Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery
Abstract
:1. Introduction
2. Results
2.1. Vascular Function of Carotid Arteries
2.1.1. Phenylephrine-Induced Contraction of Carotid Arteries
2.1.2. Acetylcholine-Induced Relaxation of Carotid Arteries
2.2. Histological Changes of the Carotid Arteries
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Animals
4.3. Chronic Treatment of the Rats
4.4. Myography
4.5. Immunohistochemistry
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Izzo, M.; Carrizzo, A.; Izzo, C.; Cappello, E.; Cecere, D.; Ciccarelli, M.; Iannece, P.; Damato, A.; Vecchione, C.; Pompeo, F. Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life 2021, 11, 452. [Google Scholar] [CrossRef]
- Płudowski, P.; Karczmarewicz, E.; Bayer, M.; Carter, G.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dębski, R.; Decsi, T.; Dobrzanska, A.; Franek, E.; et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—Recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Pol. 2013, 64, 319–327. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Binkley, N.; Sempos, C.; Adler, R.A.; Bollerslev, J.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Heijboer, A.; et al. Controversies in Vitamin D: A Statement from the Third International Conference. JBMR Plus 2020, 4, 10417. [Google Scholar] [CrossRef]
- Patino-Alonso, M.C.; Sánchez, M.G.; Sánchez, L.G.; Alonso-Domínguez, R.; Sánchez-Aguadero, N.; Salgado, B.S.; Sánchez, E.R.; Ortiz, L.G.; Gómez-Marcos, A.M. Multivariate Analysis of Influence of Vitamin Intake on Vascular Function Parameters by Sex in the General Spanish Population: EVA Study. Nutrients 2020, 12, 643. [Google Scholar] [CrossRef] [Green Version]
- Gouni-Berthold, I.; Berthold, H.K. Vitamin D and Vascular Disease. Curr. Vasc. Pharmacol. 2020, 19, 250–268. [Google Scholar] [CrossRef]
- Pál, É.; Hricisák, L.; Lékai, Á.; Nagy, D.; Fülöp, Á.; Erben, R.G.; Várbíró, S.; Sándor, P.; Benyó, Z. Ablation of Vitamin D Signaling Compromises Cerebrovascular Adaptation to Carotid Artery Occlusion in Mice. Cells 2020, 9, 1457. [Google Scholar] [CrossRef] [PubMed]
- Mirhosseini, N.Z.; Knaus, S.J.; Bohaychuk, K.; Singh, J.; Vatanparast, H.A.; Weber, L.P. Both high and low plasma levels of 25-hydroxy vitamin D increase blood pressure in a normal rat model. Br. J. Nutr. 2016, 116, 1889–1900. [Google Scholar] [CrossRef]
- Talebi, A.; Amirabadizadeh, A.R.; Nakhaee, S.; Ahmadi, Z.; Mirzaee, S.M.M. Cerebrovascular disease: How serum phosphorus, vitamin D, and uric acid levels contribute to the ischemic stroke. BMC Neurol. 2020, 20, 116. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lai, H.; Yang, L.; Zhu, H.; Chen, S.; Lai, S. Age and Gender Differences in the Association between Serum 25-Hydroxyvitamin D and Stroke in the General US Population: The National Health and Nutrition Examination Survey, 2001–2006. J. Stroke Cerebrovasc. Dis. 2017, 26, 2510–2518. [Google Scholar] [CrossRef] [PubMed]
- Oudshoorn, C.; Mezzadri, M.; Colin, E.M.; Van Dijk, S.C.; Ruitenbeek, A.G.; Meiracker, A.H.V.D.; Van Der Cammen, T.J.M.; Mattace-Raso, F.U.S. Serum vitamin D levels are associated with structural and functional properties of the carotid artery in older men and women. Eur. Geriatr. Med. 2020, 11, 409–415. [Google Scholar] [CrossRef] [Green Version]
- McNally, J.S.; Burton, T.M.; Aldred, B.W.; Kim, S.-E.; McLaughlin, M.S.; Eisenmenger, L.B.; Stoddard, G.J.; Majersik, J.J.; Miller, D.V.; Treiman, G.S.; et al. Vitamin D and Vulnerable Carotid Plaque. Am. J. Neuroradiol. 2016, 37, 2092–2099. [Google Scholar] [CrossRef] [Green Version]
