MWNTs or PEG as Stability Enhancers for DNA–Cationic Surfactant Gel Particles
Abstract
:1. Introduction
2. Results
2.1. Kinetics of Gel Particle Formation
2.2. DNA Release in Different pH Solution
2.3. CTAB Release in Different pH Solution
2.4. Dehydration and Hydration of the Gel Particles
3. Materials and Methods
3.1. Materials
3.2. Gel Particle Preparation
3.2.1. DNA–CTAB Gel Particles
3.2.2. MWNT–DNA–CTAB Gel Particles
3.2.3. PEG–DNA–CTAB Gel Particles
3.2.4. Release Studies
3.3. pH Measurements
3.4. Surfactant Concentration Determination
3.5. DNA Concentration Determination
3.6. SAXS-WAXS Determination of the Composite Nanostructure
3.7. Photography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, K.; Santerre, J.P.; Kwak, J.C.T. The Binding of Cationic Surfactants by DNA. Biophys. Chem. 1983, 17, 175–181. [Google Scholar] [CrossRef]
- Morán, M.C.; Vinardell, M.P.; Infante, M.R.; Miguel, M.G.; Lindman, B. DNA Gel Particles: An Overview. Adv. Colloid Interface Sci. 2014, 205, 240–256. [Google Scholar] [CrossRef] [Green Version]
- Morán, M.C.; Nogueira, D.R.; Vinardell, M.P.; Miguel, M.G.; Lindman, B. Mixed Protein–DNA Gel Particles for DNA Delivery: Role of Protein Composition and Preparation Method on Biocompatibility. Int. J. Pharm. 2013, 454, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zheng, L.; Ma, C.; Göstl, R.; Herrmann, A. DNA–Surfactant Complexes: Self-Assembly Properties and Applications. Chem. Soc. Rev. 2017, 46, 5147–5172. [Google Scholar] [CrossRef]
- Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.-P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew. Chem. Int. Ed. 2004, 43, 5242–5246. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J.-P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. J. Am. Chem. Soc. 2005, 127, 4388–4396. [Google Scholar] [CrossRef] [PubMed]
- Fadeel, B.; Kostarelos, K. Grouping All Carbon Nanotubes into a Single Substance Category Is Scientifically Unjustified. Nat. Nanotechnol. 2020, 15, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, D.A.; Jena, P.V.; Pasquali, M.; Kostarelos, K.; Delogu, L.G.; Meidl, R.E.; Rotkin, S.V.; Scheinberg, D.A.; Schwartz, R.E.; Terrones, M.; et al. Banning Carbon Nanotubes Would Be Scientifically Unjustified and Damaging to Innovation. Nat. Nanotechnol. 2020, 15, 164–166. [Google Scholar] [CrossRef]
- Dai, H. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide as a Chemically Tunable Platform for Optical Applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Schipper, M.L.; Nakayama-Ratchford, N.; Davis, C.R.; Kam, N.W.S.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S.S. A Pilot Toxicology Study of Single-Walled Carbon Nanotubes in a Small Sample of Mice. Nat. Nanotechnol. 2008, 3, 216–221. [Google Scholar] [CrossRef]
- Anaya-Plaza, E.; Shaukat, A.; Lehtonen, I.; Kostiainen, M.A. Biomolecule-Directed Carbon Nanotube Self-Assembly. Adv. Healthc. Mater. 2021, 10, 2001162. [Google Scholar] [CrossRef]
- Degim, I.T.; Burgess, D.J.; Papadimitrakopoulos, F. Carbon Nanotubes for Transdermal Drug Delivery. J. Microencapsul. 2010, 27, 669–681. [Google Scholar] [CrossRef]
- Bianco, A.; Prato, M. Can Carbon Nanotubes Be Considered Useful Tools for Biological Applications? Adv. Mater. 2003, 15, 1765–1768. [Google Scholar] [CrossRef]
- Yaghoubi, A.; Ramazani, A. Anticancer DOX Delivery System Based on CNTs: Functionalization, Targeting and Novel Technologies. J. Control. Release 2020, 327, 198–224. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Q.; Zhou, S. Carbon-Based Hybrid Nanogels: A Synergistic Nanoplatform for Combined Biosensing, Bioimaging, and Responsive Drug Delivery. Chem. Soc. Rev. 2018, 47, 4198–4232. [Google Scholar] [CrossRef] [PubMed]
