scholar] [CrossRef] [Green Version]
- Savaraj, N.; Wu, C.; Li, Y.Y.; Wangpaichitr, M.; You, M.; Bomalaski, J.; He, W.; Kuo, M.T.; Feun, L.G. Targeting Argininosuccinate Synthetase Negative Melanomas Using Combination of Arginine Degrading Enzyme and Cisplatin. Oncotarget 2015, 6, 6295–6309. [Google Scholar] [CrossRef] [Green Version]
- Thongkum, A.; Wu, C.; Li, Y.Y.; Wangpaichitr, M.; Navasumrit, P.; Parnlob, V.; Sricharunrat, T.; Bhudhisawasdi, V.; Ruchirawat, M.; Savaraj, N. The Combination of Arginine Deprivation and 5-Fluorouracil Improves Therapeutic Efficacy in Argininosuccinate Synthetase Negative Hepatocellular Carcinoma. Int. J. Mol. Sci. 2017, 18, 1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlinson, B.K.; Thomson, J.A.; Bomalaski, J.S.; Diaz, M.; Akande, T.; Mahaffey, N.; Li, T.; Dutia, M.P.; Kelly, K.; Gong, I.Y.; et al. Phase I Trial of Arginine Deprivation Therapy with ADI-PEG 20 Plus Docetaxel in Patients with Advanced Malignant Solid Tumors. Clin. Cancer Res. 2015, 21, 2480–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przystal, J.M.; Hajji, N.; Khozoie, C.; Renziehausen, A.; Zeng, Q.; Abaitua, F.; Hajitou, A.; Suwan, K.; Want, E.; Bomalaski, J.; et al. Efficacy of Arginine Depletion by ADI-PEG20 in an Intracranial Model of GBM. Cell Death Dis. 2018, 9, 1192. [Google Scholar] [CrossRef]
- Noh, E.J.; Kang, S.W.; Shin, Y.J.; Choi, S.H.; Kim, C.G.; Park, I.S.; Wheatley, D.N.; Min, B.H. Arginine Deiminase Enhances Dexamethasone-Induced Cytotoxicity in Human T-Lymphoblastic Leukemia CCRF-CEM Cells. Int. J. Cancer 2004, 112, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, T.; Strauss, M.; Hering, S.; Redanz, U.; William, D.; Rosche, Y.; Classen, C.F.; Kreikemeyer, B.; Linnebacher, M.; Maletzki, C. Arginine Deprivation by Arginine Deiminase of Streptococcus Pyogenes Controls Primary Glioblastoma Growth In Vitro and In Vivo. Cancer Biol. Ther. 2015, 16, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Xu, S.; Cui, J.; Poddar, S.; Le, T.M.; Hayrapetyan, H.; Li, L.; Wu, N.; Moore, A.M.; Zhou, L.; et al. Histone Deacetylase Inhibition Is Synthetically Lethal with Arginine Deprivation in Pancreatic Cancers with Low Argininosuccinate Synthetase 1 Expression. Theranostics 2020, 10, 829–840. [Google Scholar] [CrossRef]
- Shuvayeva, G.Y.; Bobak, Y.P.; Vovk, O.I.; Kunz-Schughart, L.A.; Fletcher, M.T.; Stasyk, O.V. Indospicine Combined with Arginine Deprivation Triggers Cancer Cell Death via Caspase-Dependent Apoptosis. Cell Biol. Int. 2020. [Google Scholar] [CrossRef]
- Brin, E.; Wu, K.; Dagostino, E.; Meng-Chiang Kuo, M.; He, Y.; Shia, W.-J.; Chen, L.-C.; Stempniak, M.; Hickey, R.; Almassy, R.; et al. TRAIL Stabilization and Cancer Cell Sensitization to Its Pro-Apoptotic Activity Achieved through Genetic Fusion with Arginine Deiminase. Oncotarget 2018, 9, 36914–36928. [Google Scholar] [CrossRef]
- De Miguel, D.; Lemke, J.; Anel, A.; Walczak, H.; Martinez-Lostao, L. Onto Better TRAILs for Cancer Treatment. Cell Death Differ. 2016, 23, 733–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naval, J.; de Miguel, D.; Gallego-Lleyda, A.; Anel, A.; Martinez-Lostao, L. Importance of TRAIL Molecular Anatomy in Receptor Oligomerization and Signaling. Implications for Cancer Therapy. Cancers 2019, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, Y.; Zhang, Y.; Du, J.; Lv, Y.; Mo, S.; Liu, Y.; Ding, F.; Wu, J.; Li, J. Juglone Potentiates TRAIL-induced Apoptosis in Human Melanoma Cells via Activating the ROS-p38-p53 Pathway. Mol. Med. Rep. 2017, 16, 9645–9651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melendez, M.E.; Silva-Oliveira, R.J.; Silva Almeida Vicente, A.L.; Rebolho Batista Arantes, L.M.; Carolina de Carvalho, A.; Epstein, A.L.; Reis, R.M.; Carvalho, A.L. Construction and Characterization of a New TRAIL Soluble Form, Active at Picomolar Concentrations. Oncotarget 2018, 9, 27233–27241. