Immunomodulatory Drugs for the Treatment of B Cell Malignancies
Abstract
:1. Introduction
2. CRBN as a Target for IMiDs and CELMoDs
3. Direct Effects of IMiDs on Malignant B Cells
4. IMiDs and the TME
4.1. Effect on T Cells
4.2. Effect on NK Cells
4.3. Effect on Endothelial and Stromal Cells
4.4. Effect on DCs
5. Clinical Efficacy of IMiDs and CELMoDs in CLL and B Cell NHL
5.1. Lenalidomide Therapy in B-Cell NHL
5.2. Lenalidomide Therapy in CLL
5.3. Avadomide Therapy in B-Cell NHL
6. Biomarkers of Response to Treatment with LEN/IMiDs
7. Future Perspective—New Combinations
7.1. Small Molecule Inhibitors
7.2. Monoclonal Antibodies
7.3. Immune Checkpoint Blockade, ICB Antibodies
7.4. Bispecific Antibodies
7.5. CAR-T Cell Therapy
Study/Year | Phase | No. of Patients | Arms | ORR (%) | CR (%) | PR (%) | PFS (mo) |
---|---|---|---|---|---|---|---|
CLL first line | |||||||
Badoux et al., 2011 [14] Follow up, 2013 [144] | II | 60 35 LTRs/60 | Len mono | 65 | 15 71 | 50 29 | NA NA |
Chen et al., 2011 [145] Follow up 2014 [146] | II | 25 | Len mono | 56 72 | 0 20 | 56 52 | NA 40.4 |
James et al., 2014 [109] | II | 40 29 | Len + R (med age 56) Len + R (med age 70) | 95 79 | 20 10 | 75 69 | 19 20 |
Jones et al., 2016 [147] | II | 49 | Len + Prevnar-13 | 75 | 2 | 73 | NA |
Chen et al., 2019 [148] | II | 31 | Len + Dexa | 74 | 10 | 64 | 27 |
CLL Relapsed/Refractory | |||||||
Chanan-Khan et al., 2006 [73] | II | 45 | Len mono | 47 | 9 | 38 | NA |
Ferrajoli et al., 2008 [69] | II | 44 | Len mono | 32 | 7 | 25 | NA |
Wendtner et al., 2016 [149] | II | 104 | Len mono | 42 | 8 | 34 | 22.3 |
Vitale et al., 2016 [110] | II | 34 | Len + O | 71 | 24 | 47 | 16 |
Costa et al., 2015 [150] | II | 21 | Len + O | 48 | 0 | 48 | NA |
Badoux et al., 2013 [151] | II | 59 | Len + R | 66 | 12 | 54 | 17.4 |
Chavez et al., 2016 [152] | II | 25 | Len + R | 46 | 0 | 46 | 14 |
Foa et al., 2016 [153] | III | 160 154 | Len mono PBO | NA NA | 9.4 NA | 47.5 NA | 33.9 9.2 |
Strati et al., 2016 [154] | II | 120 | (LEN + R) Treatment naïve: Relapsed: | 73 64 | 35 28 | 38 36 | TTF 22 34 |
B-cell NHL first line | |||||||
Fowler et al., 2014 [12] | II | 50 FL,30 MZL, 30 SLL | Len + R | 90 | 63 | 27 | 53.8 |
Ruan et al., 2015 [103] | II | 36 MCL | Len + R | 92 | 64 | 28 | NA |
Martin et al., 2017 [101] | II | 51 FL | Len + R | 95 | 72 | 23 | 60 |
Morschhauser et al., 2018 [102] | II | 513 FL | Len + R | 61 | 48 | 13 | 36 |
Zucca et al., 2019 [155] | II | 77 FL | Len + R | 81 | 36 | 45 | NA |
Becnel et al., 2019 [156] | II | 27 MZL | Len + R | 93 | 70 | 22 | 59.8 |
Vitolo et al., 2014 [106] | II | 45 DLBCL | Len + R-CHOP | 92 | 86 | 6 | NA |
Nowakowski et al., 2015 [11] update 2021 | II | 60 DLBCL | Len + R-CHOP | 97 | 73 | 24 | NA |
Tilly et al., 2018 [107] | II | 80 FL | Len + R-CHOP | 94 | 74 | 20 | NA |
B-cell NHL Relapsed/Refractory | |||||||
Witzig et al., 2011 [95] | II | 108 DLBCL, 57 MCL, 19 FL, 33 TL | Len mono | 35 | 13 | 22 | 3.7 |
Wiernick et al., 2008 [94] | II | 26 DLBCL,5 FL, 15 MCL, 3 TL | Len mono | 35 | NA | NA | 4 |
Eve at al., 2012 [100] | II | 26 MCL | Len mono | 31 | 8 | 23 | 14.6 |
Habermann et al., 2009 [96] | II | 15 MCL | Len mono | 53 | 20 | 33 | 5.6 |
Ferreri et al., 2016 [157] | II | 46 DLBCL | Len mono | NA | NA | NA | 1-year PFS: 70% |
Tuscano et al., 2014 [158] | II | 22 FL, 3 MZL, 3 SLL | Len + R | 74 | 44 | 30 | 12.4 |
Chong et al., 2015 [159] | II | 30 FL, 14 MCL, 4 SLL, 2 MZL | Len + R | 62.8 | NA | NA | 22.2 |
Zinzani et al., 2013 [160] | II | 23 DLBLC | Len + R | 35 | NA | NA | NA |
Wang et al., 2013 [105] | II | 32 DLBCL, 4 FL, 9 TL | Len + R | 33 | 13 | 20 | 3.7 |
Morschhauser et al., 2016 [161] | II | 71 DLBCL, 13 MCL | Len + Ob | 30.6 | 16.5 | 14.1 | NA |
Thieblemont et al., 2016 [162] update | III | 325 DLCBL 325 CLBCL | Len mono PBO | NA NA | 21 14 | NA NA | NA 68 |
Jerkeman et al., 2016 [108] update | II | 50 MCL | Len + R+I | 83 | 41 | 41 | NA |
Wang et al., 2016 [163] | 30 MCL | Len mono | 27 | 13 | 14 | NA | |
Andorsky et al., 2016 [164] | III | 61 FL, 16 MZL, 13 MCL | Len + R | 56 | 20 | 36 | NA |
Leonard et al., 2019 [19] | III | 147 FL, 31 MZL | Len + R | 78 | 34 | 44 | 39.4 |
Avadomide clinical trials | |||||||
Carpio et al., 2020 [66] | I | 97 DLBCL | Ava mono | 28 | 9 | 19 | 2 |
Rasco et al., 2019 [24] | I | 5 NHL | Ava mono | 60 | 20 | 40 | NA |
Michot et al., 2020 [22] | Ib | 19 DLBCL, 53 FL, 1 MZL | Ava + Ob | 68 | 34 | 34 | 16 |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC-DLBCL | Activated B cell DLBCL |
ACT | Adoptive cell therapy |
ADC | Antibody-drug conjugate |
ADCC | Antibody-dependent cellular cytotoxicity |
APC | Antigen presenting cell |
BCL2 | B cell lymphoma 2 |
BCR | B cell receptor |
bFGF | Basic fibroblast growth factor |
BTK | Bruton tyrosine kinase |
CDK | Cyclin-dependent kinase |
CELMoD | Cereblon E3 ligase modulator |
CLL | Chronic lymphocytic leukemia |
CORO1B | Coronin 1B |
CR | Complete response |
CRBN | Cereblon |
DC | Dendritic cell |
DLBCL | Diffuse large B cell lymphoma |
EC | Endothelial cell |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
FDC | Follicular Dendritic Cell |
FL | Follicular lymphoma |
GAB1 | GRB-2 associated binding protein 1 |
GCB-DLBCL | Germinal center B cell DLBCL |
ICB | Immune checkpoint blockade |
IFN | Interferon |
IHC | Immunohistochemistry |
IKZF1 | Ikaros |
IKZF3 | Aiolos |
IL-2 | Interleukin-2 |
IMiDs | Immunomodulatory Drugs |
IRF4 | Interferon regulating factor 4 |
mAb | Monoclonal antibody |
MCL | Mantle cell lymphoma |
MDS | Myelodysplastic Syndrome |
MM | Multiple Myeloma |
MOA | Mechanism of action |
MOR-28 | Tafasitamab |
MSC | Mesenchymal stem cells |
MZL | Mantle zone lymphoma |
NF-kB | Nuclear factor kB |
NHL | Non-Hodgkin Lymphoma |
NK | Natural killer |
NLC | Nurse-like Cell |
ORR | Overall response rate |
OS | Overall survival |
PFS | Progression free survival |
R/R | Relapsed and/or Refractory |
R2 | Rituximab plus lenalidomide |
TAM | Tumor-associated macrophage |
TFH | T follicular helper cells |
TME | Tumor microenvironment |
Treg | Regulatory T cells |
VEGF | Vascular endothelial growth factor |
References
- Salles, G.; Barrett, M.; Foà, R.; Maurer, J.; O’Brien, S.; Valente, N.; Wenger, M.; Maloney, D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017, 34, 2232–2273. [Google Scholar] [CrossRef] [Green Version]
- Czuczman, M.S.; Gregory, S.A. The future of CD20 monoclonal antibody therapy in B-cell malignancies. Leuk. Lymphoma 2010, 51, 983–994. [Google Scholar] [CrossRef]