- Norsaadah, B. Prevalence of risk factors and its gender difference among stroke patients. Med. J. Malays. 2005, 60, 670–671. [Google Scholar]
- Manson, J.; Hu, F.; Giovanucci, E.; Rimm, E.; Shi, L.; Sun, Q.; Rexrode, K. Vitamin D intake and risk of cardiovascular disease in US men and women. SciVee 2011, 94, 534–542. [Google Scholar]
- Agelii, M.L.; Lehtinen-Jacks, S.; Zetterberg, H.; Sundh, V.; Björkelund, C.; Lissner, L. Low vitamin D status in relation to cardiovascular disease and mortality in Swedish women – Effect of extended follow-up. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1143–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.-H.; Jiang, X.-Z.; Jiang, Q.; Gu, Z.; Gu, P.-L.; Zhou, B.; Zhu, Z.-H.; Xu, L.-Y.; Zou, Y.-F. Correlations between serum levels of 25-hydroxyvitamin D and carotid atherosclerosis in patients with type 2 diabetes in Shanghai. Ann. D’endocrinologie 2014, 75, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Pál, É.; Hadjadj, L.; Fontányi, Z.; Monori-Kiss, A.; Lippai, N.; Horváth, E.M.; Magyar, A.; Monos, E.; Nádasy, G.L.; Benyó, Z.; et al. Gender, hyperandrogenism and vitamin D deficiency related functional and morphological alterations of rat cerebral arteries. PLoS ONE 2019, 14, e0216951. [Google Scholar] [CrossRef]
- Sipos, M.; Péterffy, B.; Sziva, R.; Magyar, P.; Hadjadj, L.; Bányai, B.; Süli, A.; Soltész-Katona, E.; Gerszi, D.; Kiss, J.; et al. Vitamin D Deficiency Cause Gender Specific Alterations of Renal Arterial Function in a Rodent Model. Nutrients 2021, 13, 704. [Google Scholar] [CrossRef]
- Biswas, M.; Saba, L.; Omerzu, T.; Johri, A.M.; Khanna, N.N.; Viskovic, K.; Mavrogeni, S.; Laird, J.R.; Pareek, G.; Miner, M.; et al. A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: Artificial Intelligence framework. J. Digit. Imaging 2021, 1–24. [Google Scholar] [CrossRef]
- Lamping, K.G.; Faraci, F.M. Role of Sex Differences and Effects of Endothelial NO Synthase Deficiency in Responses of Carotid Arteries to Serotonin. Arter. Thromb. Vasc. Biol. 2001, 21, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Kähönen, M.; Tolvanen, J.-P.; Sallinen, K.; Wu, X.; Pörsti, I. Influence of gender on control of arterial tone in experimental hypertension. Am. J. Physiol. Content 1998, 275, H15–H22. [Google Scholar] [CrossRef] [PubMed]
- Kingma, J.G., Jr.; Laher, I. Effect of endothelin on sex-dependent regulation of tone in coronary resistance vessels. Biochem. Biophys. Res. Commun. 2021, 540, 56–60. [Google Scholar] [CrossRef]
- Mátrai, M.; Hetthéssy, J.; Nádasy, G.L.; Monos, E.; Székács, B.; Varbiro, S. Sex Differences in the Biomechanics and Contractility of Intramural Coronary Arteries in Angiotensin II–Induced Hypertension. Gend. Med. 2012, 9, 548–556. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Johns, J.A.; Petterson, J.L.; Mekary, S.; Kimmerly, D.S. The impact of age and sex on popliteal artery endothelial-dependent vasodilator and vasoconstrictor function. Exp. Gerontol. 2021, 145, 111221. [Google Scholar] [CrossRef]
- Sader, M.A.; Celermajer, D.S. Endothelial function, vascular reactivity and gender differences in the cardiovascular system. Cardiovasc. Res. 2002, 53, 597–604. [Google Scholar] [CrossRef]
- Graham, D.A.; Rush, J.W. Cyclooxygenase and thromboxane/prostaglandin receptor contribute to aortic endothelium-dependent dysfunction in aging female spontaneously hypertensive rats. J. Appl. Physiol. 2009, 107, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Lajtai, K.; Tarszabó, R.; Bányai, B.; Péterffy, B.; Gerszi, D.; Ruisanchez, É.; Sziva, R.E.; Korsós-Novák, Á.; Benkő, R.; Hadjadj, L.; et al. Effect of Vitamin D Status on Vascular Function of the Aorta in a Rat Model of PCOS. Oxidative Med. Cell. Longev. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Tostes, R.C.; Carneiro, F.S.; Carvalho, M.H.C.; Reckelhoff, J.F. Reactive oxygen species: Players in the cardiovascular effects of testosterone. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R1–R14. [Google Scholar] [CrossRef] [Green Version]
