Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights
Abstract
:1. Introduction
2. Methodology
3. Antioxidant and Anti-Inflammatory Effects of Black Cumin and TQ
4. Protective Effects of Black Cumin and TQ against Kidney Injury
4.1. Preclinical Evidence of Kidney Protection by Black Cumin
4.1.1. Protection against Drug-Induced Kidney Injury
4.1.2. Protection against Heavy Metal-Induced Kidney Injury
4.1.3. Protection against Insecticide-Induced Kidney Injury
4.1.4. Protection against Chemical-Induced Kidney Injury
4.1.5. Protection against Renal Ischemia/Reperfusion Injury
4.1.6. Protection against Urolithiasis/Ureteral Obstruction
4.1.7. Protection against Other Stresses
4.2. Clinical Evidence of Kidney Protection by Black Cumin
Experimental Models | Treatment with Doses | Pathophysiological Alterations | Ref. |
---|---|---|---|
Acetylsalicylic acid-induced nephrotoxicity in rats | Ethanolic NSE (250 mg/kg) | Improved paired kidney weight, body weight, relative tissue body weight index, and normalized serum urea and creatinine | [18] |
Aspirin-induced nephrotoxicity in rats | Ethanolic NSE (250 mg/kg) | Significant improvement in histological parameters, including disrupted brush border, epithelial necrosis, intraluminal protein casts, and basement membrane integrity | [17] |
Calcium oxalate-induced urolithiasis in rats | NSO (5 mL/kg BW/dose/ day for 28 days) | ↓Urinary and serum rates of calcium phosphate and oxalate; ↑volume of urine excreted | [71] |
CCl4-induced kidney injury in rats | Combined fish oil/ NSO (300 mg oil emulsions /kg BW, for 20 days) | ↑Unsaturated fatty acids; ↓oxidative stress and inflammation | [69] |
CP-induced AKI in rats | NSO (2 mL/kg BW orally) | ↓Serum creatinine, BUN and ↑BBM enzyme activities in kidney cortical and medullary homogenates and BBMV; carbohydrate metabolism enzyme activities, and in the enzymatic and non-enzymatic antioxidant parameters toward normalcy | [15] |
CP-induced kidney toxicity in rats | NSP (3 g/kg/day), extract (0.5g/kg/ day) and NSO (2 g/kg/day) for 60 days | ↓Serum levels of urea, creatinine, and K+; ↑Na+, Na+/K+ ratio, vitamin D, nutritional markers, and antioxidant enzymes | [60] |
Diazinon-induced nephrotoxicity in rats | NSO (2 mg/kg/daily) | ↓AST, ALT, ALP, BIL, creatinine and urea | [22] |
Haloperidol (HAL)-induced nephrotoxicity in rats | NSO (Pre-, co- and post-treatment: 150 mg/kg BW for 7 days) | ↓K+, Na+, MDA contents and aldose-reductase activity, and AMP hydrolysis; ↑ATP in the plasma cell membranes of rat kidney; ↓inner kidney cortex and outer medulla | [61] |
IRI-induced kidney injury in rats | Single dose of NSP (400 mg/kg orally) | ↓Stain-positive cells in kidney tissue; ↓tissue MDA levels; ↑GPx and CAT | [12] |
Methotrexate-induced nephrotoxicity in mice | NSO (0.125 mL/daily) | ↓MDA; ↑GSH levels in kidney homogenate | [14] |
Paracetamol-induced nephrotoxicity in rats | Ethanolic NSE (250, 500 and 1000 mg/kg) | ↓Serum urea and creatinine; ↑SOD and GSH; ↓MDA levels in the kidneys; reversed kidney pathological damage | [16] |
Penconazole-induced nephrotoxicity in rats | NSO (orally 0.2ml black cumin oil /100 g BW three days/ week for four weeks) | ↓Subcapsular space and hypercellularity of the glomerular cells; attachment of podocytes and their processes; ↑Bcl-2 immune marker; ↓intercalated cells of cortical; ↓α-SMA and collagen fibers; ↓MDA level; ↑SOD and CAT | [21] |
Sodium nitrite-induced nephrotoxicity in rats | NSO (2.5, 5, and 10 mL/kg for 12 weeks) | ↓Serum urea and creatinine; ↑normal appearance of kidney tissue; ↓glycogen levels; ↓fibrosis markers, partially; ↓caspase-3 and pJNK/JNK | [70] |
