Identification of a Chitooligosaccharide Mechanism against Bacterial Leaf Blight on Rice by In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Results
2.1. Efficacy of BIG® on Rice Growth
2.2. Efficacy of BIG® in Rice Against BLB
2.3. BIG®’s Biochemical Alterations of Treated Rice Against Xoo
2.4. Structural Analysis of the Drug Target
2.5. Molecular Interactions—Protein and Polymer Interactions
2.6. Quantum Mechanical Calculations
2.7. Molecular Dynamics Simulation
3. Discussion
4. Materials and Methods
4.1. Preparation and Cultivation of Elicitor and Bacterial Pathogen
4.2. Assessing the Efficacy of BIG® on Rice Growth
4.3. Greenhouse Studies
4.4. Xoo Pathogen Inoculation
4.5. Detection of Biochemical Changes in Rice Leaves Using SR-FTIR Microspectroscopy
4.5.1. Preparation of Rice Leaves for Analysis
4.5.2. SR-FTIR Microspectroscopy Analysis
4.6. Protein and Polymer Preparation
4.7. Induced Fit Docking
4.8. Quantum Mechanical Calculations
4.9. Molecular Dynamics Simulations
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Audenaert, K.; Hofte, M.; De Vleesschauwer, D. Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae by suppressing salicylic acid-mediated Defenses. PLoS ONE 2013, 8, e67413. [Google Scholar] [CrossRef] [Green Version]
- Le Thanh, T.; Thumanu, K.; Wongkaew, S.; Boonkerd, N.; Teaumroong, N.; Phansak, P.; Buensanteai, N. Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. J. Plant. Interact. 2017, 12, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Mallick, N.; Mitra, A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant. Physiol Biochem. 2009, 47, 642–649. [Google Scholar] [CrossRef]
- Buensanteai, N.; Yuen, G.Y.; Prathuangwong, S. Priming, signaling, and protein production associated with induced resistance by Bacillus amyloliquefaciens KPS46. World J. Microbiol. Biotechnol. 2009, 25, 1275–1286. [Google Scholar] [CrossRef]
- Thepbandit, W.; Papathoti, N.K.; Daddam, J.R.; Thumanu, K.; Siriwong, S.; Thanh, T.L.; Buensanteai, N. Identification of salicylic acid mechanism against leaf blight disease in Oryza sativa by SR-FTIR microspectroscopic and docking studies. Pathogens 2021, 10, 652. [Google Scholar] [CrossRef]
- El Hadrami, A.; Islam, M.R.; Adam, L.R.; Daayf, F. A cupin domain-containing protein with a quercetinase activity (VdQase) regulates Verticillium dahliae’s pathogenicity and contributes to counteracting host defenses. Front. Plant. Sci. 2015, 6, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastas, K.K. Importance of reactive oxygen species in plant-pathogen interactions. Selcuk J. Agri. Food Sci. 2014, 28, 11–26. [Google Scholar]
- Bouranis, D.; Chorianopoulou, S.; Vassilis, B.; Protonotarios, Ε.; Siyiannis, F.; Malcolm, B.; Hawkesford, J. Localization of reactive oxygen species and lignification in leaves of young sulphate-deprived maize plants. Funct. Plant Sci. Biotechnol. 2007, 1, 347–354. [Google Scholar]
- Garcion, C.; Lamotte, O.; Cacas, J.; Métraux, J. Mechanisms of defence to pathogens: Biochemistry and physiology. In Induced Resistance for Plant Defense; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Lahlali, R.; Song, T.; Chu, M.; Yu, F.; Kumar, S.; Karunakaran, C.; Peng, G. Evaluating changes in cell-wall components associated with clubroot resistance using fourier transform infrared spectroscopy and RT-PCR. Int. J. Mol. Sci. 2017, 18, 2058. [Google Scholar] [CrossRef] [Green Version]
- Papathoti, N.K.; Saengchan, C.; Daddam, J.R.; Thongprom, N.; Tonpho, K.; Thanh, T.L.; Buensanteai, N. Plant systemic acquired resistance compound salicylic acid as a potent inhibitor against SCF (SKP1-CUL1-F-box protein) mediated complex in Fusarium oxysporum by homology modeling and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2020, 39, 1–8. [Google Scholar] [CrossRef]
- Jia, X.; Meng, Q.; Zeng, H.; Wang, W.; Yin, H. Chitosan oligosaccharide induces resistance to Tobacco Mosaic Virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci. Rep. 2016, 6, 26144. [Google Scholar] [CrossRef]
- Tanaka, K.; Cho, S.-H.; Lee, H.; Pham, A.Q.; Batek, J.M.; Cui, S.; Qiu, J.; Khan, S.M.; Joshi, T.; Zhang, Z.J.; et al. Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. J. Exp. Bot. 2015, 66, 5727–5738. [Google Scholar] [CrossRef]
