Transcriptomics of Improved Fruit Retention by Hexanal in ‘Honeycrisp’ Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone
Abstract
:1. Introduction
2. Results
2.1. Effect of Hexanal on Fruit Retention and Fruit Quality
2.2. Quantitation of Plant Hormones in Fruit and FAZ
2.3. Identification of Differentially Expressed Genes
2.4. Identification of Enriched Gene Ontology (GO) and Functional Pathways
2.5. Characterization of Genes Related to Various Plant Hormone Responses
2.6. Characterization of Genes Encoding for Transcription Factors
2.7. Characterization of Genes Related to Cell Wall Modification
2.8. Characterization Genes Related to Abscission
2.9. Confirmation of Gene Expression Patterns by qRT-PCR
3. Discussion
3.1. Delay of Fruit Ripening and Ethylene Production by Hexanal
3.2. Hexanal Reduces Ethylene Biosynthesis and Perception in the FAZ
3.3. Hexanal Mediates Hormonal Crosstalk in the FAZ
3.4. Hexanal Slows down Cell Wall Degradation and Abscission
4. Materials and Methods
4.1. Trial Location, Preharvest Treatment and Plant Material Collection
4.2. Fruit Retention and Fruit Quality Measurements
4.3. Plant Hormone Measurement
4.4. RNA-Isolation, Library Preparation and Sequencing
4.5. Trimming, Assembly, and Annotation of Paired-End Sequenced Reads
4.6. Differentially Expressed Gene Analysis
4.7. Enrichment Analyses
4.8. Quantitative RT-PCR
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Statista, Global Fruit Production in 2019, by Selected Variety (in Million Metric Tons). 2021. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 20 July 2021).
- Robinson, T. The Physiology of Apple Pre-Harvest Fruit Drop. 2011. Available online: http://www.hort.cornell.edu/expo/proceedings/2011/Management%20of%20Pre-Harvest%20Fruit%20Drop/Physiology%20of%20fruit%20drop.pdf (accessed on 2 March 2021).
- Arseneault, M.H.; Cline, J.A. A review of apple pre-harvest fruit drop and practices for horticultural management. Sci. Hortic. 2016, 211, 40–52. [Google Scholar] [CrossRef]
- Greene, D.W.; Krupa, J.; Autio, W. Factors influencing preharvest drop of apples. In Proceedings of the XII International Symposium on Plant Bioregulators in Fruit Production, Orlando, FL, USA, 28 July–1 August 2013; Volume 1042, pp. 231–235. [Google Scholar]
- Irish-Brown, A.; Schwallier, P.; Shane, B.; Tritten, B. Why Does Apple Fruit Drop Prematurely? 2011. Available online: https://www.canr.msu.edu/news/why_does_apple_fruit_drop_prematurely (accessed on 17 February 2021).
- Arseneault, M.H.; Cline, J.A. AVG, NAA, boron, and magnesium influence pre-harvest fruit drop and fruit quality of ‘Honeycrisp’ apples. Can. J. Plant Sci. 2017, 98, 741–752. [Google Scholar] [CrossRef]
- Addicott, F.T. Abscission; University of California Press: Berkeley, CA, USA, 1982. [Google Scholar]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 151, 323–340. [Google Scholar] [CrossRef]
- DeBrouwer, E.J.; Sriskantharajah, K.; El Kayal, W.; Sullivan, J.A.; Paliyath, G.; Subramanian, J. Pre-harvest hexanal spray reduces bitter pit and enhances postharvest quality in ‘Honeycrisp’ apples (Malus domestica Borkh.). Sci. Hortic. 2020, 273, 109610. [Google Scholar] [CrossRef]
- El Kayal, W.; Paliyath, G.; Sullivan, J.A.; Subramanian, J. Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry. Hortic. Res. 2017, 4, 17042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusuya, P.; Nagaraj, R.; Janavi, G.J.; Subramanian, K.S.; Paliyath, G.; Subramanian, J. Pre-harvest sprays of hexanal formulation for extending retention and shelf-life of mango (Mangifera indica L.) fruits. Sci. Hortic. 2016, 211, 231–240. [Google Scholar] [CrossRef]
- Samwel, J.; Msogoya, T.; Tryphone, G.; Mtui, H.D.; Baltazari, A.; Sullivan, J.A.; Mwatawala, M.W. Effects pre-harvest hexanal application on fruit market attributes of orange varieties grown in Eastern zone of Tanzania. J. Hortic. Sci. Biotechnol. 2021, 96, 364–371. [Google Scholar] [CrossRef]