Unilateral ureteral obstruction-induced kidney damage in rats | NSE (200 and 400 mg/kg, 2 doses for 18 days) | ↓Kidney angiotensin II and monocyte chemoattractant protein-1 expression, MDA and TNF-α levels, and the number of apoptotic cells; ↑kidney total thiol content and the activity of antioxidant enzymes | [72] |
Arsenic-induced kidney toxicity in female rats | TQ (10 mg/kg) and ebselen (5 mg/kg) | ↓Oxidative stress, inflammation, apoptosis, As accumulation in the kidney tissue; ↓histological kidney damage | [19] |
Cadmium-induced nephrotoxicity in rats | TQ (50 mg/kg BW) | ↓Toxicity of Cd and preserved histological architecture of the kidney tissue; ↓Overexpression of NF-κB in kidney tissue; ↓apoptotic cells; subdued lipid peroxidation; ↓SOD, GPx, and CAT activities in kidney tissue | [20] |
IRI-induced kidney injury in rats | TQ (10 mg/kg/day) | Reduction of IRI-related alteration in kidney functions: ↑left RBF and GFR; ↑left kidney FENa; ↓gene expressions of KIM-1, NGAL, TNF-α, TGF-β1 and PAI-1 | [13] |
Sodium nitrite-induced kidney toxicity in rats | TQ (25 and 50 mg/kg, p.o., daily) | ↓Oxidative stress, restoration of pro- and anti-inflammatory cytokines and protection of kidney tissue from apoptosis | [24] |
CP-induced nephrotoxicity in rats | NSO (2 mL/kg BW, orally) and TQ (1.5 mg/kg BW, orally) | Improve kidney function, restored serum creatinine and blood urea nitrogen levels; ↑BBM marker enzymes (ALP, GGTase and LAP) in BBMVs, homogenates of kidney cortex and medulla; ↓kidney metabolic and redox status | [59] |
Types of Kidney Disease | Treatment with Doses | Pathophysiological Alterations | Ref. |
---|---|---|---|
Randomized, prospective, comparative, and open-labeled clinical trial with Stages 3 and 4 CKD patients | NSO (2.5 mL, p.o., once daily) along with alpha-keto analog of essential amino acids | ↓Blood urea, serum creatinine, and 24-h total urine protein; ↑24-h total urine volume and glomerular filtration rate; delaying the progression of CKD at stages 3 and 4 | [27] |
Prospective, comparative, and open-label study with patients with CKD (Stage 3 and 4) due to diabetic nephropathy | NSO (2.5 mL, once daily and orally) | ↓Blood glucose, serum creatinine, blood urea, 24 h total urinary protein levels; ↑glomerular filtration rate, 24 h total urinary volume, and hemoglobin level | [25] |
Randomized, triple-blind, placebo-controlled, clinical trial in patients with kidney stones | Seed capsule (500 mg, twice for 10 weeks | Retreated or decreased the size of kidney stones | [26] |
5. Safety Issues
6. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [Green Version]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Lewington, A.J.; Cerda, J.; Mehta, R.L. Raising awareness of acute kidney injury: A global perspective of a silent killer. Kidney Int. 2013, 84, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Doi, K. Role of kidney injury in sepsis. J. Intensive Care 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togel, F.; Westenfelder, C. Recent advances in the understanding of acute kidney injury. F1000Prime Rep. 2014, 6, 83. [Google Scholar] [CrossRef]
- Radi, Z.A. Kidney pathophysiology, toxicology, and drug-induced injury in drug development. Int. J. Toxicol. 2019, 38, 215–227. [Google Scholar] [CrossRef]
- Dixon, J.; Lane, K.; Macphee, I.; Philips, B. Xenobiotic metabolism: The effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism. Int. J. Mol. Sci. 2014, 15, 2538–2553. [Google Scholar] [CrossRef] [Green Version]
