A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites
Abstract
:1. Introduction
2. Interaction of Gamma Radiation with Matter
2.1. Coherent Scattering
2.2. Photoelectric Effect
2.3. Compton Scattering
2.4. Pair Production
3. HE-EMR Attenuation
Prediction and Determination of Attenuation Coefficients
4. Effect of HE-EMR on Polymers
4.1. HE-EMR-Induced-Crosslinking
4.2. HE-EMR-Induced-Cleavage
4.3. Specific Energy Requirement
5. Composites as an Approach to Enhance the Performance of Polymers against HE-EMR
6. Outlooks and Future Trends in Materials for Protection against HE-EMR
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choppin, G.; Liljenzin, J.-O.; Rydberg, J.; Ekberg, C. Chapter 2-Elementary Particles. In Radiochemistry and Nuclear Chemistry; Choppin, G., Liljenzin, J.-O., Rydberg, J., Eds.; Academic Press: Oxford, UK, 2013; pp. 15–30. ISBN 978-0-12-405897-2. [Google Scholar]
- Choppin, G.; Liljenzin, J.-O.; Rydberg, J.; Ekberg, C. Chapter 18-Uses of Radioactive Tracers. In Radiochemistry and Nuclear Chemistry; Choppin, G., Liljenzin, J.-O., Rydberg, J., Eds.; Academic Press: Oxford, UK, 2013; pp. 545–593. ISBN 978-0-12-405897-2. [Google Scholar]
- Khanna, V.K. Radiation effects on electronics. In Extreme-Temperature and Harsh-Environment Electronics Physics, Technology and Applications; IOP Publishing: Bristol, UK, 2017; pp. 14–18. [Google Scholar]
- Nambiar, S.; Yeow, J.T.W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef]
- Airey, P.; Hinton, T.; Twining, J. Chapter 1-The Scientific Basis. In Tropical Radioecology; Twining, J.R., Ed.; Elsevier: London, UK, 2012; Volume 18, pp. 1–57. ISBN 1569-4860. [Google Scholar]
- Maycock, A.C.; Randel, W.J.; Steiner, A.K.; Karpechko, A.Y.; Christy, J.; Saunders, R.; Thompson, D.W.J.; Zou, C.-Z.; Chrysanthou, A.; Abraham, N.L.; et al. Revisiting the Mystery of Recent Stratospheric Temperature Trends. Geophys. Res. Lett. 2018, 45, 9919–9933. [Google Scholar] [CrossRef] [Green Version]
- Hicyilmaz, A.S.; Bedeloglu, A.C. Applications of polyimide coatings: A review. SN Appl. Sci. 2021, 3, 1–22. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Chapter 10-Fluoroelastomers. In Introduction to Fluoropolymers: Materials, Technology and Applications; Ebnesajjad, S., Ed.; William Andrew Publishing: Oxford, UK, 2013; pp. 149–230. ISBN 978-1-4557-7442-5. [Google Scholar]
- Wündrich, K. A review of radiation resistance for plastic and elastomeric materials. Radiat. Phys. Chem. (1977) 1984, 24, 503–510. [Google Scholar] [CrossRef]
- Chapter IV: Interaction of Beta and Gamma Radiation with Matter. Acta Radiol. 1959, 51, 31–39. [CrossRef]
- Henke, B.; Lee, P.; Tanaka, T.; Shimabukuro, R.; Fujikawa, B. Low-energy x-ray interaction coefficients: Photoabsorption, scattering, and reflection: E = 100–2000 eV Z = 1–94. At. Data Nucl. Data Tables 1982, 27, 1–144. [Google Scholar] [CrossRef]
- Mossop, J.; Kerr, S.; Bradley, D.; Chong, C.; Ghose, A. The use of coherent gamma-ray scattering for the characterisation of materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1987, 255, 419–422. [Google Scholar] [CrossRef]