- Paliyath, G.; Yada, R.; Murr, D.P.; Pinhero, R.G. Inhibition of Phospholipase D. U.S. Patent 6,514,914. Canada Patent 2, 2 February 2003. [Google Scholar]
- Paliyath, G.; Subramanian, J. Phospholipase D inhibition technology for enhancing shelf life and quality. In Post-Harvest Biology and Technology of Fruits, Vegetables, and Flowers, 1st ed.; Paliyath, G., Murr, D.P., Handa, A.K., Lurie, S., Gill, K.S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; Chapter 8; pp. 240–245. [Google Scholar]
- Estornell, L.H.; Agustí, J.; Merelo, P.; Talón, M.; Tadeo, F.R. Elucidating mechanisms underlying organ abscission. Plant Sci. 2013, 199, 48–60. [Google Scholar] [CrossRef]
- Kumar, R.; Khurana, A.; Sharma, A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2013, 65, 4561–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, D.J. Abscission. Crit. Rev. Plant Sci. 1989, 8, 103–129. [Google Scholar] [CrossRef]
- Meir, S.; Hunter, D.A.; Chen, J.C.; Halaly, V.; Reid, M.S. Molecular changes occurring during the acquisition of abscission competence following lowering auxin depletion in Mirabilis jalapa. Plant Physiol. 2006, 141, 1604–1616. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Li, J. Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis, pre-harvest fruit drop, fruit maturity, and quality of ‘Delicious’ apples. Hortic. Sci. 2008, 43, 1454–1460. [Google Scholar]
- Yuan, R. Effects of temperature on fruit thinning with ethephon in ‘Golden Delicious’ apples. Sci. Hortic. 2007, 113, 8–12. [Google Scholar] [CrossRef]
- Cline, J.A. Multiple season-long sprays of ethephon or NAA combined with calcium chloride on ‘Honeycrisp’ apples: I. Effect on bloom and fruit quality attributes. Can. J. Plant Sci. 2019, 99, 444–459. [Google Scholar] [CrossRef]
- Li, J.; Zhu, H.; Yuan, R. Profiling the expression of genes related to ethylene biosynthesis, ethylene perception, and cell wall degradation during fruit abscission and fruit ripening in apple. J. Am. Soc. Hortic. Sci. 2010, 135, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Corbacho, J.; Romojaro, F.; Pech, J.C.; Latché, A.; Gomez-Jimenez, M.C. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS ONE 2013, 8, e58363. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Carbaugh, D.H. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, pre-harvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. Hortic. Sci. 2007, 42, 101–105. [Google Scholar]
- Greene, D.W. The development and use of plant bioregulators in tree fruit production. In Proceedings of the XI International Symposium on Plant Bioregulators in Fruit Production, Bologna, Italy, 20–24 September 2009; Volume 884, pp. 31–40. [Google Scholar]
- Robinson, T.L.; Lakso, A.N.; Hoying, S.A. Advances in predicting chemical thinner response of apple using a MaluSim carbon balance model. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Plant, Lisbon, Portugal, 22–27 August 2010; Volume 932, pp. 223–229. [Google Scholar]
- Jincy, M.; Djanaguiraman, M.; Jeyakumar, P.; Subramanian, K.S.; Jayasankar, S.; Paliyath, G. Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Sci. Hortic. 2017, 218, 316–325. [Google Scholar] [CrossRef]
- Tiwari, K.; Paliyath, G. Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiol. Biochem. 2011, 49, 329–340. [Google Scholar] [CrossRef]
- McAtee, P.; Karim, S.; Schaffer, R.J.; David, K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. 2013, 4, 79. [Google Scholar] [CrossRef] [Green Version]
- Guinn, G. Fruit age and changes in abscisic acid content, ethylene production, and abscission rate of cotton fruits. Plant Physiol. 1982, 69, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmowicz, E.; Frankowski, K.; Kućko, A.; Świdziński, M.; de Dios Alché, J.; Nowakowska, A.; Kopcewicz, J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. J. Plant Physiol. 2016, 206, 49–58. [Google Scholar] [CrossRef]
- Masia, A.; Ventura, M.; Gemma, H.; Sansavini, S. Effect of some plant growth regulator treatments on apple fruit ripening. Plant Growth Regul. 1998, 25, 127–134. [Google Scholar] [CrossRef]