- Kinsey, G.R.; Okusa, M.D. Pathogenesis of acute kidney injury: Foundation for clinical practice. Am. J. Kidney Dis. 2011, 58, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med. 2016, 14, 732–745. [Google Scholar] [CrossRef]
- Kanter, M.; Coskun, O.; Uysal, H. The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch. Toxicol. 2006, 80, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Caskurlu, T.; Kanter, M.; Erboga, M.; Erboga, Z.F.; Ozgul, M.; Atis, G. Protective effect of Nigella Sativa on renal reperfusion injury in rat. Iran. J. Kidney Dis. 2016, 10, 135–143. [Google Scholar]
- Hammad, F.T.; Lubbad, L. The effect of thymoquinone on the renal functions following ischemia-reperfusion injury in the rat. Int. J. Physiol. Pathophysiol. Pharm. 2016, 8, 152–159. [Google Scholar]
- Ahmed, J.H.; Abdulmajeed, I.M. Effect of Nigella sativa (black seeds) against methotrexate-induced nephrotoxicity in mice. J. Intercult. Ethnopharmcol. 2017, 6, 9–13. [Google Scholar] [CrossRef]
- Farooqui, Z.; Ahmed, F.; Rizwan, S.; Shahid, F.; Khan, A.A.; Khan, F. Protective effect of Nigella sativa oil on cisplatin induced nephrotoxicity and oxidative damage in rat kidney. Biomed. Pharmacother. 2017, 85, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Canayakin, D.; Bayir, Y.; Kilic Baygutalp, N.; Sezen Karaoglan, E.; Atmaca, H.T.; Kocak Ozgeris, F.B.; Keles, M.S.; Halici, Z. Paracetamol-induced nephrotoxicity and oxidative stress in rats: The protective role of Nigella sativa. Pharm. Biol. 2016, 54, 2082–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asif, S.; Mudassir, S.; Toor, R.S. Histological Effects of Nigella sativa on Aspirin-Induced Nephrotoxicity in Albino Rats. J. Coll. Physicians Surg. Pak. 2018, 28, 735–738. [Google Scholar]
- Asif, S.; Malik, L. Protective effects of Nigella sativa on acetylsalicylic acid-induced nephrotoxicity in albino rats. J. Coll. Physicians Surg. Pak. 2017, 27, 536–539. [Google Scholar] [PubMed]
- Al-Brakati, A.Y.; Kassab, R.B.; Lokman, M.S.; Elmahallawy, E.K.; Amin, H.K.; Abdel Moneim, A.E. Role of thymoquinone and ebselen in the prevention of sodium arsenite–induced nephrotoxicity in female rats. Hum. Exp. Toxicol. 2019, 38, 482–493. [Google Scholar] [CrossRef]
- Erboga, M.; Kanter, M.; Aktas, C.; Sener, U.; Fidanol Erboga, Z.; Bozdemir Donmez, Y.; Gurel, A. Thymoquinone Ameliorates Cadmium-Induced Nephrotoxicity, Apoptosis, and Oxidative Stress in Rats is Based on its Anti-Apoptotic and Anti-Oxidant Properties. Biol. Trace Elem. Res. 2016, 170, 165–172. [Google Scholar] [CrossRef]
- Khair, N.S.; Nooreldien, N.M. The protective effect of Nigella sativa oil on Penconazole induced -renal toxicity in adult albino rats: Histological, Immunohistochemical and Biochemical study. Egypt. J. Histol. 2019, 42, 99–120. [Google Scholar] [CrossRef]
- Alhilo, R.M.; Kadhim, H.J.; Abbas, M.T. Effects of nigella sativa oil on biochemical parameters of white male rats exposed to diazinon. Indian J. Public Health Res. Dev. 2019, 10, 1286–1290. [Google Scholar] [CrossRef]
- Ebuehi, O.A.T.; Olowojaiye, A.A.; Erukainure, O.L.; Ajagun-Ogunleye, O.M. Nigella sativa (black seed) oil ameliorates CCl4-induced hepatotoxicity and mediates neurotransmitter levels in male Sprague Dawley albino rats. J. Food Biochem. 2020, 44, e13108. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, N.M.; Maysarah, N.M.; El-Sherbiny, M.; Al-Gayyar, M.M. Renal protective effects of thymoquinone against sodium nitrite-induced chronic toxicity in rats: Impact on inflammation and apoptosis. Life Sci. 2017, 180, 1–8. [Google Scholar] [CrossRef]