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Cao, X.; Li, M.; Su, Y.; Li, H.; Xie, M.; Zhang, Z.; Gao, H.; Xu, X.; Han, Y.; et al. A TRAIL-Delivered Lipoprotein-Bioinspired Nanovector Engineering Stem Cell-Based Platform for Inhibition of Lung Metastasis of Melanoma. Theranostics 2019, 9, 2984–2998. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.X.; Duan, D.J.; Zhou, H.; Hu, Q.M.; Lei, T.C. Adipose-derived Mesenchymal Stem Cell-facilitated TRAIL Expression in Melanoma Treatment in Vitro. Mol. Med. Rep. 2016, 14, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Salmasi, Z.; Hashemi, M.; Mahdipour, E.; Nourani, H.; Abnous, K.; Ramezani, M. Mesenchymal Stem Cells Engineered by Modified Polyethylenimine Polymer for Targeted Cancer Gene Therapy, In Vitro and In Vivo. Biotechnol. Prog. 2020, e3025. [Google Scholar] [CrossRef]
- Shamili, F.H.; Bayegi, H.R.; Salmasi, Z.; Sadri, K.; Mahmoudi, M.; Kalantari, M.; Ramezani, M.; Abnous, K. Exosomes Derived from TRAIL-Engineered Mesenchymal Stem Cells with Effective Anti-Tumor Activity in a Mouse Melanoma Model. Int. J. Pharm. 2018, 549, 218–229. [Google Scholar] [CrossRef]
- Bai, F.-L.; Tian, H.; Yu, Y.-H.; Yin, J.-C.; Ren, G.-P.; Zhou, B.; Li, D.-S. TNF-Related Apoptosis-Inducing Ligand Delivered by RNDV Is a Novel Agent for Cancer Gene Therapy. Technol. Cancer Res. Treat. 2015, 14, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, P.P.G.; Gaglione, S.; Sewastianik, T.; Carrasco, R.D.; Langer, R.; Mitchell, M.J. Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS Nano 2018, 12, 912–931. [Google Scholar] [CrossRef] [PubMed]
- Vetma, V.; Gutta, C.; Peters, N.; Praetorius, C.; Hutt, M.; Seifert, O.; Meier, F.; Kontermann, R.; Kulms, D.; Rehm, M. Convergence of Pathway Analysis and Pattern Recognition Predicts Sensitization to Latest Generation TRAIL Therapeutics by IAP Antagonism. Cell Death Differ. 2020, 27, 2417–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarei, M.; Nezafat, N.; Rahbar, M.R.; Negahdaripour, M.; Sabetian, S.; Morowvat, M.H.; Ghasemi, Y. Decreasing the Immunogenicity of Arginine Deiminase Enzyme via Structure-Based Computational Analysis. J. Biomol. Struct. Dyn. 2019, 37, 523–536. [Google Scholar] [CrossRef]
- Yoon, J.-K.; Frankel, A.E.; Feun, L.G.; Ekmekcioglu, S.; Kim, K.B. Arginine Deprivation Therapy for Malignant Melanoma. Clin. Pharmacol. Adv. Appl. 2013, 5, 11–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; You, M.; Nguyen, D.; Wangpaichitr, M.; Li, Y.-Y.; Feun, L.G.; Kuo, M.T.; Savaraj, N. Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma. Int. J. Mol. Sci. 2021, 22, 7628. https://doi.org/10.3390/ijms22147628
Wu C, You M, Nguyen D, Wangpaichitr M, Li Y-Y, Feun LG, Kuo MT, Savaraj N. Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma. International Journal of Molecular Sciences. 2021; 22(14):7628. https://doi.org/10.3390/ijms22147628
Chicago/Turabian StyleWu, Chunjing, Min You, Dao Nguyen, Medhi Wangpaichitr, Ying-Ying Li, Lynn G. Feun, Macus T. Kuo, and Niramol Savaraj. 2021. "Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma" International Journal of Molecular Sciences 22, no. 14: 7628. https://doi.org/10.3390/ijms22147628
APA StyleWu, C., You, M., Nguyen, D., Wangpaichitr, M., Li, Y.-Y., Feun, L. G., Kuo, M. T., & Savaraj, N. (2021). Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma. International Journal of Molecular Sciences, 22(14), 7628. https://doi.org/10.3390/ijms22147628