- Ogawa, M.; Kay, P.; Wilson, S.; Swain, S.M. Arabidopsis dehiscence zone polygalacturonase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 2009, 21, 216–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanusa, T.; Else, M.A.; Atkinson, C.J.; Davies, W.J. The regulation of sweet cherry fruit abscission by polar auxin transport. Plant Growth Regul. 2005, 45, 189–198. [Google Scholar] [CrossRef]
- Bonghi, C.; Casadoro, G.; Ramina, A.; Rascio, N. Abscission in leaf and fruit explants of Prunus persica (L.) Batsch. New Phytol. 1993, 123, 555–565. [Google Scholar]
- Li, J.; Yuan, R. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples. J. Plant Growth Regul. 2008, 27, 283–295. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Yumbya, P.M.; Hutchinson, M.J.; Ambuko, J.; Owino, W.O.; Sullivan, A.; Paliyath, G.; Subramanian, J. Efficacy of hexanal application on the post-harvest shelf life and quality of banana fruits (Musa acuminata) in Kenya. J. Sci. Food Agric. 2018, 95, 14. [Google Scholar]
- Kolarič, J.; Pleško, I.M.; Tojnko, S.; Stopar, M. Apple fruitlet ethylene evolution and MdACO1, MdACS5A, and MdACS5B expression after application of naphthaleneacetic acid, 6-benzyladenine, ethephon, or shading. Hortscience 2011, 46, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Botton, A.; Ruperti, B. The yes and no of the ethylene involvement in abscission. Plants 2019, 8, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, J.; Meyerowitz, E.M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 1998, 94, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Ziosi, V.; Bregol, A.M.; Bonghi, C.; Fossati, T.; Biondi, S.; Costa, G.; Torrigiani, P. Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). New Phytol. 2006, 172, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Rasori, A.; Ruperti, B.; Bonghi, C.; Tonutti, P.; Ramina, A. Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J. Exp. Bot. 2002, 53, 2333–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashbrook, C.C.; Giovannoni, J.J.; Hall, B.D.; Fischer, R.L.; Bennett, A.B. Transgenic analysis of tomato endo-β-1, 4-glucanase gene function. Role of cel1 in floral abscission. Plant J. 1998, 13, 303–310. [Google Scholar] [CrossRef]
- Sato-Nara, K.; Yuhashi, K.I.; Higashi, K.; Hosoya, K.; Kubota, M.; Ezura, H. Stage-and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol. 1999, 120, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.M.; Ciardi, J.A.; Taylor, M.G.; Klee, H.J. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 2001, 26, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Ye, N.; Yang, J.; Peng, X.; Zhang, J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J. Exp. Bot. 2011, 62, 3907–3916. [Google Scholar] [CrossRef] [Green Version]
- Mou, W.; Li, D.; Bu, J.; Jiang, Y.; Khan, Z.U.; Luo, Z.; Ying, T. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening. PLoS ONE 2016, 11, e0154072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.Y.; Kuo, S.R.; Chien, C.T. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol. 2008, 28, 1431–1439. [Google Scholar] [CrossRef]
- Liu, X.; Hou, X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front. Plant Sci. 2018, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Hernández-Ruiz, J. Growth conditions influence the melatonin content of tomato plants. Food Chem. 2013, 138, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Choe, H.T.; Cosgrove, D.J. Expansins as agents in hormone action. In Plant Hormone; Springer: Dordrecht, Germany, 2010; pp. 262–281. [Google Scholar]
- Tsuchiya, M.; Satoh, S.; Iwai, H. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum). Front. Plant Sci. 2015, 6, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, D.J.; Sargent, J.A. The positional differentiation of ethylene-responsive cells in rachis abscission zones in leaves of Sambucus nigra and their growth and ultrastructural changes at senescence and separation. Planta 1976, 130, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Tonutti, P.; Cass, L.G.; Christoffersen, R.E. The expression of cellulase gene family members during induced avocado fruit abscission and ripening. Plant Cell Environ. 1995, 18, 709–713. [Google Scholar] [CrossRef]