- Ansari, Z.M.; Nasiruddin, M.; Khan, R.A.; Haque, S.F. Protective role of Nigella sativa in diabetic nephropathy: A randomized clinical trial. Saudi J. Kidney Dis. Transpl. 2017, 28, 9–14. [Google Scholar] [CrossRef]
- Ardakani Movaghati, M.R.; Yousefi, M.; Saghebi, S.A.; Sadeghi Vazin, M.; Iraji, A.; Mosavat, S.H. Efficacy of black seed (Nigella sativa L.) on kidney stone dissolution: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res. 2019, 33, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Nasiruddin, M.; Haque, S.F.; Khan, R.A. Evaluation of safety and efficacy profile of Nigella sativa oil as an add-on therapy, in addition to alpha-keto analogue of essential amino acids in patients with chronic kidney disease. Saudi J. Kidney Dis. Transpl. 2020, 31, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Hossain, K.S.; Sarker, P.P.; Ferdous, J.; Hannan, M.A.; Rahman, M.M.; Chu, D.T.; Uddin, M.J. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother. Res. 2021, 35, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Kim, E.H.; Hannan, M.A.; Ha, H. Pharmacotherapy against oxidative stress in chronic kidney disease: Promising small molecule natural products targeting nrf2-ho-1 signaling. Antioxidants 2021, 10, 258. [Google Scholar] [CrossRef]
- Pandiri, I.; Moni, A. Ocimum herb species: A potential treatment strategy for diabetic kidney disease. J. Adv. Biotechnol. Exp. Ther. 2018, 1, 88–91. [Google Scholar] [CrossRef]
- Farjana, M.; Moni, A.; Sohag, A.A.M.; Hasan, A.; Hannan, M.A.; Hossain, M.G.; Uddin, M.J. Repositioning vitamin C as a promising option to alleviate complications associated with COVID-19. Infect. Chemother. 2020, 52, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Moni, A.; Iqbal, A.; Uddin, M. Resveratrol attenuates inflammation through tristetraprolin expression in human hepatocytes. J. Adv. Biotechnol. Exp. Ther. 2018, 1, 78–82. [Google Scholar] [CrossRef]
- Hassanien, M.F.; Assiri, A.M.; Alzohairy, A.M.; Oraby, H.F. Health-promoting value and food applications of black cumin essential oil: An overview. J. Food Sci. Technol. 2015, 52, 6136–6142. [Google Scholar] [CrossRef] [PubMed]
- Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (black cumin): A promising natural remedy for wide range of illnesses. Evid.-Based Complement. Altern. Med. 2019, 2019, 1528635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omidi, H.; Khorram, S.; Mesgari, M.; Asghari-Jafarabadi, M.; Tarighat-Esfanjani, A. Effects of separate and concurrent supplementation of Nano-sized clinoptilolite and Nigella sativa on oxidative stress, anti-oxidative parameters and body weight in rats with type 2 diabetes. Biomed. Pharm. 2017, 96, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, N.; Kantekin-Erdogan, M.N.; Tat, T.; Tekin, A. Effect of black cumin oil on the oxidative stability and sensory characteristics of mayonnaise. J. Food Sci. Technol. 2018, 55, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.T.; Butt, M.S.; Karim, R.; Ahmed, W.; Kaka, U.; Ahmad, S.; Dewanjee, S.; Jaafar, H.Z.; Zia-Ul-Haq, M. Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress. BMC Complement. Altern. Med. 2015, 15, 330. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, R.M.; Moustafa, Y.M.; Mirghani, Z.; AlKusayer, G.M.; Moustafa, K.M. Antioxidant effect of garlic (Allium sativum) and black seeds (Nigella sativa) in healthy postmenopausal women. SAGE Open Med. 2013, 1, 2050312113517501. [Google Scholar] [CrossRef]
