A Novel Peptide Derived from the Transmembrane Domain of Romo1 Is a Promising Candidate for Sepsis Treatment and Multidrug-Resistant Bacteria
Abstract
:1. Introduction
2. Results
2.1. Improving the Antibacterial Activity of AMPR-11 through Sequence Substitution and Deletion
2.2. Physical Characterization and Secondary Structure Analysis of the AMPR-11 Analog Peptides
2.3. AMPR-22 Showed Broad-Spectrum Antibacterial Activity by Disrupting Bacterial Membrane Integrity
2.4. The Cytotoxicity and Hemolytic Activity of AMPR-22
2.5. Assessment of the Antibacterial Activity of AMPR-22 in Various Conditions
2.6. Efficacy of AMPR-22 in a Murine Model of Sepsis Caused by MDR Bacteria
3. Discussion
4. Materials and Methods
4.1. Chemicals and Peptides
4.2. Bacterial Strains
4.3. Determination of the Minimum Bactericidal Concentration
4.4. Circular Dichroism
4.5. Bacterial Membrane Permeabilization Assays
4.6. Electron Microscopy
4.7. Cell Viability Assay
4.8. Hemolysis and White Blood Cell Toxicity Assay
4.9. Antibacterial Activity Assays
4.10. Murine Model of Sepsis
4.11. Mouse Cytokine ELISA
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef]
- Mendelson, M.; Matsoso, M.P. The World Health Organization global action plan for antimicrobial resistance. SAMJ S. Afr. Med. J. 2015, 105, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, S.Q. New sepsis criteria: A change we should not make. Chest 2016, 149, 1117–1118. [Google Scholar] [CrossRef] [Green Version]
- Lelubre, C.; Vincent, J.-L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 2018, 14, 417–427. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Tacconelli, E.; Magrini, N.; Kahlmeter, G.; Singh, N. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organ. 2017, 27, 318–327. [Google Scholar]
- World Health Organization. Antimicrobial Resistance: A Manual for Developing National Action Plans; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Wichterman, K.A.; Baue, A.E.; Chaudry, I.H. Sepsis and septic shock—A review of laboratory models and a proposal. J. Surg. Res. 1980, 29, 189–201. [Google Scholar] [CrossRef]
- Ageitos, J.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017, 133, 117–138. [Google Scholar] [CrossRef]
- Deslouches, B.; Montelaro, R.C.; Urish, K.L.; Di, Y.P. Engineered cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics 2020, 12, 501. [Google Scholar] [CrossRef]
- Raheem, N.; Straus, S.K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front. Microbiol. 2019, 10, 2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef] [PubMed]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef]
- da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.; Lima, L.A.; Sampaio, K.B.; Dohms, S.S.; Ferreira, A.C.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today 2017, 22, 234–248. [Google Scholar] [CrossRef]
- López-Pérez, P.M.; Grimsey, E.; Bourne, L.; Mikut, R.; Hilpert, K. Screening and optimizing antimicrobial peptides by using SPOT-synthesis. Front. Chem. 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.M.; Kim, J.S.; Do Yoo, Y. A novel protein, Romo1, induces ROS production in the mitochondria. Biochem. Biophys. Res. Commun. 2006, 347, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.S.; Park, S.; Park, S.H.; Park, E.R.; Cha, P.H.; Kim, B.Y.; Chung, Y.M.; Woo, S.R.; Han, C.J.; Kim, S.B. Overexpression of Romo1 promotes production of reactive oxygen species and invasiveness of hepatic tumor cells. Gastroenterology 2012, 143, 1084–1094.e7. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.; Park, J.; Yoo, Y. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X L. Cell Death Differ. 2010, 17, 1420–1434. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Kim, J.J.; Kim, T.W.; Kim, B.S.; Lee, M.-S.; Yoo, Y.D. Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis 2010, 15, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; You, D.-G.; Lee, H.-R.; Hwang, S.W.; Lee, C.J.; Yoo, Y.D. Romo1 is a mitochondrial nonselective cation channel with viroporin-like characteristics. J. Cell Biol. 2018, 217, 2059–2071. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-R.; You, D.-g.; Kim, H.K.; Sohn, J.W.; Kim, M.J.; Park, J.K.; Lee, G.Y.; Yoo, Y.D. Romo1-derived antimicrobial peptide is a new antimicrobial agent against multidrug-resistant bacteria in a murine model of sepsis. mBio 2020, 11, e03258-19. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; de Boer, L.; Zaat, S.A.; Vogel, H.J. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: Hydrogen bonding properties govern its membrane-disruptive activities. Biochim. Biophys. Acta (BBA) Biomembr. 2011, 1808, 2297–2303. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-K.; Song, J.-W.; Gong, F.; Li, S.-B.; Chang, H.-Y.; Xie, H.-M.; Gao, H.-W.; Tan, Y.-X.; Ji, S.-P. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci. Rep. 2016, 6, 27394. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Shea, J.-E. Effects of solvent on the structure of the Alzheimer amyloid-β (25–35) peptide. Biophys. J. 2006, 91, 1638–1647. [Google Scholar] [CrossRef] [Green Version]
- Helander, I.; Mattila-Sandholm, T. Fluorometric assessment of Gram-negative bacterial permeabilization. J. Appl. Microbiol. 2000, 88, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Te Winkel, J.D.; Gray, D.A.; Seistrup, K.H.; Hamoen, L.W.; Strahl, H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan—A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 1680–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother. 2005, 55, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013, 27, 669–684. [Google Scholar]
- Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 2005, 30, 505–515. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919. [Google Scholar]
- Wimley, W.C. Application of synthetic molecular evolution to the discovery of antimicrobial peptides. Antimicrob. Pept. 2019, 1117, 241–255. [Google Scholar]
- Dathe, M.; Wieprecht, T. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta (BBA)-Biomembr. 1999, 1462, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Meher, P.K.; Sahu, T.K.; Saini, V.; Rao, A.R. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep. 2017, 7, 42362. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dürr, U.H.; Sudheendra, U.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta (BBA)-Biomembr. 2006, 1758, 1408–1425. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept. Sci. 2008, 90, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Omardien, S.; Brul, S.; Zaat, S.A. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Front. Cell Dev. Biol. 2016, 4, 111. [Google Scholar] [CrossRef]
- Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 2018, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ma, Z.; Wang, J.; Chou, S.; Shan, A. Importance of tryptophan in transforming an amphipathic peptide into a Pseudomonas aeruginosa-targeted antimicrobial peptide. PLoS ONE 2014, 9, e114605. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; He, S.; Wang, J.; Yang, Y.; Zhang, L.; Li, Y.; Shan, A. Rational design of short peptide variants by using Kunitzin-RE, an amphibian-derived bioactivity peptide, for acquired potent broad-spectrum antimicrobial and improved therapeutic potential of commensalism coinfection of pathogens. J. Med. Chem. 2019, 62, 4586–4605. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, J.; Yang, Z.; He, S.; Yang, Y.; Feng, X.; Dou, X.; Shan, A. Antimicrobial peptides with high proteolytic resistance for combating gram-negative bacteria. J. Med. Chem. 2019, 62, 2286–2304. [Google Scholar] [CrossRef] [PubMed]