- Hussein, E.M.A. chapter two-collision kinematics. In Radiation Mechanics; Hussein, E.M.A., Ed.; Elsevier Science Ltd.: Oxford, UK, 2007; pp. 67–151. ISBN 978-0-08-045053-7. [Google Scholar]
- Evans, R.D. Compton Effect BT-Corpuscles and Radiation in Matter II/Korpuskeln und Strahlung in Materie II; Flügge, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1958; pp. 218–298. ISBN 978-3-642-45898-9. [Google Scholar]
- Rosenberg, I. Radiation Oncology Physics: A Handbook for Teachers and Students. Br. J. Cancer 2008, 98, 1020. [Google Scholar] [CrossRef] [Green Version]
- White, S.; Pharoah, M. Chapter 1-Physics. In Oral Radiology: Principles and Interpretation; White, S., Pharoah, M., Eds.; Mosby: St. Louis, MO, USA, 2014; pp. 1–15. ISBN 978-0-323-09633-1. [Google Scholar]
- Yu, J.; Hahne, R.M.A. Air analysis|workplace Air. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2005; pp. 48–55. ISBN 9780123693976. [Google Scholar]
- Davisson, C.M.; Evans, R.D. Gamma-Ray Absorption Coefficients. Rev. Mod. Phys. 1952, 24, 79–107. [Google Scholar] [CrossRef]
- Ilyin, A.M. Chapter 11-Auger Electron Spectroscopy. In Micro and Nano Technologies; Thomas, S., Thomas, R., Zachariah, A., Mishra, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 363–381. ISBN 978-0-323-46141-2. [Google Scholar]
- Schafers, K.P.; Bolwin, K.; Buther, F.; Hermann, S.; Jacobs, A.H.; Kosters, T.; Kuhlmann, M.; Schafers, M.; Viel, T. High-Resolution Small Animal Imaging; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 181–211. [Google Scholar]
- Attix, F.H. Chapter 7: Gamma- and X-Ray Interactions in Matter. In Introduction to Radiological Physics and Radiation Dosimetry; Wiley-VCH: Weinheim, Germany, 1986; pp. 124–159. Available online: https://www.utoledo.edu/med/depts/radther/pdf/RDII%20-%20Chapter%207n%20handout.pdf (accessed on 22 August 2021).
- Choppin, G.R.; Rydberg, J.; Liljenzin, J.-O. Chapter 6-Absorption of Nuclear Radiation. In Radiochemistry and Nuclear Chemistry; Choppin, G.R., Rydberg, J., Liljenzin, J.-O., Eds.; Butterworth-Heinemann: Woburn, UK, 2002; pp. 123–165. ISBN 978-0-7506-7463-8. [Google Scholar]
- Stacy, J.G.; Vestrand, W.T. Gamma-Ray Astronomy. In Encyclopedia of Physical Science and Technology; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 397–432. ISBN 978-0-12-227410-7. [Google Scholar]
- McKay, H.A.C. Nuclear and Radiochemistry. Nat. Cell Biol. 1965, 208, 105. [Google Scholar] [CrossRef]
- Barthel, J.; Sarigul-Klijn, N. A review of radiation shielding needs and concepts for space voyages beyond Earth’s magnetic influence. Prog. Aerosp. Sci. 2019, 110, 100553. [Google Scholar] [CrossRef]
- Newhauser, W.D.; Zhang, R. The physics of proton therapy. Phys. Med. Biol. 2015, 60, R155–R209. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, W.G. Effective Atomic Number, Mass Attenuation Coefficient Parameterization, and Implications for High-Energy X-Ray Cargo Inspection Systems. Phys. Procedia 2017, 90, 291–304. [Google Scholar] [CrossRef]
- Hubbell, J.; Seltzer, S. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. National Institute of Standard and Technology, Gaithersburg. 1995. Available online: http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html (accessed on 22 August 2021).