- Kazemi, M. Phytochemical composition, antioxidant, anti-inflammatory and antimicrobial activity of Nigella sativa L. essential oil. J. Essent. Oil Bear. Plants 2014, 17, 1002–1011. [Google Scholar] [CrossRef]
- Singh, S.; Das, S.S.; Singh, G.; Schuff, C.; de Lampasona, M.P.; Catalán, C.A.N. Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.). BioMed. Res. Int. 2014, 2014, 918209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, A.; Sulaiman, N.; Oyewole, A.; Amin, A.; Shittu, S.; Ajao, M. Pro-neurogenic and antioxidant efficacy of Nigella sativa oil reduced vulnerability to cholinesterase dysfunction and disruption in amygdala-dependent behaviours in chlorpyrifos exposure. J. Krishna Inst. Med. Sci. Univ. 2018, 7, 1–12. [Google Scholar]
- Mabrouk, A. Protective effect of thymoquinone against lead-induced antioxidant defense system alteration in rat liver. Acta Biol. Hung. 2017, 68, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Cobourne-Duval, M.K.; Taka, E.; Mendonca, P.; Bauer, D.; Soliman, K.F. The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells. Neurochem. Res. 2016, 41, 3227–3238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gindy, Y.; Zeweil, H.; Zahran, S.; El-Rahman, M.A.; Eisa, F. Hematologic, lipid profile, immunity, and antioxidant status of growing rabbits fed black seed as natural antioxidants. Trop. Anim. Health Prod. 2020, 52, 999–1004. [Google Scholar] [CrossRef]
- Shahid, F.; Farooqui, Z.; Khan, A.A.; Khan, F. Oral Nigella sativa oil and thymoquinone administration ameliorates the effect of long-term cisplatin treatment on the enzymes of carbohydrate metabolism, brush border membrane, and antioxidant defense in rat intestine. Naunyn-Schmiedebergs Arch. Pharm. 2018, 391, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Ardiana, M.; Pikir, B.S.; Santoso, A.; Hermawan, H.O.; Al-Farabi, M.J. Effect of Nigella sativa supplementation on oxidative stress and antioxidant parameters: A meta-analysis of randomized controlled trials. Sci. World J. 2020, 2020, 2390706. [Google Scholar] [CrossRef] [PubMed]
- Namazi, N.; Mahdavi, R.; Alizadeh, M.; Farajnia, S. Oxidative Stress Responses to Nigella sativa Oil Concurrent with a Low-Calorie Diet in Obese Women: A Randomized, Double-Blind Controlled Clinical Trial. Phytother. Res. 2015, 29, 1722–1728. [Google Scholar] [CrossRef]
- Dwita, L.P.; Yati, K.; Gantini, S.N. The anti-inflammatory activity of Nigella sativa balm sticks. Sci. Pharm. 2019, 87, 3. [Google Scholar] [CrossRef] [Green Version]
- Koshak, A.; Koshak, E.; Heinrich, M. Medicinal benefits of Nigella sativa in bronchial asthma: A literature review. Saudi Pharm. J. 2017, 25. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.J.; Yang, W.S.; Kim, D.; Aravinthan, A.; Kim, J.-H.; Cho, J.Y. Thymoquinone: An IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci. Rep. 2017, 7, 42995. [Google Scholar] [CrossRef] [Green Version]
- Houghton, P.J.; Zarka, R.; de las Heras, B.; Hoult, J.R. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995, 61, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Tornhamre, S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J. Enzym. Inhib. Med. Chem. 2004, 19, 431–436. [Google Scholar] [CrossRef]
- Aziz, N.; Son, Y.J.; Cho, J.Y. Thymoquinone suppresses IRF-3-mediated expression of type I interferons via suppression of TBK1. Int. J. Mol. Sci. 2018, 19, 1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.T.; Abdel-Aziz, M.M.; Zalata, K.R.; Abd Al-Galel Tel, D. Effect of dexamethasone and Nigella sativa on peripheral blood eosinophil count, IgG1 and IgG2a, cytokine profiles and lung inflammation in murine model of allergic asthma. Egypt J. Immunol. 2005, 12, 95–102. [Google Scholar] [PubMed]