- Jones, J.A.; Byrd, J.C. How will B-cell-receptor–targeted therapies change future CLL therapy? Blood 2014, 123, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.A.; Grant, B.; Sharman, J.P.; Coleman, M.; Wierda, W.G.; et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2013, 369, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Tedeschi, A.; Bairey, O.; Hillmen, P.; Coutre, S.E.; Devereux, S.; et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 2020, 34, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.W.; Ma, S.; Kipps, T.J.; Coutre, S.E.; Davids, M.S.; Eichhorst, B.; Hallek, M.; Byrd, J.C.; Humphrey, K.; Zhou, L.; et al. Efficacy of venetoclax in relapsed chronic lymphocytic leukemia is influenced by disease and response variables. Blood 2019, 134, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A. Treatment of Chronic Lymphocytic Leukemia. New Engl. J. Med. 2020, 383, 460–473. [Google Scholar] [CrossRef]
- Woyach, J.A.; Furman, R.R.; Liu, T.-M.; Gulcin, H.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Staggerda, S.M.; Versele, M.; Dave, S.S.; et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansell, S.M.; Lin, Y. Immunotherapy of lymphomas. J. Clin. Investig. 2020, 130, 1576–1585. [Google Scholar] [CrossRef]
- Galustian, C.; Labarthe, M.-C.; Bartlett, J.B.; Dalgleish, A.G. Thalidomide-derived immunomodulatory drugs as therapeutic agents. Expert Opin. Biol. Ther. 2004, 4, 1963–1970. [Google Scholar] [CrossRef]
- Nowakowski, G.S.; LaPlant, B.; Macon, W.R.; Reeder, C.B.; Foran, J.M.; Nelson, G.D.; Thompson, C.A.; Rivera, C.E.; Inwards, D.J.; Micallef, I.N.; et al. Lenalidomide Combined With R-CHOP Overcomes Negative Prognostic Impact of Non–Germinal Center B-Cell Phenotype in Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Phase II Study. J. Clin. Oncol. 2015, 33, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Fowler, N.H.; Davis, R.E.; Rawal, S.; Nastoupil, L.; Hagemeister, F.B.; McLaughlin, P.; Kwak, L.W.; Romaguera, J.E.; Fanale, M.A.; Fayad, L.E.; et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: An open-label, phase 2 trial. Lancet Oncol. 2014, 15, 1311–1318. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.; Newberry, K.; Ou, Z.; Wang, M.; Zhang, L. Lenalidomide in relapsed or refractory mantle cell lymphoma: Overview and perspective. Ther. Adv. Hematol. 2014, 5, 91–101. [Google Scholar] [CrossRef]
- Badoux, X.C.; Keating, M.J.; Wen, S.; Lee, B.-N.; Sivina, M.; Reuben, J.; Wierda, W.G.; O’Brien, S.M.; Faderl, S.; Kornblau, S.M.; et al. Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood 2011, 118, 3489–3498. [Google Scholar] [CrossRef] [Green Version]
- Yamshon, S.; Ruan, J. IMiDs New and Old. Curr. Hematol. Malign. Rep. 2019, 14, 414–425. [Google Scholar] [CrossRef]
- Zeldis, J.B.; Knight, R.; Hussein, M.; Chopra, R.; Muller, G. A review of the history, properties, and use of the immunomodulatory compound lenalidomide. Ann. N. Y. Acad. Sci. 2011, 1222, 76–82. [Google Scholar] [CrossRef]
- Trněný, M.; Lamy, T.; Walewski, J.; Belada, D.; Mayer, J.; Radford, J.; Jurczak, W.; Morschhauser, F.; Alexeeva, J.; Rule, S.; et al. Lenalidomide versus investigator’s choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): A phase 2, randomised, multicentre trial. Lancet Oncol. 2016, 17, 319–331. [Google Scholar] [CrossRef]
- Goy, A.; Sinha, R.; Williams, M.E.; Besisik, S.K.; Drach, J.; Ramchandren, R.; Zhang, L.; Cicero, S.; Fu, T.; Witzig, T.E. Single-Agent Lenalidomide in Patients With Mantle-Cell Lymphoma Who Relapsed or Progressed After or Were Refractory to Bortezomib: Phase II MCL-001 (EMERGE) Study. J. Clin. Oncol. 2013, 31, 3688–3695. [Google Scholar] [CrossRef]
- Leonard, J.P.; Trneny, M.; Izutsu, K.; Fowler, N.H.; Hong, X.; Zhu, J.; Zhang, H.; Offner, F.; Scheliga, A.; Nowakowski, G.S.; et al. AUGMENT: A Phase III Study of Lenalidomide Plus Rituximab Versus Placebo Plus Rituximab in Relapsed or Refractory Indolent Lymphoma. J. Clin. Oncol. 2019, 37, 1188–1199. [Google Scholar] [CrossRef]
- Andorsky, D.J.; Coleman, M.; Yacoub, A.; Melear, J.M.; Fanning, S.R.; Kolibaba, K.; Lansigan, F.; Reynolds, C.; Foon, K.A.; Li, J.; et al. MAGNIFY: Phase IIIb interim analysis of induction R2 followed by maintenance in relapsed/refractory indolent non-Hodgkin lymphoma. J. Clin. Oncol. 2019, 37, 7513. [Google Scholar] [CrossRef]
- Salles, G.; Duell, J.; Barca, E.G.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef]
- Michot, J.-M.; Bouabdallah, R.; Vitolo, U.; Doorduijn, J.K.; Salles, G.; Chiappella, A.; Zinzani, P.L.; Bijou, F.; Kersten, M.J.; Sarmiento, R.; et al. Avadomide plus obinutuzumab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma (CC-122-NHL-001): A multicentre, dose escalation and expansion phase 1 study. Lancet Haematol. 2020, 7, e649–e659. [Google Scholar] [CrossRef]
- Hagner, P.R.; Man, H.-W.; Fontanillo, C.; Wang, M.; Couto, S.S.; Breider, M.; Bjorklund, C.C.; Havens, C.G.; Lu, G.; Rychak, E.; et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 2015, 126, 779–789. [Google Scholar] [CrossRef]
- Rasco, D.W.; Papadopoulos, K.P.; Pourdehnad, M.; Gandhi, A.K.; Hagner, P.R.; Li, Y.; Wei, X.; Chopra, R.; Hege, K.; DiMartino, J.F.; et al. A First-in-Human Study of Novel Cereblon Modulator Avadomide (CC-122) in Advanced Malignancies. Clin. Cancer Res. 2018, 25, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kater, A.P.; Tonino, S.H.; Egle, A.; Ramsay, A. How does lenalidomide target the chronic lymphocytic leukemia microenvironment? Blood 2014, 124, 2184–2189. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A.K.; Kang, J.; Karasawa, S.; Carmel, G.; Jackson, P.; Abbasian, M.; et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012, 26, 2326–2335. [Google Scholar] [CrossRef]
- Matyskiela, M.E.; Zhang, W.; Man, H.-W.; Muller, G.; Khambatta, G.; Baculi, F.; Hickman, M.; Lebrun, L.; Pagarigan, B.; Carmel, G.; et al. A Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos. J. Med. Chem. 2017, 61, 535–542. [Google Scholar] [CrossRef]
- Chamberlain, P.P.; Lopez-Girona, A.; Miller, K.; Carmel, G.; Pagarigan, B.; Chie-Leon, B.; Rychak, E.; Corral, L.G.; Ren, Y.J.; Wang, M.; et al. Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 2014, 21, 803–809. [Google Scholar] [CrossRef]
- Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; et al. Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science 2014, 343, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Gribben, J.G.; Fowler, N.; Morschhauser, F. Mechanisms of Action of Lenalidomide in B-Cell Non-Hodgkin Lymphoma. J. Clin. Oncol. 2015, 33, 2803–2811. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.K.; Kang, J.; Havens, C.G.; Conklin, T.; Ning, Y.; Wu, L.; Ito, T.; Ando, H.; Waldman, M.F.; Thakurta, A.; et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br. J. Haematol. 2014, 164, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Riches, J.C.; Gribben, J.G. Mechanistic and Clinical Aspects of Lenalidomide Treatment for Chronic Lymphocytic Leukemia. Curr. Cancer Drug Targets 2016, 16, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Fecteau, J.F.; Corral, L.G.; Ghia, E.M.; Gaidarova, S.; Futalan, D.; Bharati, I.S.; Cathers, B.; Schwaederle, M.; Cui, B.; Messmer, D.; et al. Lenalidomide inhibits the proliferation of CLL cells via a cereblon/p21(WAF1/Cip1)-dependent mechanism independent of functional p53. Blood 2014, 124, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Chanan-Khan, A.A.; Chitta, K.; Ersing, N.; Paulus, A.; Masood, A.; Sher, T.; Swaika, A.; Wallace, P.; Mashtare, T.L.M., Jr.; Wilding, G.; et al. Biological effects and clinical significance of lenalidomide-induced tumour flare reaction in patients with chronic lymphocytic leukaemia: In vivo evidence of immune activation and antitumour response. Br. J. Haematol. 2011, 155, 457–467. [Google Scholar] [CrossRef]
- Troeger, A.; Johnson, A.J.; Wood, J.; Blum, W.G.; Andritsos, L.A.; Byrd, J.C.; Williams, D.A. RhoH is critical for cell-microenvironment interactions in chronic lymphocytic leukemia in mice and humans. Blood 2012, 119, 4708–4718. [Google Scholar] [CrossRef]
- Schulz, A.; Dürr, C.; Zenz, T.; Döhner, H.; Stilgenbauer, S.; Lichter, P.; Seiffert, M.; Bridle, B.W.; Boudreau, J.E.; Rosen, A.; et al. Lenalidomide reduces survival of chronic lymphocytic leukemia cells in primary cocultures by altering the myeloid microenvironment. Blood 2013, 121, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Aue, G.; Njuguna, N.; Tian, X.; Soto, S.; Hughes, T.; Vire, B.; Keyvanfar, K.; Gibellini, F.; Valdez, J.; Boss, C.; et al. Lenalidomide-induced upregulation of CD80 on tumor cells correlates with T-cell activation, the rapid onset of a cytokine release syndrome and leukemic cell clearance in chronic lymphocytic leukemia. Haematologica 2009, 94, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, A.; Clear, A.J.; Kelly, G.; Fatah, R.; Matthews, J.; MacDougall, F.; Lister, T.A.; Lee, A.M.; Calaminici, M.; Gribben, J.G. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: Implications for the tumor microenvironment and immunotherapy. Blood 2009, 114, 4713–4720. [Google Scholar] [CrossRef]
- Zhang, L.; Qian, Z.; Cai, Z.; Sun, L.; Wang, H.; Bartlett, J.B.; Yi, Q.; Wang, M. Synergistic antitumor effects of lenalidomide and rituximab on mantle cell lymphoma in vitro and in vivo. Am. J. Hematol. 2009, 84, 553–559. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Kosek, J.; Wang, M.; Heise, C.; Schafer, P.H.; Chopra, R. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br. J. Haematol. 2012, 160, 487–502. [Google Scholar] [CrossRef]
- Yang, Y.; Shaffer, A.L., III; Emre, N.T.; Ceribelli, M.; Zhang, M.; Wright, G.; Xiao, W.; Powell, J.; Platig, J.; Kolhammer, H.; et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 2012, 21, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.K.; Kang, J.; Naziruddin, S.; Parton, A.; Schafer, P.H.; Stirling, D.I. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk. Res. 2006, 30, 849–858. [Google Scholar] [CrossRef]
- Ramsay, A.G.; Clear, A.J.; Fatah, R.; Gribben, J.G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: Establishing a reversible immune evasion mechanism in human cancer. Blood 2012, 120, 1412–1421. [Google Scholar] [CrossRef]
- Moros, A.; Rodriguez, V.; Saborit-Villarroya, I.; Montraveta, A.; Balsas, P.; Sandy, P.; Martinez, A.; Normant, E.; Pérez-Galán, P.; Campo, E.; et al. Abstract 1691: Synergistic anti-tumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Exp. Mol. Ther. 2014, 28, 2049–2059. [Google Scholar] [CrossRef]
- Gaidarova, S.; Corral, L.G.; Gleizer, E.; Young, D.; Brady, H.; Bennett, B.; Lopez-Girona, A. Lenalidomide Enhances Anti-Tumor Effect of γδ T Cells against Mantle Cell Lymphoma. Blood 2008, 112, 2616. [Google Scholar] [CrossRef]
- Burger, J.A.; Gribben, J.G. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: Insight into disease biology and new targeted therapies. Semin. Cancer Biol. 2014, 24, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ame-Thomas, P.; Tarte, K. The yin and the yang of follicular lymphoma cell niches: Role of microenvironment heterogeneity and plasticity. Semin. Cancer Biol. 2014, 24, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Panayiotidis, P.; Jones, D.; Ganeshaguru, K.; Foroni, L.; Hoffbrand, A.V. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cellsin vitro. Br. J. Haematol. 1996, 92, 97–103. [Google Scholar] [CrossRef]
- Lagneaux, L.; Delforge, A.; Bron, D.; De Bruyn, C.; Stryckmans, P. Chronic Lymphocytic Leukemic B Cells But Not Normal B Cells Are Rescued From Apoptosis by Contact With Normal Bone Marrow Stromal Cells. Blood 1998, 91, 2387–2396. [Google Scholar] [CrossRef]
- Zucchetto, A.; Tripodo, C.; Benedetti, D.; Deaglio, S.; Gaidano, G.; DEL Poeta, G.; Gattei, V. Monocytes/macrophages but not T lymphocytes are the major targets of the CCL3/CCL4 chemokines produced by CD38+CD49d+chronic lymphocytic leukaemia cells. Br. J. Haematol. 2010, 150, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Quiroga, M.P.; Hartmann, E.; Bürkle, A.; Wierda, W.G.; Keating, M.J.; Rosenwald, A. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009, 113, 3050–3058. [Google Scholar] [CrossRef]
- Scott, D.W.; Gascoyne, R.D. The tumour microenvironment in B cell lymphomas. Nat. Rev. Cancer 2014, 14, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.-P.; Kühn, R.; Rajewsky, K. In Vivo Ablation of Surface Immunoglobulin on Mature B Cells by Inducible Gene Targeting Results in Rapid Cell Death. Cell 1997, 90, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Minden, M.D.-V.; Übelhart, R.; Schneider, D.; Wossning, T.; Bach, M.P.; Buchner, M.; Hofmann, D.; Surova, E.; Follo, M.; Köhler, F.; et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nat. Cell Biol. 2012, 489, 309–312. [Google Scholar] [CrossRef]