- El-Toony, M.; Eid, G.; Algarni, H.; Alhuwaymel, T.; Abel-Hady, E. Synthesis and characterisation of smart poly vinyl ester/Pb2O3 nanocomposite for gamma radiation shielding. Radiat. Phys. Chem. 2020, 168, 108536. [Google Scholar] [CrossRef]
- Slaba, T.; Blattnig, S.; Aghara, S.; Townsend, L.; Handler, T.; Gabriel, T.; Pinsky, L.; Reddell, B. Coupled neutron transport for HZETRN. Radiat. Meas. 2010, 45, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Durante, M.; Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer 2008, 8, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.; Kawrakow, I.; Mainegra Hing, E. NRC User Codes for EGSnrc; Ionizing Radiation Standards; National Research Council Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Dörner, E. Development and Validation of a Multi-Leaf Collimator Component Module Using a Modified EGSnrc Platform for Monte Carlo Simulations. Ph.D. Thesis, Doctor of Natural Sciences, Heidelberg University, Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Choppin, G.R.; Liljenzin, J.-O.; Rydberg, J. Chapter 8-Detection and Measurement Techniques. In Radiochemistry and Nuclear Chemistry; Choppin, G.R., Liljenzin, J.-O., Rydberg, J., Eds.; Butterworth-Heinemann: Woburn, UK, 2002; pp. 192–238. ISBN 978-0-7506-7463-8. [Google Scholar]
- Tsuda, S.; Saito, K. Spectrum–dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 2017, 166, 419–426. [Google Scholar] [CrossRef]
- Singh, I.; Singh, B.; Sandhu, B.S.; Sabharwal, A.D. Comparative study for intermediate crystal size of NaI(Tl) scintillation detector. Rev. Sci. Instrum. 2020, 91, 073105. [Google Scholar] [CrossRef]
- Özdemir, T. Monte Carlo simulations of radioactive waste encapsulated by bisphenol-A polycarbonate and effect of bismuth-III oxide filler material. Radiat. Phys. Chem. 2017, 135, 11–17. [Google Scholar] [CrossRef]
- Hacıoğlu, F.; Özdemir, T.; Kinalır, K.; Usanmaz, A. Possible use of bisphenol-a polycarbonate in radioactive waste embedding. Prog. Nucl. Energy 2016, 90, 98–104. [Google Scholar] [CrossRef]
- Choppin, G.; Liljenzin, J.-O.; Rydberg, J.; Ekberg, C. Chapter 8-Radiation Effects on Matter. In Radiochemistry and nuclear chemistry; Choppin, G., Liljenzin, J.-O., Rydberg, J., Eds.; Academic Press: Oxford, UK, 2013; pp. 209–237. ISBN 978-0-12-405897-2. [Google Scholar]
- Lee, K.-P.; Gopalan, A.I.; Santhosh, P.; Lee, S.H.; Nho, Y.C. Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos. Sci. Technol. 2007, 67, 811–816. [Google Scholar] [CrossRef]
- Radwan, R.; Abdul-Kader, A.; Ali, A.E.-H. Ion bombardment induced changes in the optical and electrical properties of polycarbonate. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2008, 266, 3588–3594. [Google Scholar] [CrossRef]
- Pelagade, S.; Singh, N.; Qureshi, A.; Rane, R.; Mukherjee, S.; Deshpande, U.; Ganesan, V.; Shripathi, T. Investigation of surface properties of Ar-plasma treated polyethylene terephthalate (PET) films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2012, 289, 34–38. [Google Scholar] [CrossRef]
- Abdul-Kader, A.; Zaki, M.; El-Badry, B.A. Modified the optical and electrical properties of CR-39 by gamma ray irradiation. J. Radiat. Res. Appl. Sci. 2014, 7, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Moez, A.A.; Aly, S.; Elshaer, Y. Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 203–207. [Google Scholar] [CrossRef]
- Nagaraja, N.; Manjunatha, H.; Seenappa, L.; Sridhar, K.; Ramalingam, H. Radiation shielding properties of silicon polymers. Radiat. Phys. Chem. 2020, 171, 108723. [Google Scholar] [CrossRef]
- Gaylord, N.G.; Ballantine, D.S. Atomic radiation and polymers. A. CHARLESBY. Pergamon Press, New York, 1960. xiii + 556 pp. $17.50. J. Polym. Sci. 1960, 45, 553. [Google Scholar] [CrossRef]