- Pongprayoon, W.; Roytrakul, S.; Pichyangkura, R.; Chadchawan, S. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul. 2013, 70, 159–173. [Google Scholar] [CrossRef]
- Reglinski, T.; Stavely, F.J.L.; Taylor, J.T. Induction of phenylalanine ammonia lyase activity and control of Sphaeropsis sapinea infection in Pinus radiata by 5-chlorosalicylic acid. Eur. J. Plant Pathol. 1998, 28, 153–158. [Google Scholar] [CrossRef]
- Heraud, P.; Caine, S.; Sanson, G.; Gleadow, R.; Wood, B.R.; McNaughton, D. Focal plane array infrared imaging: A new way to analyse leaf tissue. New Phytol. 2007, 173, 216–225. [Google Scholar] [CrossRef]
- Pogorelko, G.V.; Kambakam, S.; Nolan, T.; Foudree, A.; Zabotina, O.A.; Rodermel, S.R. Impaired chloroplast biogenesis in immutans, an Arabidopsis variegation mutant, modifies developmental programming, cell wall composition and resistance to Pseudomonas syringae. PLoS ONE 2016, 11, e0150983. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liang, Y.; Qiu, D.; Zeng, H.; Yuan, J.; Yang, X. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato. BMC Plant Biol. 2018, 18, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thumanu, K.; Wongchalee, D.; Sompong, M.; Phansak, P.; Le Thanh, T.; Namanusart, W.; Vechklang, K.; Kaewnum, S.; Buensanteai, N. Synchrotron-based FTIR microspectroscopy of chili resistance induced by Bacillus subtilis strain D604 against anthracnose disease. J. Plant Interact. 2017, 12, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Freeman. An overview of plant defenses against pathogens and herbivores. Plant Health Instr. 2008, 149, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cass, C.L.; Peraldi, A.; Dowd, P.F.; Mottiar, Y.; Santoro, N.; Karlen, S.D.; Bukhman, Y.V.; Foster, C.E.; Thrower, N.; Bruno, L.C.; et al. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J. Exp. Bot. 2015, 66, 4317–4335. [Google Scholar] [CrossRef] [Green Version]
- Benhamou, N.; Nicole, M. Cell biology of plant immunization against microbial infection: The potential of induced resistance in controlling plant diseases. Plant Physiol. Biochem. 1999, 37, 703–719. [Google Scholar] [CrossRef]
- Kalaivani, K.; Kalaiselvi, M.M.; Senthil-Nathan, S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 2016, 6, 34498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivalingaiah, U.S.; Umesha, S. Pseudomonas fluorescens inhibits the Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Can. J. Plant Protect. 2013, 1, 147–153. [Google Scholar]
- Melotto, M.; Panchal, S.; Roy, D. Plant innate immunity against human bacterial pathogens. Front. Microbiol. 2014, 5, 411. [Google Scholar] [CrossRef]
- Liyanage, S.; Dassanayake, R.S.; Bouyanfif, A.; Rajakaruna, E.; Ramalingam, L.; Moustaid-Moussa, N.; Abidi, N. Optimization and validation of cryostat temperature conditions for trans-reflectance mode FTIR microspectroscopic imaging of biological tissues. MethodsX 2017, 4, 118–127. [Google Scholar] [CrossRef]
- Lasch, P.; Haensch, W.; Naumann, D.; Diem, M. Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim. Biophys. Acta Mol. Basis Dis. 2004, 1688, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.N.; Swapna, T.H.; Khan, M.Y.; Daddam, J.R.; Hameeda, B. Molecular dynamics and protein interaction studies of lipopeptide (Iturin A) on α- amylase of Spodoptera litura. J. Theor. Biol. 2017, 415, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Hussein, N.N.A.; Daddam, J.R.; Prasad, E.M.; Naidu, N. Evaluation of novel curcumin derivatives against ethicillin resistant Staphylococcus aureus (MRSA). Int. J. Appl. Biol. Pharm. 2017, 8, 111–120. [Google Scholar] [CrossRef]
- Suresh, B.B.M.; Jayasimharayalu, L.N. In silico docking studies of elytraria acaulis gas chromatography-mass spectroscopy derived compound against breast cancer target proteins. World J. Pharm. Pharm. Sci. 2017, 10, 1053–1062. [Google Scholar]
- Papathoti, N.; Lingampally, N.; Parameshwar, J.; Khan, M.; Rayalu, J.; Hameeda, B. In silico and in vitro studies of fungicidal nature of lipopeptide (Iturin A) from Bacillus amyloliquefaciens RHNK 22 and its plant growth promoting traits. Indian Phytopathol. 2016, 69, 569–574. [Google Scholar]
- Urama, D.T.; Tarigopula, S.; Pasha, K.; Daddam, J. Homology modelling and structure of Neplanocin A derivative. Onl. J. Bioinform. 2016, 17, 41–52. [Google Scholar]