- Nicholas, N.S.; Apollonio, B.; Ramsay, A. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim. Biophys. Acta BBA Bioenerg. 2016, 1863, 471–482. [Google Scholar] [CrossRef]
- Upadhyay, R.; Hammerich, L.; Peng, P.; Brown, B.; Merad, M.; Brody, J.D. Lymphoma: Immune Evasion Strategies. Cancers 2015, 7, 736–762. [Google Scholar] [CrossRef] [Green Version]
- Kiaii, S.; Clear, A.J.; Ramsay, A.; Davies, D.; Sangaralingam, A.; Lee, A.; Calaminici, M.; Neuberg, D.S.; Gribben, J.G. Follicular Lymphoma Cells Induce Changes in T-Cell Gene Expression and Function: Potential Impact on Survival and Risk of Transformation. J. Clin. Oncol. 2013, 31, 2654–2661. [Google Scholar] [CrossRef] [Green Version]
- Forconi, F.; Moss, P. Perturbation of the normal immune system in patients with CLL. Blood 2015, 126, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görgün, G.; Holderried, T.; Zahrieh, D.; Neuberg, D.; Gribben, J.G. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J. Clin. Investig. 2005, 115, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, A.G.; Johnson, A.J.; Lee, A.M.; Görgün, G.; Le Dieu, R.; Blum, W.; Byrd, J.C.; Gribben, J.G. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Investig. 2008, 118, 2427–2437. [Google Scholar] [CrossRef]
- Aue, G.; Sun, C.; Liu, D.; Park, J.-H.; Pittaluga, S.; Tian, X.; Lee, E.; Soto, S.; Valdez, J.; Maric, I.; et al. Activation of Th1 Immunity within the Tumor Microenvironment Is Associated with Clinical Response to Lenalidomide in Chronic Lymphocytic Leukemia. J. Immunol. 2018, 201, 1967–1974. [Google Scholar] [CrossRef]
- Ioannou, N.; Hagner, P.R.; Stokes, M.; Gandhi, A.K.; Apollonio, B.; Fanous, M.; Papazoglou, D.; Sutton, L.-A.; Rosenquist, R.; Amini, R.-M.; et al. Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood 2021, 137, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Idler, I.; Giannopoulos, K.; Zenz, T.; Bhattacharya, N.; Nothing, M.; Döhner, H.; Stilgenbauer, S.; Mertens, D. Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells. Br. J. Haematol. 2010, 148, 948–950. [Google Scholar] [CrossRef]
- Lee, B.-N.; Gao, H.; Cohen, E.N.; Badoux, X.; Wierda, W.G.; Estrov, Z.; Faderl, S.H.; Keating, M.J.; Ferrajoli, A.; Reuben, J.M.; et al. Treatment with lenalidomide modulates T-cell immunophenotype and cytokine production in patients with chronic lymphocytic leukemia. Cancer 2011, 117, 3999–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsay, A.G.; Evans, R.; Kiaii, S.; Svensson, L.; Hogg, N.; Gribben, J.G. Chronic lymphocytic leukemia cells induce defective LFA-1–directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood 2013, 121, 2704–2714. [Google Scholar] [CrossRef] [PubMed]
- Carpio, C.; Bouabdallah, R.; Ysebaert, L.; García-Sancho, A.M.; Salles, G.; Cordoba, R.; Pinto, A.; Gharibo, M.; Rasco, D.; Panizo, C.; et al. Avadomide monotherapy in relapsed/refractory DLBCL: Safety, efficacy, and a predictive gene classifier. Blood 2020, 135, 996–1007. [Google Scholar] [CrossRef]
- Cubillos-Zapata, C.; Cordoba, R.; Avendaño-Ortiz, J.; Arribas-Jiménez, C.; Hernández-Jiménez, E.; Toledano, V.; Villaescusa, T.; Moreno, V.; López-Collazo, E. CC-122 immunomodulatory effects in refractory patients with diffuse large B-cell lymphoma. OncoImmunology 2016, 5, e1231290. [Google Scholar] [CrossRef] [Green Version]
- Waldhauer, I.; Steinle, A. NK cells and cancer immunosurveillance. Oncogene 2008, 27, 5932–5943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrajoli, A.; Lee, B.-N.; Schlette, E.J.; O’Brien, S.M.; Gao, H.; Wen, S.; Wierda, W.G.; Estrov, Z.; Faderl, S.; Cohen, E.; et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 2008, 111, 5291–5297. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Hideshima, T.; Akiyama, M.; Podar, K.; Yasui, H.; Raje, N.; Kumar, S.; Chauhan, D.; Treon, S.P.; Richardson, P.; et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: Clinical application. Br. J. Haematol. 2004, 128, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Lagrue, K.; Carisey, A.; Morgan, D.J.; Chopra, R.; Davis, D.M. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood 2015, 126, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, M.; Janji, B.; Berchem, G. Activation of NK cells and disruption of PD-L1/PD-1 axis: Two different ways for lenalidomide to block myeloma progression. Oncotarget 2017, 8, 24031–24044. [Google Scholar] [CrossRef] [Green Version]
- Chanan-Khan, A.; Miller, K.C.; Musial, L.; Lawrence, D.; Padmanabhan, S.; Takeshita, K.; Porter, C.W.; Goodrich, D.W.; Bernstein, Z.P.; Wallace, P.; et al. Clinical Efficacy of Lenalidomide in Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia: Results of a Phase II Study. J. Clin. Oncol. 2006, 24, 5343–5349. [Google Scholar] [CrossRef]
- Acebes-Huerta, A.; Huergo-Zapico, L.; Rodriguez, A.P.G.; Fernandez-Guizan, A.; Payer, A.R.; López-Soto, A.; Gonzalez, S. Lenalidomide Induces Immunomodulation in Chronic Lymphocytic Leukemia and Enhances Antitumor Immune Responses Mediated by NK and CD4 T Cells. BioMed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.; Trisal, P.; Bjorklund, C.; Carrancio, S.; Toraño, E.G.; Guarinos, C.; Papazoglou, D.; Hagner, P.R.; Beldi-Ferchiou, A.; Tarte, K.; et al. Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma. Br. J. Haematol. 2019, 185, 240–253. [Google Scholar] [CrossRef]
- Hagner, P.R.; Chiu, H.; Ortiz, M.; Apollonio, B.; Wang, M.; Couto, S.; Waldman, M.F.; Flynt, E.; Ramsay, A.; Trotter, M.; et al. Activity of lenalidomide in mantle cell lymphoma can be explained by NK cell-mediated cytotoxicity. Br. J. Haematol. 2017, 179, 399–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Adams, M.; Carter, T.; Chen, R.; Muller, G.; Stirling, D.; Schafer, P.; Bartlett, J.B. Lenalidomide Enhances Natural Killer Cell and Monocyte-Mediated Antibody-Dependent Cellular Cytotoxicity of Rituximab-Treated CD20+ Tumor Cells. Clin. Cancer Res. 2008, 14, 4650–4657. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, A.K.; Mendy, B.D.; Parton, B.A.; Wu, M.L.; Kosek, B.J.; Zhang, L.-H.; Capone, B.L.; Lopez-Girona, A.; Schafer, P.H.; Chopra, R. CC-122 Is a Novel Pleiotropic Pathway Modifier with Potent in Vitro Immunomodulatory and Anti-Angiogenic Properties and in Vivo Anti-Tumor Activity in Hematological Cancers. Blood 2012, 120, 2963. [Google Scholar] [CrossRef]