- Charlesby, A. Crosslinking and degradation of polymers. Radiat. Phys. Chem. (1977) 1981, 18, 59–66. [Google Scholar] [CrossRef]
- Bhattacharya, A. Radiation and industrial polymers. Prog. Polym. Sci. 2000, 25, 371–401. [Google Scholar] [CrossRef]
- Cleland, M.; Parks, L.; Cheng, S. Applications for radiation processing of materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2003, 208, 66–73. [Google Scholar] [CrossRef]
- Harrison, C.; Weaver, S.; Bertelsen, C.; Burgett, E.; Hertel, N.; Grulke, E. Polyethylene/boron nitride composites for space radiation shielding. J. Appl. Polym. Sci. 2008, 109, 2529–2538. [Google Scholar] [CrossRef]
- Uddin, Z.; Yasin, T.; Shafiq, M.; Raza, A.; Zahur, A. On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites. Radiat. Phys. Chem. 2020, 166, 108450. [Google Scholar] [CrossRef]
- Sangaroon, S.; Ogawa, K.; Isobe, M.; Kobayashi, M.; Conroy, S.; Zhang, Y.; Fan, T.; Osakabe, M. Neutron and gamma-ray transport calculations in support of the design of the radiation shielding for the TOFED neutron spectrometer at LHD. Fusion Eng. Des. 2021, 166, 112296. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Ambika, M.; Nagaiah, N.; Harish, V.; Lokanath, N.; Sridhar, M.; Renukappa, N.; Suman, S. Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat. Phys. Chem. 2017, 130, 351–358. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Q.-P.; Zheng, J.; Wu, Y.; Zhao, Y.; Zhou, Y.-L. Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method. Inorg. Chem. Commun. 2017, 77, 55–58. [Google Scholar] [CrossRef]
- Özdemir, T.; Yılmaz, S.N. Mixed radiation shielding via 3-layered polydimethylsiloxane rubber composite containing hexagonal boron nitride, boron (III) oxide, bismuth (III) oxide for each layer. Radiat. Phys. Chem. 2018, 152, 17–22. [Google Scholar] [CrossRef]
- Kiani, M.A.; Ahmadi, S.J.; Outokesh, M.; Adeli, R.; Kiani, H. Study on physico-mechanical and gamma-ray shielding characteristics of new ternary nanocomposites. Appl. Radiat. Isot. 2019, 143, 141–148. [Google Scholar] [CrossRef]
- Higgins, M.C.M.; Radcliffe, N.A.; Gonzalez, M.T.; Rojas, J.V. Gamma ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites. J. Radioanal. Nucl. Chem. 2019, 322, 707–716. [Google Scholar] [CrossRef]
- Abdalsalam, A.H.; Sayyed, M.; Hussein, T.A.; Şakar, E.; Mhareb, M.; Şakar, B.C.; Alim, B.; Kaky, K.M. A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 2019, 523, 92–98. [Google Scholar] [CrossRef]
- Azman, N.N.; Siddiqui, S.; Low, I. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays. Mater. Sci. Eng. C 2013, 33, 4952–4957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghaz, A.; Faghihi, R.; Mortazavi, S.; Haghparast, A.; Mehdizadeh, S.; Sina, S. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Intern. J. Radiat. Res. 2016, 14, 127–131. [Google Scholar] [CrossRef]
- Sabri, J.H.; Alsarraf, A.H.; Mahdi, K.H. A Comparative Study for Micro and Nano shield of (PbO) composite for gamma Radiation. Energy Procedia 2019, 157, 802–814. [Google Scholar] [CrossRef]
- Issa, S.A.; Zakaly, H.M.; Pyshkina, M.; Mostafa, M.Y.; Rashad, M.; Soliman, T. Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat. Phys. Chem. 2021, 180, 109281. [Google Scholar] [CrossRef]
- Hashim, A.; Al-Attiyah, K.; Obaid, S.F. Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low-Cost Nuclear Radiation Shielding. Ukr. J. Phys. 2019, 64, 157. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.E.-S.; Ali, M.A.M.; Ismail, M. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding. Radiat. Phys. Chem. 2003, 66, 185–195. [Google Scholar] [CrossRef]
- Alavian, H.; Samie, A.; Tavakoli-Anbaran, H. Experimental and Monte Carlo investigations of gamma ray transmission and buildup factors for inorganic nanoparticle/epoxy composites. Radiat. Phys. Chem. 2020, 174, 108960. [Google Scholar] [CrossRef]