- Berghout, B.; Fani, L.; Ikram, M.K. Response by Berghout et al to Letters Regarding Article, “Vitamin D Status and Risk of Stroke: The Rotterdam Study”. Stroke 2019, 50, e432. [Google Scholar] [CrossRef]
- Rad, R.E.; Zarbakhsh, M.; Sarabi, S. The Relationship of Vitamin D Deficiency with Severity and Outcome of Acute Stroke. Rom. J. Intern. Med. 2021. [Google Scholar] [CrossRef]
- Chen, N.-C.; Hsu, C.-Y.; Mao, P.C.-M.; Dreyer, G.; Wu, F.-Z.; Chen, C.-L. The effects of correction of vitamin D deficiency on arterial stiffness: A systematic review and updated meta-analysis of randomized controlled trials. J. Steroid Biochem. Mol. Biol. 2020, 198, 105561. [Google Scholar] [CrossRef] [PubMed]
- Raed, A.; Bhagatwala, J.; Zhu, H.; Pollock, N.K.; Parikh, S.J.; Huang, Y.; Havens, R.; Kotak, I.; Guo, D.-H.; Dong, Y. Dose responses of vitamin D3 supplementation on arterial stiffness in overweight African Americans with vitamin D deficiency: A placebo controlled randomized trial. PLoS ONE 2017, 12, e0188424. [Google Scholar]
- Chen, F.-H.; Liu, T.; Xu, L.; Zhang, L.; Zhou, X.-B. Association of Serum Vitamin D Level and Carotid Atherosclerosis: A Systematic Review and Meta-analysis. J. Ultrasound Med. 2018, 37, 1293–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tare, M.; Emmett, S.J.; Coleman, H.A.; Skordilis, C.; Eyles, D.; Morley, R.; Parkington, H.C. Vitamin D insufficiency is associated with impaired vascular endothelial and smooth muscle function and hypertension in young rats. J. Physiol. 2011, 589 Pt 19, 4777–4786. [Google Scholar] [CrossRef]
- Fontányi, Z.; Sziva, R.; Pál, É.; Hadjadj, L.; Monori-Kiss, A.; Horváth, E.; Benkő, R.; Magyar, A.; Heinzlmann, A.; Benyó, Z.; et al. Vitamin D Deficiency Reduces Vascular Reactivity of Coronary Arterioles in Male Rats. Curr. Issues Mol. Biol. 2021, 43, 79–92. [Google Scholar] [CrossRef]
- Dong, J.; Wong, S.L.; Lau, C.W.; Liu, J.; Wang, Y.; He, Z.D.; Ng, C.F.; Chen, Z.Y.; Yao, X.; Xu, A.; et al. Calcitriol restores renovascular function in estrogen-deficient rats through downregulation of cyclooxygenase-2 and the thromboxane-prostanoid receptor. Kidney Int. 2013, 84, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, R.G.; Stanczyk, F.Z.; Burry, K.A.; Oparil, S.; Katzenellenbogen, B.S.; Nealen, M.L.; Katzenellenbogen, J.A.; Hermsmeyer, R.K. Metabolite ligands of estrogen receptor-beta reduce primate coronary hyperreactivity. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H295–H303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacza, Z.; Hortobágyi, L.; Horváth, B.; Horvath, E.M.; Sándor, P.; Benyó, Z. Additive effect of cyclooxygenase and nitric oxide synthase blockade on the cerebrocortical microcirculation. Neuroreport 2009, 20, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Johns, J.A.; O’Brien, M.W.; Bungay, A.; Kimmerly, D.S. Sex and light physical activity impact popliteal, but not brachial artery flow-mediated dilation in physically active young adults. Appl. Physiol. Nutr. Metab. 2020, 45, 1387–1395. [Google Scholar] [CrossRef]