- Lutzny, G.; Kocher, T.; Schmidt-Supprian, M.; Rudelius, M.; Klein-Hitpass, L.; Finch, A.J.; Durig, J.; Wagner, M.; Haferlach, C.; Kohlfmann, A.; et al. Protein Kinase C-β-Dependent Activation of NF-κB in Stromal Cells Is Indispensable for the Survival of Chronic Lymphocytic Leukemia B Cells In Vivo. Cancer Cell 2013, 23, 77–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuma, K.; Takahara, N.; Suzuma, I.; Isshiki, K.; Ueki, K.; Leitges, M.; Aiello, L.P.; King, G.L. Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc. Natl. Acad. Sci. USA 2002, 99, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Badoux, X.; Bueso-Ramos, C.; Harris, D.; Li, P.; Liu, Z.; Burger, J.; O’Brien, S.; Ferrajoli, A.; Keating, M.J.; Estrov, Z. Cross-talk between chronic lymphocytic leukemia cells and bone marrow endothelial cells: Role of signal transducer and activator of transcription 3. Hum. Pathol. 2011, 42, 1989–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffei, R.; Martinelli, S.; Castelli, I.; Santachiara, R.; Zucchini, P.; Fontana, M.; Fiorcari, S.; Bonacorsi, G.; Ilariucci, F.; Torelli, G.; et al. Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk. Res. 2010, 34, 312–321. [Google Scholar] [CrossRef]
- Ribatti, D.; Nico, B.; Ranieri, G.; Specchia, G.; Vacca, A. The Role of Angiogenesis in Human Non-Hodgkin Lymphomas. Neoplasia 2013, 15, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Lenz, G.; Wright, G.; Dave, S.; Xiao, W.; Powell, J.; Zhao, H.; Xu, W.; Tan, B.; Goldschmidt, N.; Iqbal, J.; et al. Stromal Gene Signatures in Large-B-Cell Lymphomas. N. Engl. J. Med. 2008, 359, 2313–2323. [Google Scholar] [CrossRef] [Green Version]
- Cols, M.; Barra, C.; He, B.; Puga, I.; Xu, W.; Chiu, A.; Tam, W.; Knowles, D.M.; Dillon, S.R.; Leonard, J.P.; et al. Stromal Endothelial Cells Establish a Bidirectional Crosstalk with Chronic Lymphocytic Leukemia Cells through the TNF-Related Factors BAFF, APRIL, and CD40L. J. Immunol. 2012, 188, 6071–6083. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Bai, X.; Cao, Y.; Wu, J.; Huang, M.; Tang, D.; Tao, S.; Zhu, T.; Liu, Y.; Yang, Y.; et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J. Exp. Med. 2010, 207, 505–520. [Google Scholar] [CrossRef]
- Maffei, R.; Fiorcari, S.; Bulgarelli, J.; Rizzotto, L.; Martinelli, S.; Rigolin, G.M.; Debbia, G.; Castelli, I.; Bonacorsi, G.; Santachiara, R.; et al. Endothelium-mediated survival of leukemic cells and angiogenesis-related factors are affected by lenalidomide treatment in chronic lymphocytic leukemia. Exp. Hematol. 2014, 42, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Hernandez-Ilizaliturri, F.J.; Deeb, G.; Roth, M.; Vaughn, M.; Knight, J.; Wallace, P.; Czuczman, M.S. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br. J. Haematol. 2007, 140, 36–45. [Google Scholar] [CrossRef]
- Song, K.; Herzog, B.H.; Sheng, M.; Fu, J.; McDaniel, J.M.; Ruan, J.; Xia, L. Lenalidomide Inhibits Lymphangiogenesis in Preclinical Models of Mantle Cell Lymphoma. Cancer Res. 2013, 73, 7254–7264. [Google Scholar] [CrossRef] [Green Version]
- Wobus, M.; Benath, G.; Ferrer, R.A.; Wehner, R.; Schmitz, M.; Hofbauer, L.C.; Rauner, M.; Ehninger, G.; Bornhäuser, M.; Platzbecker, U. Impact of lenalidomide on the functional properties of human mesenchymal stromal cells. Exp. Hematol. 2012, 40, 867–876. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Qian, J.; Li, H.; Romaguera, J.E.; Kwak, L.; Wang, M.; Yi, Q. Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells. Blood 2012, 120, 3783–3792. [Google Scholar] [CrossRef] [Green Version]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.Y.; Labarthe, M.C.; Meyer, B.; Dasgupta, P.; Dalgleish, A.G.; Galustian, C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs(R) immunomodulatory compounds lenalidomide and pomalidomide. Immunology 2013, 139, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Wiernik, P.H.; Lossos, I.S.; Tuscano, J.M.; Justice, G.; Vose, J.M.; Cole, C.E.; Lam, W.; McBride, K.; Wride, K.; Pietgronigro, D.; et al. Lenalidomide Monotherapy in Relapsed or Refractory Aggressive Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2008, 26, 4952–4957. [Google Scholar] [CrossRef]
- Witzig, T.E.; Vose, J.M.; Zinzani, P.L.; Reeder, C.B.; Buckstein, R.; Polikoff, J.A.; Bouabdallah, R.; Haioun, C.; Tilly, H.; Guo, P.; et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin’s lymphoma. Ann. Oncol. 2011, 22, 1622–1627. [Google Scholar] [CrossRef]
- Habermann, T.M.; Lossos, I.S.; Justice, G.; Vose, J.M.; Wiernik, P.H.; McBride, K.; Wride, K.; Ervin-Haynes, A.; Takeshita, K.; Pietronigro, D.; et al. Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. Br. J. Haematol. 2009, 145, 344–349. [Google Scholar] [CrossRef]
- Witzig, T.E.; Wiernik, P.H.; Moore, T.; Reeder, C.; Cole, C.; Justice, G.; Kaplan, H.; Voralia, M.; Pietronigro, D.; Takeshita, K.; et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2009, 27, 5404–5409. [Google Scholar] [CrossRef]
- Hernandez-Ilizaliturri, F.J.; Deeb, G.; Zinzani, P.L.; Pileri, S.A.; Malik, F.; Macon, W.R.; Goy, A.; Witzig, T.E.; Czuczman, M.S. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype. Cancer 2011, 117, 5058–5066. [Google Scholar] [CrossRef] [PubMed]
- Czuczman, M.S.; Trněný, M.; Davies, A.; Rule, S.; Linton, K.M.; Wagner-Johnston, N.; Gascoyne, R.D.; Slack, G.W.; Brousset, P.; Eberhard, D.A.; et al. A Phase 2/3 Multicenter, Randomized, Open-Label Study to Compare the Efficacy and Safety of Lenalidomide Versus Investigator’s Choice in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Clin. Cancer Res. 2017, 23, 4127–4137. [Google Scholar] [CrossRef] [Green Version]
- Eve, H.E.; Carey, S.; Richardson, S.J.; Heise, C.C.; Mamidipudi, V.; Shi, T.; Radford, J.A.; Auer, R.L.; Bullard, S.H.; Rule, S.A.J. Single-agent lenalidomide in relapsed/refractory mantle cell lymphoma: Results from a UK phase II study suggest activity and possible gender differences. Br. J. Haematol. 2012, 159, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.; Jung, S.-H.; Pitcher, B.; Bartlett, N.; Blum, K.; Shea, T.; Hsi, E.; Ruan, J.; Smith, S.; Leonard, J.; et al. A phase II trial of lenalidomide plus rituximab in previously untreated follicular non-Hodgkin’s lymphoma (NHL): CALGB 50803 (Alliance). Ann. Oncol. 2017, 28, 2806–2812. [Google Scholar] [CrossRef]