- AbuAlRoos, N.J.; Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Sayyed, M.; Kaky, K.M.; Şakar, E.; Akbaba, U.; Taki, M.M.; Agar, O. Gamma radiation shielding investigations for selected germanate glasses. J. Non-Cryst. Solids 2019, 512, 33–40. [Google Scholar] [CrossRef]
- Sayyed, M.; Kaky, K.M.; Gaikwad, D.; Agar, O.; Gawai, U.; Baki, S. Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 2019, 507, 30–37. [Google Scholar] [CrossRef]
- Şahin, N.; Bozkurt, M.; Karabul, Y.; Kılıç, M.; Özdemir, Z.G. Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites. Prog. Nucl. Energy 2021, 135, 103703. [Google Scholar] [CrossRef]
- Abdalsalam, A.H.; Şakar, E.; Kaky, K.M.; Mhareb, M.; Şakar, B.C.; Sayyed, M.; Gürol, A. Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. 2020, 168, 108537. [Google Scholar] [CrossRef]
- Ambika, M.R.; Nagaiah, N.; Suman, S. Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites. J. Appl. Polym. Sci. 2016, 134, 134. [Google Scholar] [CrossRef]
- Tiamduangtawan, P.; Kamkaew, C.; Kuntonwatchara, S.; Wimolmala, E.; Saenboonruang, K. Comparative mechanical, self-healing, and gamma attenuation properties of PVA hydrogels containing either nano- or micro-sized Bi2O3 for use as gamma-shielding materials. Radiat. Phys. Chem. 2020, 177, 109164. [Google Scholar] [CrossRef]
- Yılmaz, S.N.; Güngör, A.; Özdemir, T. The investigations of mechanical, thermal and rheological properties of polydimethylsiloxane/bismuth (III) oxide composite for X/Gamma ray shielding. Radiat. Phys. Chem. 2020, 170, 108649. [Google Scholar] [CrossRef]
- Mehrara, R.; Malekie, S.; Kotahi, S.M.S.; Kashian, S. Introducing a novel low energy gamma ray shield utilizing Polycarbonate Bismuth Oxide composite. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Anisimova, N.I.; Bordovsky, G.A.; Bordovsky, V.A.; Seldayev, V.I. Electrical and thermal properties of Bi2O3, PbO and mixed oxides of Bi2O3-PbO system. In Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse, France, 5–9 July 2004; Volume 1, pp. 141–142. [Google Scholar]
- Akman, F.; Ogul, H.; Ozkan, I.; Kaçal, M.; Agar, O.; Polat, H.; Dilsiz, K. Study on gamma radiation attenuation and non-ionizing shielding effectiveness of Niobium-reinforced novel polymer composite. Nucl. Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Alavian, H.; Tavakoli-Anbaran, H. Study on gamma shielding polymer composites reinforced with different sizes and proportions of tungsten particles using MCNP code. Prog. Nucl. Energy 2019, 115, 91–98. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, Y.; Wu, Y.; Li, D. Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites. Materials 2020, 13, 4475. [Google Scholar] [CrossRef]
- El-Sharkawy, R.M.; Allam, E.A.; El-Taher, A.; Shaaban, E.R.; Mahmoud, M.E. Synergistic effect of nano-bentonite and nanocadmium oxide doping concentrations on assembly, characterization, and enhanced gamma-rays shielding properties of polypropylene ternary nanocomposites. Int. J. Energy Res. 2021, 45, 8942–8959. [Google Scholar] [CrossRef]
- Yılmaz, S.N.; Akbay, I.K.; Özdemir, T. A metal-ceramic-rubber composite for hybrid gamma and neutron radiation shielding. Radiat. Phys. Chem. 2021, 180, 109316. [Google Scholar] [CrossRef]
- Maksoud, M.A.; Kassem, S.M.; Bekhit, M.; Fahim, R.A.; Ashour, A.; Awed, A. Gamma radiation shielding properties of poly(vinyl butyral)/Bi2O3@BaZrO3 nanocomposites. Mater. Chem. Phys. 2021, 268, 124728. [Google Scholar] [CrossRef]
- Baykara, O.; Irim, Ş.G.; Wis, A.A.; Keskin, M.A.; Ozkoc, G.; Avcı, A.; Doğru, M. Polyimide nanocomposites in ternary structure: “A novel simultaneous neutron and gamma-ray shielding material. Polym. Adv. Technol. 2020, 31, 2466–2479. [Google Scholar] [CrossRef]