- Krishna Kumar, S.; El Kayal, W.; Sullivan, J.A.; Paliyath, G.; Subramanian, J. Pre-harvest application of hexanal formulation enhances shelf life and quality of ‘Fantasia’ nectarines by regulating membrane and cell wall catabolism-associated genes. Sci. Hortic. 2018, 229, 117–124. [Google Scholar] [CrossRef]
- Zhu, H.; Yuan, R.; Greene, D.W.; Beers, E.P. Effects of 1-methylcyclopropene and naphthaleneacetic acid on fruit set and expression of genes related to ethylene biosynthesis and perception and cell wall degradation in apple. J. Am. Soc. Hortic. Sci. 2010, 135, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Erland, L.A.; Shukla, M.R.; Glover, W.B.; Saxena, P.K. A simple and efficient method for analysis of plant growth regulators: A new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell Tissue Organ Cult. 2017, 131, 459–470. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 3 February 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Daccord, N.; Celton, J.M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; Bucher, E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 2017, 49, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucukural, A.; Yukselen, O.; Ozata, D.M.; Moore, M.J.; Garber, M. DEBrowser: Interactive differential expression analysis and visualization tool for count data. BMC Genom. 2019, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Balan, B.; Marra, F.P.; Caruso, T.; Martinelli, F. Transcriptomic responses to biotic stresses in Malus x domestica: A meta-analysis study. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
Parameter | Treatment | Days (d) | |
---|---|---|---|
0 | 49 | ||
Firmness (N) | Control | 76.00 ± 1.13 | 65.35 ± 1.22 |
HF | 78.63 ± 0.84 | 71.46 ± 1.20 * | |
TSS (°Brix) | Control | 13.47 ± 0.17 | 14.92 ± 0.11 |
HF | 13.37 ± 0.16 | 15.07 ± 0.16 | |
Fresh weight (g) | Control | 209.30 ± 8.98 | 237.8 ± 15.5 |
HF | 239.10 ± 15.37 | 250.20 ± 9.21 |
Treatment | Ethylene | Abscisic Acid | Zeatin | Melatonin |
---|---|---|---|---|
(μL·L−1·kg−1·h−1) | (ng. g−1, DW) | (ng. g−1, DW) | (ng. g−1, DW) | |
Control | 5.38 ± 0.88 | 320.17 ± 33.25 | 465.23 ± 45.65 | 56.58 ± 6.37 |
Hexanal | 4.24 ± 0.53 | 192.99 ± 11.83 * | 441.03 ± 16.53 | 39.81 ± 2.47 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriskantharajah, K.; El Kayal, W.; Torkamaneh, D.; Ayyanath, M.M.; Saxena, P.K.; Sullivan, A.J.; Paliyath, G.; Subramanian, J. Transcriptomics of Improved Fruit Retention by Hexanal in ‘Honeycrisp’ Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone. Int. J. Mol. Sci. 2021, 22, 8830. https://doi.org/10.3390/ijms22168830
Sriskantharajah K, El Kayal W, Torkamaneh D, Ayyanath MM, Saxena PK, Sullivan AJ, Paliyath G, Subramanian J. Transcriptomics of Improved Fruit Retention by Hexanal in ‘Honeycrisp’ Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone. International Journal of Molecular Sciences. 2021; 22(16):8830. https://doi.org/10.3390/ijms22168830
Chicago/Turabian StyleSriskantharajah, Karthika, Walid El Kayal, Davoud Torkamaneh, Murali M. Ayyanath, Praveen K. Saxena, Alan J. Sullivan, Gopinadhan Paliyath, and Jayasankar Subramanian. 2021. "Transcriptomics of Improved Fruit Retention by Hexanal in ‘Honeycrisp’ Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone" International Journal of Molecular Sciences 22, no. 16: 8830. https://doi.org/10.3390/ijms22168830
APA StyleSriskantharajah, K., El Kayal, W., Torkamaneh, D., Ayyanath, M. M., Saxena, P. K., Sullivan, A. J., Paliyath, G., & Subramanian, J. (2021). Transcriptomics of Improved Fruit Retention by Hexanal in ‘Honeycrisp’ Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone. International Journal of Molecular Sciences, 22(16), 8830. https://doi.org/10.3390/ijms22168830