- Attia, H.N.; Ibrahim, F.M.; Maklad, Y.A.; Ahmed, K.A.; Ramadan, M.F. Characterization of antiradical and anti-inflammatory activities of some cold pressed oils in carrageenan-induced rat model of acute inflammation. Der. Pharma Chem. 2016, 8, 148–158. [Google Scholar]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, E.; Abd-ellatief, R.; Ali, M.; Saleh, T.; Ahmed, E. Optimization of the effectiveness and cytocompatibility of Nigella sativa as a co-treatment for reducing methotrexate-related adverse effects. Comp. Clin. Pathol. 2020, 29, 287–296. [Google Scholar] [CrossRef]
- Farooqui, Z.; Shahid, F.; Abidi, S.; Parwez, I.; Khan, F. Oral thymoquinone administration ameliorates: The effect of cisplatin on brush border membrane enzymes, energy metabolism, and redox status in rat kidney. Naunyn-Schmiedebergs Arch. Pharmacol. 2017, 390, 1271–1284. [Google Scholar] [CrossRef]
- Alsuhaibani, A.M.A. Effect of Nigella sativa against cisplatin induced nephrotoxicity in rats. Ital. J. Food Saf. 2018, 7, 105–109. [Google Scholar] [CrossRef]
- Akintunde, J.K.; Abubakar, O.K. Novel therapeutic approaches of natural oil from black seeds and its underlying mechanisms against kidney dysfunctions in haloperidol-induced male rats. Drug Metab. Pers. Ther. 2017, 32, 97–107. [Google Scholar] [CrossRef]
- Kotb, A.M.; Abd-Elkareem, M.; Abou Khalil, N.S.; Sayed, A.E.D.H. Protective effect of Nigella sativa on 4-nonylphenol-induced nephrotoxicity in Clarias gariepinus (Burchell, 1822). Sci. Total Environ. 2018, 619–620, 692–699. [Google Scholar] [CrossRef]
- Ahmad, A.; Al-Abbasi, F.; Sadath, S.; Ali, S.S.; Abuzinadah, M.F.; Alhadrami, H.A.; Alghamdi, A.A.M.; Aseeri, A.H.; Khan, S.; Husain, A.A. Ameliorative effect of camel’s milk and Nigella sativa Oil against thioacetamide-induced hepatorenal damage in rats. Pharmacogn. Mag. 2018, 14, 27–35. [Google Scholar] [CrossRef]
- Ahmad, A.; Alkreathy, H.M. Comparative biochemical and histopathological studies on the efficacy of metformin and Nigella sativa oil against thioacetamide-induced acute hepatorenal damage in rats. Biomed. Res. 2018, 29, 3106–3116. [Google Scholar] [CrossRef] [Green Version]
- Massadeh, A.M.; Al-Safi, S.A.; Momani, I.F.; Al-Mahmoud, M.; Alkofahi, A.S. Analysis of cadmium and lead in mice organs: Effect of Nigella sativa L. (Black Cumin) on the distribution and immunosuppressive effect of cadmium-lead mixture in mice. Biol. Trace Elem. Res. 2007, 115, 157–167. [Google Scholar] [CrossRef]
- Farrag, A.R.; Mahdy, K.A.; Abdel Rahman, G.H.; Osfor, M.M. Protective effect of Nigella sativa seeds against lead-induced hepatorenal damage in male rats. Pak. J. Biol. Sci. 2007, 10, 2809–2816. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, A.; Cheikh, H.B. Thymoquinone ameliorates lead-induced suppression of the antioxidant system in rat kidneys. Libyan J. Med. 2016, 11, 31018. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Daim, M.M.; Shaheen, H.M.; Abushouk, A.I.; Toraih, E.A.; Fawzy, M.S.; Alansari, W.S.; Aleya, L.; Bungau, S. Thymoquinone and diallyl sulfide protect against fipronil-induced oxidative injury in rats. Environ. Sci. Pollut. Res. Int. 2018, 25, 23909–23916. [Google Scholar] [CrossRef] [PubMed]