- Zakaly, H.M.; Ashry, A.; El-Taher, A.; Abbady, A.G.; Allam, E.A.; El-Sharkawy, R.M.; Mahmoud, M.E. Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: In-depth simulation study. Radiat. Phys. Chem. 2021, 188, 109667. [Google Scholar] [CrossRef]
- Siqueira, J.R.; Oliveira, O.N. 9-Carbon-Based Nanomaterials. In Nanostructures; Da Róz, A.L., Ferreira, M., de Lima Leite, F., de Oliveira, O.N., Eds.; William Andrew Publishing: Oxford, UK, 2017; pp. 233–249. ISBN 978-0-323-49782-4. [Google Scholar]
- Behera, R.P.; Rawat, P.; Tiwari, S.K.; Singh, K.K. A brief review on the mechanical properties of Carbon nanotube reinforced polymer composites. Mater. Today Proc. 2020, 22, 2109–2117. [Google Scholar] [CrossRef]
- Avilés, F.; Cauich-Rodríguez, J.V.; Toro-Estay, P.; Yazdani-Pedram, M.; Aguilar-Bolados, H. Improving Carbon Nanotube/Polymer Interactions in Nanocomposites. Carbon Nanotub. Reinf. Polym. 2018, 83–115. [Google Scholar] [CrossRef]
- Bolotin, K.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M.D.; et al. All in the graphene family–A recommended nomenclature for two-dimensional carbon materials. Carbon 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Yadav, D.; Trushin, M.; Pauly, F. Photocarrier thermalization bottleneck in graphene. Phys. Rev. B 2019, 99, 155410. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Andersen, T.I.; Nair, N.L.; Gabor, N.M.; Massicotte, M.; Lui, C.H.; Young, A.; Fang, W.; Watanabe, K.; Taniguchi, T.; et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 2016, 12, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, Y.; Zhao, Y.; Zhou, H.; Zhu, H. Highly efficient hot electron harvesting from graphene before electron-hole thermalization. Sci. Adv. 2019, 5, eaax9958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins Brodie, B. XIII. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Eur. J. Inorg. Chem. 1898, 31, 1481–1487. [Google Scholar] [CrossRef] [Green Version]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Brasero, J.; Lopez-Manchado, M.; Yazdani-Pedram, M. High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Compos. Part B Eng. 2014, 67, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y. Recent Progress in Graphene/Polymer Nanocomposites. Adv. Mater. 2021, 33, 2001105. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Prog. Polym. Sci. 2014, 39, 1934–1972. [Google Scholar] [CrossRef]
- Hu, K.; Kulkarni, D.D.; Choi, I.; Tsukruk, V.V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39, 1934–1972. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Huang, N.M.; Harrison, I. Nanocomposites of graphene/polymers: A review. RSC Adv. 2015, 5, 68014–68051. [Google Scholar] [CrossRef]
- Steurer, P.; Wissert, R.; Thomann, R.; Mülhaupt, R. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide. Macromol. Rapid Commun. 2009, 30, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Verdejo, R.; Barroso-Bujans, F.; Perez, M.A.R.; De Saja, J.A.; Lopez-Manchado, M.A. Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 2008, 18, 2221–2226. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Yazdani-Pedram, M.; Brasero, J.; Lopez-Manchado, M.A. Influence of the Surfactant Nature on the Occurrence of Self-Assembly between Rubber Particles and Thermally Reduced Graphite Oxide during the Preparation of Natural Rubber Nanocomposites. J. Nanomater. 2015, 2015, 212493. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Yazdani-Pedram, M.; Contreras-Cid, A.; López-Manchado, M.; May-Pat, A.; Avilés, F. Influence of the morphology of carbon nanostructures on the piezoresistivity of hybrid natural rubber nanocomposites. Compos. Part B Eng. 2017, 109, 147–154. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Yazdani-Pedram, M.; Quinteros-Jara, E.; Cuenca-Bracamonte, Q.; Quijada, R.; Carretero-Gonzalez, J.; Avilés, F.; López-Manchado, M.A.; Verdejo, R. Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polym. Test. 2021, 93, 106986. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 2014, 131, 131. [Google Scholar] [CrossRef]