- Dengel, D.R.; Jacobs, D.R.; Steinberger, J.; Moran, A.M.; Sinaiko, A.R. Gender differences in vascular function and insulin sensitivity in young adults. Clin. Sci. 2010, 120, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Torok, M.; Monori-Kiss, A.; Pal, E.; Horvath, E.; Josvai, A.; Merkely, P.; Barta, B.A.; Matyas, C.; Olah, A.; Radovits, T.; et al. Long-term exercise results in morphological and biomechanical changes in coronary resistance arterioles in male and female rats. Biol. Sex. Differ. 2020, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Schriefl, A.; Cohnert, T.; Holzapfel, G. Gender Differences in Biomechanical Properties, Thrombus Age, Mass Fraction and Clinical Factors of Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Karabag, T.; Hacioglu, Y.; Piskinpasa, M.E.; Sametoglu, F.; Yuksel, Y. Impaired cardiac functions and aortic elastic properties in patients with severe Vitamin D deficiency. J. Cardiovasc. Echogr. 2018, 28, 171–176. [Google Scholar] [CrossRef]
- Pál, É.; Hadjadj, L.; Fontányi, Z.; Monori-Kiss, A.; Mezei, Z.; Lippai, N.; Magyar, A.; Heinzlmann, A.; Karvaly, G.; Monos, E.; et al. Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles. PLoS ONE 2018, 13, e0192480. [Google Scholar]
- Wagih, H.M.; Hashem, H.E.; Hassan, Z.A.; Algaidi, S.A. Modulation of S100 and smooth muscle actin-α immunoreactivity in the wall of aorta after vitamin D administration in rats with high fat diet. Cell. Mol. Biol. 2018, 64, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Hadjadj, L.; Várbíró, S.; Horváth, E.M.; Monori-Kiss, A.; Pál, É.; Karvaly, G.B.; Heinzlmann, A.; Magyar, A.; Szabo, I.; Sziva, R.E.; et al. Insulin resistance in an animal model of polycystic ovary disease is aggravated by vitamin D deficiency: Vascular consequences. Diabetes Vasc. Dis. Res. 2018, 15, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sziva, R.; Fontányi, Z.; Pál, É.; Hadjadj, L.; Monori-Kiss, A.; Horváth, E.; Benkő, R.; Magyar, A.; Heinzlmann, A.; Benyó, Z.; et al. Vitamin D Deficiency Induces Elevated Oxidative and Biomechanical Damage in Coronary Arterioles in Male Rats. Antioxidants 2020, 9, 997. [Google Scholar] [CrossRef] [PubMed]
Between the Groups | Between the Inhibitors | ||
---|---|---|---|
a: | FD+ vs. FD− | k: | DMSO vs. INDO |
b: | FD+ vs. MD+ | l: | DMSO vs. L-NAME |
c: | FD+ vs. MD− | m: | DMSO vs. INDO+L-NAME |
d: | FD− vs. MD+ | n: | INDO vs. L-NAME |
e: | FD− vs. MD− | o: | INDO vs. INDO+L-NAME |
f: | MD+ vs. MD− | p: | L-NAME vs. INDO+L-NAME |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipos, M.; Gerszi, D.; Dalloul, H.; Bányai, B.; Sziva, R.E.; Kollarics, R.; Magyar, P.; Török, M.; Ács, N.; Szekeres, M.; et al. Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery. Int. J. Mol. Sci. 2021, 22, 8029. https://doi.org/10.3390/ijms22158029
Sipos M, Gerszi D, Dalloul H, Bányai B, Sziva RE, Kollarics R, Magyar P, Török M, Ács N, Szekeres M, et al. Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery. International Journal of Molecular Sciences. 2021; 22(15):8029. https://doi.org/10.3390/ijms22158029
Chicago/Turabian StyleSipos, Miklós, Dóra Gerszi, Hicham Dalloul, Bálint Bányai, Réka Eszter Sziva, Réka Kollarics, Péter Magyar, Marianna Török, Nándor Ács, Mária Szekeres, and et al. 2021. "Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery" International Journal of Molecular Sciences 22, no. 15: 8029. https://doi.org/10.3390/ijms22158029
APA StyleSipos, M., Gerszi, D., Dalloul, H., Bányai, B., Sziva, R. E., Kollarics, R., Magyar, P., Török, M., Ács, N., Szekeres, M., Nádasy, G. L., Hadjadj, L., Horváth, E. M., & Várbíró, S. (2021). Vitamin D Deficiency and Gender Alter Vasoconstrictor and Vasodilator Reactivity in Rat Carotid Artery. International Journal of Molecular Sciences, 22(15), 8029. https://doi.org/10.3390/ijms22158029