- Morschhauser, F.; Fowler, N.H.; Feugier, P.; Bouabdallah, R.; Tilly, H.; Palomba, M.L.; Fruchart, C.; Libby, E.N.; Casasnovas, R.-O.; Flinn, I.W.; et al. Rituximab plus Lenalidomide in Advanced Untreated Follicular Lymphoma. N. Engl. J. Med. 2018, 379, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Martin, P.; Shah, B.; Schuster, S.J.; Smith, S.M.; Furman, R.R.; Christos, P.J.; Rodriguez, A.; Svoboda, J.; Lewis, J.; et al. Lenalidomide plus Rituximab as Initial Treatment for Mantle-Cell Lymphoma. N. Engl. J. Med. 2015, 373, 1835–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, J.P.; Jung, S.-H.; Johnson, J.; Pitcher, B.N.; Bartlett, N.; Blum, K.A.; Czuczman, M.S.; Giguere, J.K.; Cheson, B.D. Randomized Trial of Lenalidomide Alone Versus Lenalidomide Plus Rituximab in Patients With Recurrent Follicular Lymphoma: CALGB 50401 (Alliance). J. Clin. Oncol. 2015, 33, 3635–3640. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Fowler, N.E.; Wagnerbartak, N.; Feng, L.; Romaguera, J.; Neelapu, S.S.; Hagemeister, F.B.; A Fanale, M.; Oki, Y.; Pro, B.; et al. Oral lenalidomide with rituximab in relapsed or refractory diffuse large cell, follicular and transformed lymphoma: A phase II clinical trial. Leukemia 2013, 27, 1902–1909. [Google Scholar] [CrossRef]
- Vitolo, U.; Chiappella, A.; Franceschetti, S.; Carella, A.M.; Baldi, I.; Inghirami, G.; Spina, M.; Pavone, V.; Ladetto, M.; Liberati, A.M.; et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: Results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol. 2014, 15, 730–737. [Google Scholar] [CrossRef]
- Tilly, H.; Morschhauser, F.; Casasnovas, O.; Molina, T.J.; Feugier, P.; le Gouill, S.; Haioun, C.; Tournilhac, O.; Bouabdallah, R.; Gabarre, J.; et al. Lenalidomide in combination with R-CHOP (R2-CHOP) as first-line treatment of patients with high tumour burden follicular lymphoma: A single-arm, open-label, phase 2 study. Lancet Haematol. 2018, 5, e403–e410. [Google Scholar] [CrossRef]
- Jerkeman, M.; Hutchings, M.; Räty, R.; Wader, K.F.; Laurell, A.; Kuitunen, H.; Toldbod, H.; Pedersen, L.B.; Eskelund, C.W.; Grønbæk, K.; et al. Ibrutinib-Lenalidomide-Rituximab in Patients with Relapsed/Refractory Mantle Cell Lymphoma: First Results from the Nordic Lymphoma Group MCL6 (PHILEMON) Phase II Trial. Blood 2016, 128, 148. [Google Scholar] [CrossRef]
- James, D.F.; Werner, L.; Brown, J.R.; Wierda, W.G.; Barrientos, J.C.; Castro, J.E.; Greaves, A.; Johnson, A.J.; Rassenti, L.Z.; Rai, K.R.; et al. Lenalidomide and Rituximab for the Initial Treatment of Patients With Chronic Lymphocytic Leukemia: A Multicenter Clinical-Translational Study From the Chronic Lymphocytic Leukemia Research Consortium. J. Clin. Oncol. 2014, 32, 2067–2073. [Google Scholar] [CrossRef] [Green Version]
- Vitale, C.; Falchi, L.; Hacken, E.T.; Gao, H.; Shaim, H.; Van Roosbroeck, K.; Calin, G.; O’Brien, S.; Faderl, S.; Wang, X.; et al. Ofatumumab and Lenalidomide for Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia: Correlation between Responses and Immune Characteristics. Clin. Cancer Res. 2016, 22, 2359–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goy, A.; Besisik, S.K.; Drach, J.; Ramchandren, R.; Robertson, M.J.; Avivi, I.; Rowe, J.M.; Herbrecht, R.; Van Hoof, A.; Zhang, L.; et al. Longer-term follow-up and outcome by tumour cell proliferation rate (Ki-67) in patients with relapsed/refractory mantle cell lymphoma treated with lenalidomide on MCL-001(EMERGE) pivotal trial. Br. J. Haematol. 2015, 170, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosenza, M.; Civallero, M.; Pozzi, S.; Marcheselli, L.; Bari, A.; Sacchi, S. The combination of bortezomib with enzastaurin or lenalidomide enhances cytotoxicity in follicular and mantle cell lymphoma cell lines. Hematol. Oncol. 2014, 33, 166–175. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Nastoupil, L.J.; Neelapu, S.S.; Forbes, S.G.; Oki, Y.; Fowler, N.H. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood 2015, 125, 3357–3359. [Google Scholar] [CrossRef] [Green Version]
- Ujjani, C.; Wang, H.; Skarbnik, A.; Trivedi, N.; Ramzi, P.; Khan, N.; Cheson, B.D. A phase 1 study of lenalidomide and ibrutinib in combination with rituximab in relapsed and refractory CLL. Blood Adv. 2018, 2, 762–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerkeman, M.; Eskelund, C.W.; Hutchings, M.; Räty, R.; Wader, K.F.; Laurell, A.; Toldbod, H.; Pedersen, L.B.; Niemann, C.U.; Dahl, C.; et al. Ibrutinib, lenalidomide, and rituximab in relapsed or refractory mantle cell lymphoma (PHILEMON): A multicentre, open-label, single-arm, phase 2 trial. Lancet Haematol. 2018, 5, e109–e116. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Pitcher, B.; Jung, S.H.; Bartlett, N.L.; Wagner-Johnston, N.; Park, S.I.; Richards, K.L.; Cashen, A.F.; Cheson, B.D.; Leonard, J.P. Unexpected and Serious Toxicity Observed with Combined Idelalisib, Lenalidomide and Rituximab in Relapsed/Refractory B Cell Lymphomas: Alliance A051201 and A051202. Blood 2014, 124, 3091. [Google Scholar] [CrossRef]
- Herman, S.E.M.; Lapalombella, R.; Gordon, A.L.; Ramanunni, A.; Blum, K.A.; Jones, J.; Zhang, X.; Lannutti, B.J.; Puri, K.D.; Muthusamy, N.; et al. The role of phosphatidylinositol 3-kinase-δ in the immunomodulatory effects of lenalidomide in chronic lymphocytic leukemia. Blood 2011, 117, 4323–4327. [Google Scholar] [CrossRef] [Green Version]
- Albertsson-Lindblad, A.; Freiburghaus, C.; Jerkeman, M.; Ek, S. Ibrutinib inhibits antibody dependent cellular cytotoxicity induced by rituximab or obinutuzumab in MCL cell lines, not overcome by addition of lenalidomide. Exp. Hematol. Oncol. 2019, 8, 1–5. [Google Scholar] [CrossRef]
- Goy, A.; Ramchandren, R.; Ghosh, N.; Munoz, J.; Morgan, D.S.; Dang, N.H.; Knapp, M.; Delioukina, M.; Kingsley, E.; Ping, J.; et al. Ibrutinib plus lenalidomide and rituximab has promising activity in relapsed/refractory non–germinal center B-cell–like DLBCL. Blood 2019, 134, 1024–1036. [Google Scholar] [CrossRef] [Green Version]
- Jerkeman, M.; Hutchings, M.; Räty, R.; Wader, K.F.; Laurell, A.; Christensen, J.H.; Kuitunen, H.; Eskelund, C.W.; Groenbaek, D.K.; Niemann, C.U.; et al. Ibrutinib-Lenalidomide-Rituximab in Patients with Relapsed/Refractory Mantle Cell Lymphoma: Final Results from the Nordic Lymphoma Group MCL6 (PHILEMON) Phase II Trial. Blood 2020, 136, 36. [Google Scholar] [CrossRef]