- Martin-Gallego, M.; Bernal, M.; Hernandez, M.; Verdejo, R.; Lopez-Manchado, M. Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur. Polym. J. 2013, 49, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
- Rosensweig, R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 2002, 252, 370–374. [Google Scholar] [CrossRef]
- Viegas, J.; Silva, L.A.; Batista, A.D.S.M.; Furtado, C.A.; Nascimento, J.P.; Faria, L.O. Increased X-ray Attenuation Efficiency of Graphene-Based Nanocomposite. Ind. Eng. Chem. Res. 2017, 56, 11782–11790. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Faghihi, R.; Arjmand, M.; Sina, S.; Amani, A.M. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat. Phys. Chem. 2018, 146, 77–85. [Google Scholar] [CrossRef]
- Ansón-Casaos, A.; Puértolas, J.; Pascual, F.; Ferrer, J.H.; Castell, P.; Benito, A.; Maser, W.K.; Martínez, M. The effect of gamma-irradiation on few-layered graphene materials. Appl. Surf. Sci. 2014, 301, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wang, N.; Dong, X.; Wang, C.; Du, Z.; Mei, L.; Yong, Y.; Huang, C.; Li, Y.; Gu, Z.; et al. Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS Appl. Mater. Interfaces 2018, 11, 2579–2590. [Google Scholar] [CrossRef] [PubMed]
- Al Naim, A.; Alnaim, N.; Ibrahim, S.S.; Metwally, S. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017, 10, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.J.; Huang, Y.-D.; Ren, N.; Mohaddespour, A.; Ahmadi-Brooghani, S.Y. The comparison of EPDM/clay nanocomposites and conventional composites in exposure of gamma irradiation. Compos. Sci. Technol. 2009, 69, 997–1003. [Google Scholar] [CrossRef]
- Neelesh, A.; Vidhyashree, S.; Meera, B. The influence of MWCNT and hybrid ( MWCNT /nanoclay) fillers on performance of EPDM-CIIR blends in nuclear applications: Mechanical, hydrocarbon transport, and gamma-radiation aging characteristics. J. Appl. Polym. Sci. 2020, 137, 49271. [Google Scholar] [CrossRef]
- Rao, B.L.; Sangappa, Y. Effect of gamma irradiation on HPMC/ZnO nanocomposite films. Radiat. Eff. Defects Solids 2015, 170, 501–509. [Google Scholar] [CrossRef]
- Gasaymeh, S.S.; Radiman, S.; Heng, L.Y.; Saion, E. Gamma Irradiation Synthesis and Influence the Optical and Thermal Properties of Cadmium Sulfide (CdS)/Poly (Vinyl Pyrolidone) Nanocomposites. Am. J. Appl. Sci. 2010, 7, 500–508. [Google Scholar] [CrossRef]
- Nouh, S.A.; Elfadl, A.A.; Alsobhi, B.O.; Massoud, A.M. Optical, structure and thermal investigation of the effect of gamma radiation in CPVC/Ag and CPVC/Pd nanocomposites membrane. Radiat. Eff. Defects Solids 2019, 174, 111–124. [Google Scholar] [CrossRef]
- Aarya, S.; Dev, K.; Raghuvanshi, S.K.; Krishna, J.B.M.; Wahab, M.A. Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer. Radiat. Phys. Chem. 2012, 81, 458–462. [Google Scholar] [CrossRef]
- Shojaie, M.H.; Hemmasi, A.H.; Talaeipour, M.; Ghasemi, E. Effect of gamma-ray and melt flow index of polypropylene on the properties of the lignocellulosic composite. Radiat. Phys. Chem. 2020, 177, 109126. [Google Scholar] [CrossRef]
- Tarawneh, M.A.; Saraireh, S.A.; Chen, R.S.; Ahmad, S.H.; Tarawni, M.A.A.; Yu, L.J. Gamma irradiation influence on mechanical, thermal and conductivity properties of hybrid carbon nanotubes/montmorillonite nanocomposites. Radiat. Phys. Chem. 2021, 179, 109168. [Google Scholar] [CrossRef] [PubMed]