- Caoduro, C.; Hervouet, E.; Girard-Thernier, C.; Gharbi, T.; Boulahdour, H.; Delage-Mourroux, R.; Pudlo, M. Carbon Nanotubes as Gene Carriers: Focus on Internalization Pathways Related to Functionalization and Properties. Acta Biomater. 2017, 49, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.A.; Veenhuizen, P.T.M.; de la Torre, B.G.; Eritja, R.; Dekker, C. Carbon Nanotubes with DNA Recognition. Nature 2002, 420, 761. [Google Scholar] [CrossRef]
- Yin, S.; Liu, J.; Kang, Y.; Lin, Y.; Li, D.; Shao, L. Interactions of Nanomaterials with Ion Channels and Related Mechanisms. Br. J. Pharm. 2019, 176, 3754–3774. [Google Scholar] [CrossRef]
- Bianco, A.; Kostarelos, K.; Prato, M. Applications of Carbon Nanotubes in Drug Delivery. Curr. Opin. Chem. Biol. 2005, 9, 674–679. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.-J.; Kim, D.W.; Kim, S.Y.; Park, S.; Park, C.B. Clinically Accurate Diagnosis of Alzheimer’s Disease via Multiplexed Sensing of Core Biomarkers in Human Plasma. Nat. Commun. 2020, 11, 119. [Google Scholar] [CrossRef]
- Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon Nanotubes for Delivery of Small Molecule Drugs. Adv. Drug Deliv. Rev. 2013, 65, 1964–2015. [Google Scholar] [CrossRef]
- Yang, T.; Wu, Z.; Wang, P.; Mu, T.; Qin, H.; Zhu, Z.; Wang, J.; Sui, L. A Large-Inner-Diameter Multi-Walled Carbon Nanotube-Based Dual-Drug Delivery System with PH-Sensitive Release Properties. J. Mater. Sci. Mater. Med. 2017, 28, 110. [Google Scholar] [CrossRef]
- Adali, T.; Bentaleb, A.; Elmarzugi, N.; Hamza, A.M. PEG–Calf Thymus DNA Interactions: Conformational, Morphological and Spectroscopic Thermal Studies. Int. J. Biol. Macromol. 2013, 61, 373–378. [Google Scholar] [CrossRef]
- Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon Nanotubes in Biomedicine. Top. Curr. Chem. 2020, 378, 15. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.-J.; Min, S.H.; Cho, K.Y.; Lee, S.; Min, Y.-J.; Yeom, Y.I.; Park, J.-K. Effect of Polyethylene Glycol on Gene Delivery of Polyethylenimine. Biol. Pharm. Bull. 2003, 26, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinazo, A.; Pons, R.; Bustelo, M.; Manresa, M.Á.; Morán, C.; Raluy, M.; Pérez, L. Gemini Histidine Based Surfactants: Characterization; Surface Properties and Biological Activity. J. Mol. Liq. 2019, 289, 111156. [Google Scholar] [CrossRef]
- Pérez, L.; Pinazo, A.; Morán, M.C.; Pons, R. Aggregation Behavior, Antibacterial Activity and Biocompatibility of Catanionic Assemblies Based on Amino Acid-Derived Surfactants. Int. J. Mol. Sci. 2020, 21, 8912. [Google Scholar] [CrossRef]
- Ikonen, M.; Murtomäki, L.; Kontturi, K. Controlled Complexation of Plasmid DNA with Cationic Polymers: Effect of Surfactant on the Complexation and Stability of the Complexes. Colloids Surf. B Biointerfaces 2008, 66, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shang, Y.; Hu, J.; Liu, H.; Hu, Y. Biophysical Characterization of Complexation of DNA with Oppositely Charged Gemini Surfactant 12-3-12. Biophys. Chem. 2008, 138, 144–149. [Google Scholar] [CrossRef]
- Pucci, C.; Scipioni, A.; Diociaiuti, M.; La Mesa, C.; Pérez, L.; Pons, R. Catanionic Vesicles and DNA Complexes: A Strategy towards Novel Gene Delivery Systems. RSC Adv. 2015, 5, 81168–81175. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Mandal, S.S. Interaction of Surfactants with DNA. Role of Hydrophobicity and Surface Charge on Intercalation and DNA Melting. Biochim. Biophys. Acta (BBA) Biomembr. 1997, 1323, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Okuda, H.; Imae, T.; Ikeda, S. The Adsorption of Cetyltrimethylammonium Bromide on Aqueous Surfaces of Sodium Bromide Solutions. Colloids Surf. 1987, 27, 187–200. [Google Scholar] [CrossRef]
- Muschert, S.; Siepmann, F.; Leclercq, B.; Carlin, B.; Siepmann, J. Prediction of Drug Release from Ethylcellulose Coated Pellets. J. Control. Release 2009, 135, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lukacs, G.L.; Haggie, P.; Seksek, O.; Lechardeur, D.; Freedman, N.; Verkman, A.S. Size-Dependent DNA Mobility in Cytoplasm and Nucleus. J. Biol. Chem. 2000, 275, 1625–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siepmann, J.; Siepmann, F. Modeling of Diffusion Controlled Drug Delivery. J. Control. Release 2012, 161, 351–362. [Google Scholar] [CrossRef]