- Westin, J.; Nastoupil, L.J.; Fayad, L.; Hagemeister, F.B.; Oki, Y.; Turturro, F.; Ahmed, S.; Rodriguez, M.A.; Lee, H.J.; Steiner, R.; et al. Smart start: Final results of rituximab, lenalidomide, and ibrutinib lead in prior to combination with chemotherapy for patients with newly diagnosed diffuse large B-cell lymphoma. J. Clin. Oncol. 2019, 37, 7508. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.-R.; Young, K.H. New agents and regimens for diffuse large B cell lymphoma. J. Hematol. Oncol. 2020, 13, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Diefenbach, C.; Kahl, B.S.; Banerjee, L.; McMillan, A.K.; Miall, F.; Briones, J.; Cordoba, R.; Hirata, J.; Chang, Y.; Musick, L.; et al. Polatuzumab Vedotin Plus Obinutuzumab and Lenalidomide in Patients With Relapsed/Refractory Follicular Lymphoma: Primary Analysis of the Full Efficacy Population in a Phase Ib/II Trial. Blood 2019, 134, 126. [Google Scholar] [CrossRef]
- Kline, J.; Godfrey, J.; Ansell, S.M. The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood 2020, 135, 523–533. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.; Reddy, N.; et al. Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Goebeler, M.-E.; Bargou, R.C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. [Google Scholar] [CrossRef]
- Viardot, A.; Goebeler, M.-E.; Hess, G.; Neumann, S.; Pfreundschuh, M.; Adrian, N.; Zettl, F.; Libicher, M.; Sayehli, C.; Stieglmaier, J.; et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 2016, 127, 1410–1416. [Google Scholar] [CrossRef]
- Katz, D.A.; Chu, M.P.; David, K.A.; Thieblemont, C.; Morley, N.J.; Khan, S.S.; Chen, Y.; Kalabus, J.; Morris, J.; Anderson, A.; et al. Open-Label, Phase 2 Study of Blinatumomab after First-Line Rituximab-Chemotherapy in Adults with Newly Diagnosed, High-Risk Diffuse Large B-Cell Lymphoma. Blood 2019, 134, 4077. [Google Scholar] [CrossRef]
- Coyle, L.; Morley, N.J.; Rambaldi, A.; Mason, K.D.; Verhoef, G.; Furness, C.L.; Zhang, A.; Jung, A.S.; Cohan, D.; Franklin, J.L. Open-Label, phase 2 study of blinatumomab as second salvage therapy in adults with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 2020, 61, 2103–2112. [Google Scholar] [CrossRef]
- Poh, C.; Frankel, P.; Ruel, C.; Abedi, M.; Schwab, E.; Costello, C.L.; Zain, J.; Budde, L.E.; William, B.M.; Foss, F.M.; et al. Blinatumomab/Lenalidomide in Relapsed/Refractory Non-Hodgkin’s Lymphoma: A Phase I California Cancer Consortium Study of Safety, Efficacy and Immune Correlative Analysis. Blood 2019, 134, 760. [Google Scholar] [CrossRef]
- Hutchings, M.; Iacoboni, G.; Morschhauser, F.; Offner, F.; Sureda, A.; Salles, G.A.; Carlo-Stella, C.; Lopez, J.M.; Thomas, D.; Morcos, P.N.; et al. CD20-Tcb (RG6026), a Novel "2:1" Format T-Cell-Engaging Bispecific Antibody, Induces Complete Remissions in Relapsed/Refractory B-Cell Non-Hodgkin’s Lymphoma: Preliminary Results from a Phase I First in Human Trial. Blood 2018, 132, 226. [Google Scholar] [CrossRef]
- Bacac, M.; Colombetti, S.; Herter, S.; Sam, J.; Perro, M.; Chen, S.; Bianchi, R.; Richard, M.; Schoenle, A.; Nicolini, V.; et al. CD20-TCB with Obinutuzumab Pretreatment as Next-Generation Treatment of Hematologic Malignancies. Clin. Cancer Res. 2018, 24, 4785–4797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell–Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Budde, L.; Sehn, M.L.H.; Assouline, S.; Flinn, I.W.; Isufi, I.; Yoon, S.-S.; Kim, W.-S.; Matasar, M.J.; Nastoupil, L.J.; Santiago, R.; et al. Mosunetuzumab, a Full-Length Bispecific CD20/CD3 Antibody, Displays Clinical Activity in Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma (NHL): Interim Safety and Efficacy Results from a Phase 1 Study. Blood 2018, 132, 399. [Google Scholar] [CrossRef]
- Bannerji, R.; Allan, J.N.; Arnason, J.E.; Brown, J.R.; Advani, R.H.; Barnes, J.A.; Ansell, S.M.; O’Brien, S.M.; Chavez, J.; Duell, J.; et al. Clinical Activity of REGN1979, a Bispecific Human, Anti-CD20 x Anti-CD3 Antibody, in Patients with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphoma (B-NHL). Blood 2019, 134, 762. [Google Scholar] [CrossRef]
- Robinson, H.R.; Qi, J.; Cook, E.M.; Nichols, C.; Dadashian, E.L.; Underbayev, C.; Herman, S.E.M.; Saba, N.S.; Keyvanfar, K.; Sun, C.; et al. A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era. Blood 2018, 132, 521–532. [Google Scholar] [CrossRef]
- Martens, A.W.J.; Janssen, S.R.; Derks, I.A.M.; Iii, H.C.A.; Izhak, L.; Van Kampen, R.; Tonino, S.H.; Eldering, E.; Van Der Windt, G.J.W.; Kater, A.P. CD3xCD19 DART molecule treatment induces non-apoptotic killing and is efficient against high-risk chemotherapy and venetoclax-resistant chronic lymphocytic leukemia cells. J. Immunother. Cancer 2020, 8, e000218. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Reshef, R. Revving the CAR—Combination strategies to enhance CAR T cell effectiveness. Blood Rev. 2021, 45, 100695. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Turtle, C.J.; Hay, K.; Hanafi, L.-A.; Li, D.; Cherian, S.; Chen, X.; Wood, B.; Lozanski, A.; Byrd, J.C.; Heimfeld, S.; et al. Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor–Modified T Cells After Failure of Ibrutinib. J. Clin. Oncol. 2017, 35, 3010–3020. [Google Scholar] [CrossRef]
- Strati, P.; Keating, M.J.; Wierda, W.G.; Badoux, X.C.; Calin, S.; Reuben, J.M.; O’Brien, S.; Kornblau, S.M.; Kantarjian, H.M.; Gao, H.; et al. Lenalidomide induces long-lasting responses in elderly patients with chronic lymphocytic leukemia. Blood 2013, 122, 734–737. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.I.; Bergsagel, P.L.; Paul, H.; Xu, W.; Lau, A.; Dave, N.; Kukreti, V.; Wei, E.; Leung-Hagesteijn, C.; Li, Z.H.; et al. Single-Agent Lenalidomide in the Treatment of Previously Untreated Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2011, 29, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.I.; Paul, H.; Wang, T.; Le, L.W.; Dave, N.; Kukreti, V.; Wei, E.N.; Lau, A.; Bergsagel, P.L.; Trudel, S. Long-term follow-up of a phase 2 trial of single agent lenalidomide in previously untreated patients with chronic lymphocytic leukaemia. Br. J. Haematol. 2014, 165, 731–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.A.; Johnson, A.J.; Awan, F.T.; Zhao, Q.; Muthusamy, N.; Maddocks, K.J.; Andritsos, L.A.; Rogers, K.A.; Woyach, J.A.; Lozanski, G.; et al. A Phase 2 Study of Lenalidomide to Repair Immune Synapse Response and Humoral Immunity in Early-Stage, Asymptomatic Chronic Llmphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) with High-Risk Genomic Features. Blood 2016, 128, 4388. [Google Scholar] [CrossRef]
- Chen, C.I.; Paul, H.; Snitzler, S.; Kakar, S.; Le, L.W.; Wei, E.N.; Lau, A.; Johnston, J.B.; Gibson, S.B.; Queau, M.; et al. A phase 2 study of lenalidomide and dexamethasone in previously untreated patients with chronic lymphocytic leukemia (CLL). Leuk. Lymphoma 2018, 60, 980–989. [Google Scholar] [CrossRef]