- Daddam, J.R.; Rao, M.; Rao, D.S. Phytochemical screening and anti microbial studies of hemidesmus indicus. Int. J. Appl. Biol. Pharm. 2015, 6, 10–13. [Google Scholar]
- Beda, P.D.; Veluda, S.G.; Daddam, J.R. Anti-tubercularl activity and molecular docking of dihydro-pyrimidinone derivatives. Onl. J. Bioinform. 2015, 16, 202–225. [Google Scholar]
- Tsai, B.C.-K.; Kuo, W.-W.; Day, C.H.; Hsieh, D.J.-Y.; Kuo, C.-H.; Daddam, J.; Chen, R.-J.; Padma, V.V.; Wang, G.; Huang, C.-Y. The soybean bioactive peptide VHVV alleviates hypertension-induced renal damage in hypertensive rats via the SIRT1-PGC1α/Nrf2 pathway. J. Funct. Foods 2020, 75, 104255. [Google Scholar] [CrossRef]
- Smita, S.; Singh, K.; Akhoon, B.; Gupta, S.; Gupta, S. Bioinformatics tools for interpretation of data used in molecular identification. In Analyzing Microbes; Springer: Berlin, Heidelberg, 2013; pp. 209–243. [Google Scholar]
- Gupta, S.K.; Srivastava, M.; Osmanoglu, Ö.; Dandekar, T. Genome-wide inference of the Camponotus floridanus protein-protein interaction network using homologous mapping and interacting domain profile pairs. Sci. Rep. 2020, 10, 2334. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Osmanoğlu, Ö.; Srivastava, M.; Bencurova, E.; Dandekar, T. Pathogen and host-pathogen protein interactions provide a key to identify novel drug targets. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Bencurova, E.; Gupta, S.K.; Sarukhanyan, E.; Dandekar, T. Identification of antifungal targets based on computer modeling. J. Fungi. 2018, 4, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, C.; Singh, P.; Singh, S.K. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: Comparative structure analysis of wild and mutant HTLV-1 PR. J. Mol. Recognit. 2014, 27, 696–706. [Google Scholar] [CrossRef]
- Selvaraj, C.; Panwar, U.; Dinesh, D.C.; Boura, E.; Singh, P.; Dubey, V.K.; Singh, S.K. Microsecond MD simulation and multiple-conformation virtual screening to identify potential anti-COVID-19 inhibitors against SARS-CoV-2 main protease. Front. Chem. 2021, 8, 595273. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Selvaraj, G.; Selvaraj, C.; Kaushik, A.C.; Kaliamurthi, S.; Khan, A.; Singh, S.K.; Wei, D.Q. Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). Int. J. Biol. Macromol. 2020, 144, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, C.; Selvaraj, G.; Mohamed Ismail, R.; Vijayakumar, R.; Baazeem, A.; Wei, D.-Q.; Singh, S.K. Interrogation of Bacillus anthracis SrtA active site loop forming open/close lid conformations through extensive MD simulations for understanding binding selectivity of SrtA inhibitors. Saudi J. Biol. Sci. 2021, 28, 3650–3659. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siriwong, S.; Thepbandit, W.; Hoang, N.H.; Papathoti, N.K.; Teeranitayatarn, K.; Saardngen, T.; Thumanu, K.; Bhavaniramya, S.; Baskaralingam, V.; Le Thanh, T.; et al. Identification of a Chitooligosaccharide Mechanism against Bacterial Leaf Blight on Rice by In Vitro and In Silico Studies. Int. J. Mol. Sci. 2021, 22, 7990. https://doi.org/10.3390/ijms22157990
Siriwong S, Thepbandit W, Hoang NH, Papathoti NK, Teeranitayatarn K, Saardngen T, Thumanu K, Bhavaniramya S, Baskaralingam V, Le Thanh T, et al. Identification of a Chitooligosaccharide Mechanism against Bacterial Leaf Blight on Rice by In Vitro and In Silico Studies. International Journal of Molecular Sciences. 2021; 22(15):7990. https://doi.org/10.3390/ijms22157990
Chicago/Turabian StyleSiriwong, Supatcharee, Wannaporn Thepbandit, Nguyen Huy Hoang, Narendra Kumar Papathoti, Karsidete Teeranitayatarn, Tippawun Saardngen, Kanjana Thumanu, Sundaresan Bhavaniramya, Vaseeharan Baskaralingam, Toan Le Thanh, and et al. 2021. "Identification of a Chitooligosaccharide Mechanism against Bacterial Leaf Blight on Rice by In Vitro and In Silico Studies" International Journal of Molecular Sciences 22, no. 15: 7990. https://doi.org/10.3390/ijms22157990
APA StyleSiriwong, S., Thepbandit, W., Hoang, N. H., Papathoti, N. K., Teeranitayatarn, K., Saardngen, T., Thumanu, K., Bhavaniramya, S., Baskaralingam, V., Le Thanh, T., Phansak, P., & Buensanteai, N. (2021). Identification of a Chitooligosaccharide Mechanism against Bacterial Leaf Blight on Rice by In Vitro and In Silico Studies. International Journal of Molecular Sciences, 22(15), 7990. https://doi.org/10.3390/ijms22157990