- El-Malawy, D.; Al-Abyad, M.; El Ghazaly, M.; Samad, S.A.; Hassan, H. γ-ray effects on PMMA polymeric sheets doped with CdO nano particles. Radiat. Phys. Chem. 2021, 184, 109463. [Google Scholar] [CrossRef]
- Rahaman, M.H.A.; Khandaker, M.U.; Khan, Z.R.; Kufian, M.Z.; Noor, I.; Arof, A.K. Effect of gamma irradiation on poly(vinyledene difluoride)–lithium bis(oxalato)borate electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 11527–11537. [Google Scholar] [CrossRef] [Green Version]
- Valentini, L.; Bon, S.B.; Lopez-Manchado, M.; Verdejo, R.; Pappalardo, L.; Bolognini, A.; Alvino, A.; Borsini, S.; Berardo, A.; Pugno, N. Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos. Sci. Technol. 2016, 128, 123–130. [Google Scholar] [CrossRef]
- Galimberti, M.; Agnelli, S.; Cipolletti, V. 11—Hybrid filler systems in rubber nanocomposites. In Woodhead Publishing Series in Composites Science and Engineering; Thomas, S., Maria, H.J., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 349–414. ISBN 978-0-08-100409-8. [Google Scholar]
- Kim, S.J.; Kim, T.Y.; Kang, B.H.; Lee, G.-H.; Ju, B.-K. Fabrication of graphene oxide/montmorillonite nanocomposite flexible thin films with improved gas-barrier properties. RSC Adv. 2018, 8, 39083–39089. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhou, Y.; He, M.; Xu, R.; Ding, B.; Zhong, X.; Tong, Y.; Fan, L.; Cai, Z.; Shen, H.; et al. Enhanced mechanical properties of silica nanoparticle-covered cross-linking graphene oxide filled thermoplastic polyurethane composite. New J. Chem. 2018, 42, 3069–3077. [Google Scholar] [CrossRef]
- Hatel, R.; Goumri, M.; Ratier, B.; Baitoul, M. Graphene derivatives/Fe3O4/polymer nanocomposite films: Optical and electrical properties. Mater. Chem. Phys. 2017, 193, 156–163. [Google Scholar] [CrossRef]
- Constant-Mandiola, B.; Aguilar-Bolados, H.; Geshev, J.; Quíjada, R. Study of the Influence of Magnetite Nanoparticles Supported on Thermally Reduced Graphene Oxide as Filler on the Mechanical and Magnetic Properties of Polypropylene and Polylactic Acid Nanocomposites. Polymers 2021, 13, 1635. [Google Scholar] [CrossRef] [PubMed]
Photons (γ) Reacts with | Type of Reaction | Name of Process |
---|---|---|
Field of orbital electrons | γ scattered without energy loss | Coherent scattering |
Free (outer) electrons | γ scattered with energy loss, ionization | Compton effect |
Bound (inner) electrons | γ completely absorbed, one electron knocked out | Photo effect |
Field of nuclear force | γ annihilated, formation of positron–negatron pair (E > 1.02 MeV) | Pair production |
Atomic nucleus | γ scattered without energy loss | Mössbauer effect |
γ scattered with energy loss | Nuclear excitation | |
γ absorbed by nucleus, nuclear transmutation (E > 5 MeV) | Nuclear photo effect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo-Del-Castillo, A.; Águila-Toledo, E.; Maldonado-Magnere, S.; Aguilar-Bolados, H. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites. Int. J. Mol. Sci. 2021, 22, 9079. https://doi.org/10.3390/ijms22169079
Acevedo-Del-Castillo A, Águila-Toledo E, Maldonado-Magnere S, Aguilar-Bolados H. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites. International Journal of Molecular Sciences. 2021; 22(16):9079. https://doi.org/10.3390/ijms22169079
Chicago/Turabian StyleAcevedo-Del-Castillo, Angel, Ernesto Águila-Toledo, Santiago Maldonado-Magnere, and Héctor Aguilar-Bolados. 2021. "A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites" International Journal of Molecular Sciences 22, no. 16: 9079. https://doi.org/10.3390/ijms22169079
APA StyleAcevedo-Del-Castillo, A., Águila-Toledo, E., Maldonado-Magnere, S., & Aguilar-Bolados, H. (2021). A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites. International Journal of Molecular Sciences, 22(16), 9079. https://doi.org/10.3390/ijms22169079