- Wendtner, C.M.; Hallek, M.; Fraser, G.A.M.; Michallet, A.-S.; Hillmen, P.; Dürig, J.; Kalaycio, M.; Gribben, J.G.; Stilgenbauer, S.; Buhler, A.; et al. Safety and efficacy of different lenalidomide starting doses in patients with relapsed or refractory chronic lymphocytic leukemia: Results of an international multicenter double-blinded randomized phase II trial*. Leuk. Lymphoma 2016, 57, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Fanning, S.R.; Stephenson, J.; Afrin, L.B.; Kistner-Griffin, E.; Bentz, T.A.; Stuart, R.K. Sequential ofatumumab and lenalidomide for the treatment of relapsed and refractory chronic lymphocytic leukemia and small lymphocytic lymphoma. Leuk. Lymphoma 2014, 56, 645–649. [Google Scholar] [CrossRef]
- Badoux, X.C.; Keating, M.J.; Wen, S.; Wierda, W.G.; O’Brien, S.M.; Faderl, S.; Sargent, R.; Burger, J.A.; Ferrajoli, A. Phase II Study of Lenalidomide and Rituximab As Salvage Therapy for Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2013, 31, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Chávez, J.C.; Piris-Villaespesa, M.; Dalia, S.; Powers, J.; Turba, E.; Nodzon, L.; Komrokji, R.; Sokol, L.; Locke, F.L.; Lancet, J.; et al. Results of a phase II study of lenalidomide and rituximab for refractory/relapsed chronic lymphocytic leukemia. Leuk. Res. 2016, 47, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Schuh, A.; Zaritskey, A.; Semochkin, S.; Simpson, D.; Egyed, M.; Vokurka, S.; Kassis, J.; Zhang, J.; Purse, B.; et al. Results of the Phase 3 Study of Lenalidomide Versus Placebo As Maintenance Therapy Following Second-Line Treatment for Patients with Chronic Lymphocytic Leukemia (the CONTINUUM Trial). Blood 2016, 128, 230. [Google Scholar] [CrossRef]
- Strati, P.; Thompson, P.A.; Keating, M.; Hinojosa, C.; Rodriguez, D.; Wang, X.; Daver, N.G.; Jain, N.; Burger, J.A.; Estrov, Z.; et al. A Phase II Study of the Combination of Lenalidomide and Rituximab in Patients with Treatment-NaïVe and Relapsed Chronic Lymphocytic Leukemia. Blood 2016, 128, 4389. [Google Scholar] [CrossRef]
- Zucca, E.; Rondeau, S.; Vanazzi, A.; Østenstad, B.; Mey, U.J.M.; Rauch, D.; Wahlin, B.E.; Hitz, F.; Hernberg, M.; Johansson, A.-S.; et al. Short regimen of rituximab plus lenalidomide in follicular lymphoma patients in need of first-line therapy. Blood 2019, 134, 353–362. [Google Scholar] [CrossRef]
- Becnel, M.R.; Nastoupil, L.J.; Samaniego, F.; Davis, R.E.; You, M.J.; Green, M.; Hagemeister, F.B.; Fanale, M.A.; Fayad, L.E.; Westin, J.R.; et al. Lenalidomide plus rituximab (R2) in previously untreated marginal zone lymphoma: Subgroup analysis and long-term follow-up of an open-label phase 2 trial. Br. J. Haematol. 2018, 185, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreri, A.J.; Sassone, M.; Zaja, F.; Re, A.; Spina, M.; Di Rocco, A.; Fabbri, A.; Stelitano, C.; Frezzato, M.; Rusconi, C.; et al. Lenalidomide Maintenance Significantly Improves Survival Figures in Patients with Relapsed Diffuse Large B-Cell Lymphoma (rDLBCL) Who Are Not Eligible for Autologous Stem Cell Transplantation (ASCT): Final Results of a Multicentre Phase II Trial. Blood 2016, 128, 474. [Google Scholar] [CrossRef]
- Tuscano, J.M.; Dutia, M.; Chee, K.; Brunson, A.; Abedi, M.; Welborn, J.; O’Donnell, R.T.; Reed-Pease, C. Lenalidomide plus rituximab can produce durable clinical responses in patients with relapsed or refractory, indolent non-Hodgkin lymphoma. Br. J. Haematol. 2014, 165, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, E.A.; Ahmadi, T.; Aqui, N.A.; Svoboda, J.; Nasta, S.D.; Mato, A.R.; Walsh, K.M.; Schuster, S.J. Combination of Lenalidomide and Rituximab Overcomes Rituximab Resistance in Patients with Indolent B-cell and Mantle Cell Lymphomas. Clin. Cancer Res. 2015, 21, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Zinzani, P.L.; Pellegrini, C.; Derenzini, E.; Argnani, L.; Pileri, S. Long-term efficacy of the combination of lenalidomide and rituximab in elderly relapsed/refractory diffuse large B-cell lymphoma patients. Hematol. Oncol. 2013, 31, 223–224. [Google Scholar] [CrossRef]
- Morschhauser, F.; Cartron, G.; Salles, G.A.; Bijou, F.; Fruchart, C.; Bouabdallah, K.; Feugier, P.; Le Gouill, S.; Tilly, H.; Moluçon-Chabrot, C.; et al. A Phase II LYSA Study of Obinutuzumab Combined with Lenalidomide for Relapsed or Refractory Aggressive B-Cell Lymphoma. Blood 2016, 128, 4202. [Google Scholar] [CrossRef]
- Thieblemont, C.; Tilly, H.; Da Silva, M.G.; Casasnovas, R.-O.; Fruchart, C.; Morschhauser, F.; Haioun, C.; Lazarovici, J.; Grosicki, S.; Perrot, A.; et al. First Analysis of an International Double-Blind Randomized Phase III Study of Lenalidomide Maintenance in Elderly Patients with DLBCL Treated with R-CHOP in First Line, the Remarc Study from Lysa. Blood 2016, 128, 471. [Google Scholar] [CrossRef]
- Wang, M.; Martin, P.; Phillips, T.; Goy, A.; Lossos, I.S.; Rule, S.A.; Hamadani, M.; Ghosh, N.; Reeder, C.B.; Barnett, E.; et al. Effectiveness of Lenalidomide in Patients with Mantle Cell Lymphoma Who Relapsed/Progressed after or Were Refractory/Intolerant to Ibrutinib: The MCL-004 Study. Blood 2016, 128, 1786. [Google Scholar] [CrossRef]
- Andorsky, D.J.; Yacoub, A.; Melear, J.M.; Coleman, M.; Kolibaba, K.S.; Brooks, H.D.; Bitran, J.D.; Fanning, S.R.; Lasnigan, F.; Ricker, J.L.; et al. MAGNIFY: Phase IIIb Randomized Study of Lenalidomide Plus Rituximab (R2) Followed By Lenalidomide Vs. Rituximab Maintenance in Subjects with Relapsed/Refractory Follicular, Marginal Zone, or Mantle Cell Lymphoma. Blood 2016, 128, 1798. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, N.; Jain, K.; Ramsay, A.G. Immunomodulatory Drugs for the Treatment of B Cell Malignancies. Int. J. Mol. Sci. 2021, 22, 8572. https://doi.org/10.3390/ijms22168572
Ioannou N, Jain K, Ramsay AG. Immunomodulatory Drugs for the Treatment of B Cell Malignancies. International Journal of Molecular Sciences. 2021; 22(16):8572. https://doi.org/10.3390/ijms22168572
Chicago/Turabian StyleIoannou, Nikolaos, Khushi Jain, and Alan G. Ramsay. 2021. "Immunomodulatory Drugs for the Treatment of B Cell Malignancies" International Journal of Molecular Sciences 22, no. 16: 8572. https://doi.org/10.3390/ijms22168572
APA StyleIoannou, N., Jain, K., & Ramsay, A. G. (2021). Immunomodulatory Drugs for the Treatment of B Cell Malignancies. International Journal of Molecular Sciences, 22(16), 8572. https://doi.org/10.3390/ijms22168572