- Al-Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.; Edris, A.E.; Fouda, K. Hepatic regeneration and reno-protection by fish oil, Nigella sativa oil and combined fish oil/Nigella sativa volatiles in CCL4 treated rats. J. Oleo Sci. 2018, 67, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Gayyar, M.M.H.; Hassan, H.M.; Alyoussef, A.; Abbas, A.; Darweish, M.M.; El-Hawwary, A.A. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis. Redox Rep. 2016, 21, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Benhelima, A.; Kaid-Omar, Z.; Hemida, H.; Benmahdi, T.; Addou, A. Nephroprotective and diuretic effect of Nigella sativa L seeds oil on lithiasic wistar rats. Afr. J. Trad. Complement. Altern. Med. 2016, 13, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Hosseinian, S.; Ebrahimzadeh Bideskan, A.; Shafei, M.N.; Sadeghnia, H.R.; Soukhtanloo, M.; Shahraki, S.; Samadi Noshahr, Z.; Khajavi Rad, A. Nigella sativa extract is a potent therapeutic agent for renal inflammation, apoptosis, and oxidative stress in a rat model of unilateral ureteral obstruction. Phytother. Res. 2018, 32, 2290–2298. [Google Scholar] [CrossRef]
- Hosseinian, S.; Rad, A.K.; Bideskan, A.E.; Soukhtanloo, M.; Sadeghnia, H.; Shafei, M.N.; Motejadded, F.; Mohebbati, R.; Shahraki, S.; Beheshti, F. Thymoquinone ameliorates renal damage in unilateral ureteral obstruction in rats. Pharm. Rep. 2017, 69, 648–657. [Google Scholar] [CrossRef]
- Cascella, M.; Palma, G.; Barbieri, A.; Bimonte, S.; Amruthraj, N.J.; Muzio, M.R.; del Vecchio, V.; Rea, D.; Falco, M.; Luciano, A.; et al. Role of Nigella sativa and its constituent thymoquinone on chemotherapy-induced nephrotoxicity: Evidences from experimental animal studies. Nutrients 2017, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Dera, A.; Rajagopalan, P. Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J. Food Biochem. 2019, 43. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.-P.; Liu, S.-X.; Yang, Q.; Liu, H.-Y.; Xu, L.-L.; Hao, Y.-H.; Zhang, X.-Q. Effect of Thymoquinone on Acute Kidney Injury Induced by Sepsis in BALB/c Mice. BioMed Res. Int. 2020, 2020, 1594726. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Dorotea, D.; Pak, E.S.; Ha, H. Fyn kinase: A potential therapeutic target in acute kidney injury. Biomol. Ther. 2020, 28, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Pak, E.S.; Ha, H. Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress. Korean J. Physiol. Pharm. 2018, 22, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Bargi, R.; Asgharzadeh, F.; Beheshti, F.; Hosseini, M.; Farzadnia, M.; Khazaei, M. Thymoquinone protects the rat kidneys against renal fibrosis. Res. Pharm. Sci. 2017, 12, 479–487. [Google Scholar] [CrossRef]
- Dera, A.A.; Rajagopalan, P.; Alfhili, M.A.; Ahmed, I.; Chandramoorthy, H.C. Thymoquinone attenuates oxidative stress of kidney mitochondria and exerts nephroprotective effects in oxonic acid-induced hyperuricemia rats. BioFactors 2020, 46, 292–300. [Google Scholar] [CrossRef]
- Al-Trad, B.; Al-Batayneh, K.; El-Metwally, S.; Alhazimi, A.; Ginawi, I.; Alaraj, M.; Alkofahi, E.; Aljumaili, O.; Kosba, A. Nigella sativa oil and thymoquinone ameliorate albuminuria and renal extracellular matrix accumulation in the experimental diabetic rats. Eur. Rev. Med. Pharm. Sci. 2016, 20, 2680–2688. [Google Scholar]
- Pei, Z.; Zhu, L.; Liu, Y.; Li, N.; Yang, G.; Liu, H. Thymoquinone reduces kidney damage in apolipoprotein E-deficient mice fed a high-cholesterol diet. RSC Adv. 2017, 7, 53002–53009. [Google Scholar] [CrossRef] [Green Version]
- Purnamayanti, N.M.D.; Windu, S.C.; Poeranto, S. Effect of Nigella sativa ethanol extract on the nitric oxide content and renal arteriole diameter of a pre-eclampsia mouse model. Eurasian J. Med. 2018, 50, 148–151. [Google Scholar] [CrossRef]