- Mendez-David, I.; El-Ali, Z.; Hen, R.; Falissard, B.; Corruble, E.; Gardier, A.M.; Kerdine-Romer, S.; David, D.J. A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: β-arrestin 1 protein levels in depression and treatment. Front. Pharmacol. 2013, 4, 124. [Google Scholar] [CrossRef] [Green Version]
Peptides | Sequence | MBC Value (µg/mL) | |||
---|---|---|---|---|---|
S. aureus | P. aeruginosa | MRSA | CRPA | ||
AMPR-11 a | KTMMQSGGTFGTFMAIGMGIR | 100 | 100 | 100 | 110 |
Substitution | |||||
K2 | KKMMKSGGTFGTFMAIGMGIR | 32 | 16 | 64 | 16 |
K3 | KKMMKKGGTFGTFMAIGMGIR | 16 | 8 | 32 | 8 |
K4 | KKMMKKGGKFGTFMAIGMGIR | 8 | 4 | 8 | 4 |
Deletion | |||||
d58K | KMMKKGGKFGTFMAIGMGIR | 8 | 2 | 2 | 8 |
d60M | KK MKKGGKFGTFMAIGMGIR | 4 | 2 | 1 | 4 |
d62K | KKMM KGGKFGTFMAIGMGIR | 8 | 2 | 8 | 8 |
d64G | KKMMKK GKFGTFMAIGMGIR | 2 | 2 | 1 | 4 |
d66K | KKMMKKGG FGTFMAIGMGIR | 8 | 4 | 4 | 4 |
d67F | KKMMKKGGK GTFMAIGMGIR | 8 | 4 | 4 | 8 |
d68G | KKMMKKGGKF TFMAIGMGIR | 4 | 4 | 4 | 8 |
d69T | KKMMKKGGKFG FMAIGMGIR | 2 | 4 | 1 | 4 |
d70F | KKMMKKGGKFGT MAIGMGIR | 256 | 128 | 128 | >256 |
d71M | KKMMKKGGKFGTF AIGMGIR | 4 | 2 | 4 | 8 |
d72A | KKMMKKGGKFGTFM IGMGIR | 2 | 2 | 2 | 4 |
d73I | KKMMKKGGKFGTFMA GMGIR | 256 | >256 | >256 | >256 |
d74G | KKMMKKGGKFGTFMAI MGIR | 4 | 4 | 4 | 8 |
d75M | KKMMKKGGKFGTFMAIG GIR | 2 | 2 | 2 | 4 |
d76G | KKMMKKGGKFGTFMAIGM IR | 4 | 4 | 4 | 4 |
d77I | KKMMKKGGKFGTFMAIGMG R | 8 | 4 | 4 | 8 |
d78R | KKMMKKGGKFGTFMAIGMGI | 16 | 4 | 4 | 16 |
Group | Bacteria | Strains | MBC Value (µg/mL) | ||
---|---|---|---|---|---|
AMPR-11 a | AMPR-21 | AMPR-22 | |||
Gram (+) | Staphylococcus aureus | ATCC 29213 | 100 | 4 | 2 |
Bacillus subtilis | ATCC 6633 | 90 | 2 | 1 | |
Enterococcus faecium | ATCC 19434 | 85 | 8 | 4 | |
Streptomyces sindenensis | ATCC 23963 | 95 | 4 | 2 | |
Enterococcus faecalis | ATCC 19433 | 85 | 8 | 4 | |
Streptococcus pneumoniae | NCCP 14585 | 100 | 8 | 4 | |
Gram (−) | Escherichia coli | ATCC 25922 | 85 | 4 | 1 |
Pseudomonas aeruginosa | ATCC 27853 | 100 | 4 | 2 | |
Klebsiella pneumoniae | ATCC 13883 | 100 | 4 | 1 | |
Acinetobacter baumannii | ATCC 19606 | 100 | 4 | 1 | |
Enterobacter aerogenes | ATCC 13048 | 90 | 4 | 2 | |
Multidrug Resistance | Methicillin-resistant S. aureus | ATCC 33591 | 100 | 8 | 2 |
Carbapenem-resistant P. aeruginosa | − b | 110 | 4 | 4 | |
Carbapenem-resistant A. baumannii | − b | 110 | 2 | 1 | |
Carbapenem-resistant K. pneumoniae | − b | 100 | 8 | 4 | |
Vancomycin-resistant S. aureus | NCCP 15872 | 120 | 8 | 4 | |
Vancomycin-resistant E. faecium | NCCP 11522 | 100 | 8 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, D.-G.; Lee, H.-R.; Kim, H.-K.; Lee, G.-Y.; Yoo, Y.-D. A Novel Peptide Derived from the Transmembrane Domain of Romo1 Is a Promising Candidate for Sepsis Treatment and Multidrug-Resistant Bacteria. Int. J. Mol. Sci. 2021, 22, 8243. https://doi.org/10.3390/ijms22158243
You D-G, Lee H-R, Kim H-K, Lee G-Y, Yoo Y-D. A Novel Peptide Derived from the Transmembrane Domain of Romo1 Is a Promising Candidate for Sepsis Treatment and Multidrug-Resistant Bacteria. International Journal of Molecular Sciences. 2021; 22(15):8243. https://doi.org/10.3390/ijms22158243
Chicago/Turabian StyleYou, Deok-Gyun, Hye-Ra Lee, Hong-Kyu Kim, Gi-Young Lee, and Young-Do Yoo. 2021. "A Novel Peptide Derived from the Transmembrane Domain of Romo1 Is a Promising Candidate for Sepsis Treatment and Multidrug-Resistant Bacteria" International Journal of Molecular Sciences 22, no. 15: 8243. https://doi.org/10.3390/ijms22158243
APA StyleYou, D. -G., Lee, H. -R., Kim, H. -K., Lee, G. -Y., & Yoo, Y. -D. (2021). A Novel Peptide Derived from the Transmembrane Domain of Romo1 Is a Promising Candidate for Sepsis Treatment and Multidrug-Resistant Bacteria. International Journal of Molecular Sciences, 22(15), 8243. https://doi.org/10.3390/ijms22158243