- Mezei, A.; Pons, R.; Morán, M.C. The Nanostructure of Surfactant–DNA Complexes with Different Arrangements. Colloids Surf. B Biointerfaces 2013, 111, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M.G. DNA Phase Behavior in the Presence of Oppositely Charged Surfactants. Langmuir 2000, 16, 9577–9583. [Google Scholar] [CrossRef] [Green Version]
- Akın Evingür, G.; Pekcan, Ö. Monitoring of Dynamical Processes in PAAm–MWNTs Composites by Fluorescence Method. Adv. Compos. Mater. 2012, 21, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Wolosiuk, A.; Armagan, O.; Braun, P.V. Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres. J. Am. Chem. Soc. 2005, 127, 16356–16357. [Google Scholar] [CrossRef]
- Mezei, A.; Pons, R. Release of DNA and Surfactant from Gel Particles: The Receptor Solution Effect and the Dehydration–Hydration Aspects. Colloids Surf. B Biointerfaces 2014, 123, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.Z.D.; Zhang, A.; Chen, J.; Heberer, D.P. Nonintegral and Integral Folding Crystal Growth in Low-Molecular Mass Poly(Ethylene Oxide) Fractions. I. Isothermal Lamellar Thickening and Thinning. J. Polym. Sci. B Polym. Phys. 1991, 29, 287–297. [Google Scholar] [CrossRef]
- Zhu, Q.; Harris, M.T.; Taylor, L.S. Time-Resolved SAXS/WAXS Study of the Phase Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions. Mol. Pharm. 2011, 8, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.Y.; Ding, M.; Li, D.; Neumann, A.W. Further Development of Axisymmetric Drop Shape Analysis-Captive Bubble for Pulmonary Surfactant Related Studies. Biochim. Biophys. Acta (BBA) Gen. Subj. 2004, 1675, 12–20. [Google Scholar] [CrossRef]
- Anastasiadis, S.H.; Chen, J.-K.; Koberstein, J.T.; Siegel, A.F.; Sohn, J.E.; Emerson, J.A. The Determination of Interfacial Tension by Video Image Processing of Pendant Fluid Drops. J. Colloid Interface Sci. 1987, 119, 55–66. [Google Scholar] [CrossRef]
- Pi-Boleda, B.; Sorrenti, A.; Sans, M.; Illa, O.; Pons, R.; Branchadell, V.; Ortuño, R.M. Cyclobutane Scaffold in Bolaamphiphiles: Effect of Diastereoisomerism and Regiochemistry on Their Surface Activity Aggregate Structure. Langmuir 2018, 34, 11424–11432. [Google Scholar] [CrossRef]
Sample | CDNA (mM) | CCTAB (mM) | ||
---|---|---|---|---|
Cinside (mM) 1 | Coutside (mM) | Cinside (mM) | Coutside (mM) | |
WNT–DNA–CTAB pH = 7, KH2PO4 | 29 | 0.008 | 3.8 | 0.023 |
WNT–DNA–CTAB pH = 9, borax | 27 | 0.029 | 5.4 | 0.20 |
PEG–DNA–CTABpH = 7, KH2PO4 | 10 | 0.033 | 3.8 | 0.033 |
PEG–DNA–CTABpH = 9, borax | 14 | 0.076 | 5.0 | 0.14 |
DNA–CTAB 10 mM NaBr | 17 | 0.001 | 3.8 | 0.002 |
Sample | MWNT–DNA–CTAB | PEG–DNA–CTAB | DNA–CTAB |
---|---|---|---|
Dry particle | 39.52 Å | 40.54 Å | 40.80 Å |
Hydrated particle | 48.71 Å | 47.96 Å | 50.27 Å |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezei, A.; Pons, R. MWNTs or PEG as Stability Enhancers for DNA–Cationic Surfactant Gel Particles. Int. J. Mol. Sci. 2021, 22, 8801. https://doi.org/10.3390/ijms22168801
Mezei A, Pons R. MWNTs or PEG as Stability Enhancers for DNA–Cationic Surfactant Gel Particles. International Journal of Molecular Sciences. 2021; 22(16):8801. https://doi.org/10.3390/ijms22168801
Chicago/Turabian StyleMezei, Amalia, and Ramon Pons. 2021. "MWNTs or PEG as Stability Enhancers for DNA–Cationic Surfactant Gel Particles" International Journal of Molecular Sciences 22, no. 16: 8801. https://doi.org/10.3390/ijms22168801
APA StyleMezei, A., & Pons, R. (2021). MWNTs or PEG as Stability Enhancers for DNA–Cationic Surfactant Gel Particles. International Journal of Molecular Sciences, 22(16), 8801. https://doi.org/10.3390/ijms22168801