- Hayatdavoudi, P.; Khajavi Rad, A.; Rajaei, Z.; Hadjzadeh, M.A. Renal injury, nephrolithiasis and Nigella sativa: A mini review. Avicenna J. Phytomed. 2016, 6, 1–8. [Google Scholar]
- Razmpoosh, E.; Safi, S.; Abdollahi, N.; Nadjarzadeh, A.; Nazari, M.; Fallahzadeh, H.; Mazaheri, M.; Salehi-Abargouei, A. The effect of Nigella sativa on the measures of liver and kidney parameters: A systematic review and meta-analysis of randomized-controlled trials. Pharmacol. Res. 2020, 156, 104767. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev. 2020, 39, 115–122. [Google Scholar] [CrossRef]
- Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of quinones in toxicology. Chem. Res. Toxicol. 2000, 13, 135–160. [Google Scholar] [CrossRef] [PubMed]
- El-Hadiyah, T.; Raza, M.; Mohammed, O.Y.; Abdallah, A.A. Evaluation of Nigella sativa seed constituents for their in vivo toxicity in mice. Nat. Prod. Sci. 2003, 9, 22–27. [Google Scholar]
- Yu, S.M.; Kim, S.J. The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK pathway and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes. Int. J. Mol. Med. 2015, 35, 325–332. [Google Scholar] [CrossRef] [Green Version]
- El Daly, E.S. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats. J. Pharm. Belg. 1998, 53, 87–93, discussion 93-5. [Google Scholar]
- Vahdati-Mashhadian, N.; Rakhshandeh, H.; Omidi, A. An investigation on LD50 and subacute hepatic toxicity of Nigella sativa seed extracts in mice. Die Pharm. 2005, 60, 544–547. [Google Scholar]
- Amina, B. Toxicity and anti-oxidant activity of the essential oil of Nigella sativa. Der Pharm. Lett. 2016, 8, 245–249. [Google Scholar] [CrossRef]
- Al-Homidan, A.; Al-Qarawi, A.; Al-Waily, S.; Adam, S. Response of broiler chicks to dietary Rhazya stricta and Nigella sativa. Br. Poult. Sci. 2002, 43, 291–296. [Google Scholar] [CrossRef]
- Zaghlol, D.; Kamel, E.; Mohammed, D.; Abbas, N. The possible toxic effect of different doses of Nigella sativa oil on the histological structure of the liver and renal cortex of adult male albino rats. Egypt. J. Histol. 2012, 35, 127–136. [Google Scholar] [CrossRef]
- Badary, O.A.; Nagi, M.N.; al-Shabanah, O.A.; al-Sawaf, H.A.; al-Sohaibani, M.O.; al-Bekairi, A.M. Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can. J. Physiol. Pharmacol. 1997, 75, 1356–1361. [Google Scholar] [CrossRef]
- Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Samarghandian, S.; Farkhondeh, T. An Overview on Renoprotective Effects of Thymoquinone. Kidney Dis. 2018, 4, 74–82. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannan, M.A.; Zahan, M.S.; Sarker, P.P.; Moni, A.; Ha, H.; Uddin, M.J. Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. Int. J. Mol. Sci. 2021, 22, 9078. https://doi.org/10.3390/ijms22169078
Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. International Journal of Molecular Sciences. 2021; 22(16):9078. https://doi.org/10.3390/ijms22169078
Chicago/Turabian StyleHannan, Md. Abdul, Md. Sarwar Zahan, Partha Protim Sarker, Akhi Moni, Hunjoo Ha, and Md Jamal Uddin. 2021. "Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights" International Journal of Molecular Sciences 22, no. 16: 9078. https://doi.org/10.3390/ijms22169078
APA StyleHannan, M. A., Zahan, M. S., Sarker, P. P., Moni, A., Ha, H., & Uddin, M. J. (2021). Protective Effects of Black Cumin (Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. International Journal of Molecular Sciences, 22(16), 9078. https://doi.org/10.3390/ijms22169078