The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Comprehensive Review
3.1. Probiotics
3.2. The Role of Microbiota
3.3. Pathogenesis of CTx-Induced Mucositis
3.4. Effects of Probiotics on CTx Side Effects in CRC
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
BW | body weight |
COX-2 | cyclooxygenase-2 |
CRC | colorectal cancer |
CTx | chemotherapy |
DM#1 | B. breve, L. acidophilus, L. casei, S. thermophilus |
FAO | The Food and Agriculture Organisation |
F/B | Firmicutes/Bacteroidetes |
FOLFOX | 5-fluorouracil (5-FU), leucovorin (LV) and oxaliplatin |
GIT | gastrointestinal tract |
GSH | glutathione |
IFN | interferon |
IL | interleukin |
IM | intestinal mucositis |
LaBi | Lactobacillus and Bifidobacterium |
Lcr35 | Lactobacillus casei variety rhamnosus |
MPO | myeloperoxidase |
MUC | mucin |
NF-κB | nuclear factor kappa-light-chain-enhancer |
PCNA | proliferating cell nuclear antigen |
ROS | reactive oxygen species |
RTx | radiotherapy |
SCFA | synthesis of short chain fatty acids |
SN-38 | active metabolite of irinotecan |
TLR | toll-like receptors |
TNF | tumor necrosis factor |
VS | versus |
VSL#3 | L. acidophilus, L. plantarum, L. casei, L. bulgaricus, B. breve, B. longum, B. infantis, S. thermophilus |
WHO | World Health Organization |
References
- World Health Organization, International Agency for Research on Cancer (IARC), Global Cancer Observatory (GCO). Available online: https://gco.iarc.fr (accessed on 15 May 2021).
- Finlay A Macrae, “Macrae, F.A. Colorectal Cancer: Epidemiology, Risk Factors, and Protective Factors. Available online: https://www.uptodate.com/contents/colorectal-cancer-epidemiology-risk-factors-and-protective-factors (accessed on 17 May 2021).
- Ambalam, P.; Raman, M.; Purama, R.K.; Doble, M. Probiotics, prebiotics and colorectal cancer prevention. Best Pr. Res. Clin. Gastroenterol. 2016, 30, 119–131. [Google Scholar] [CrossRef]
- Jones-McLean, E.; Hu, J.; Greene-Finestone, L.S.; De Groh, M. A DASH dietary pattern and the risk of colorectal cancer in Canadian adults. Heal. Promot. Chronic Dis. Prev. Can. 2015, 35, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Erdrich, J.; Zhang, X.; Giovannucci, E.; Willett, W. Proportion of colon cancer attributable to lifestyle in a cohort of US women. Cancer Causes Control. 2015, 26, 1271–1279. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, C.V.; Camargo, M.; Russo, E.; Amedei, A. Role of diet and gut microbiota on colorectal cancer immunomodulation. World J. Gastroenterol. 2018, 25, 151–162. [Google Scholar] [CrossRef]
- Hofseth, L.J.; Hebert, J.R.; Chanda, A.; Chen, H.; Love, B.L.; Pena, M.M.; Murphy, E.A.; Sajish, M.; Sheth, A.; Buckhaults, P.J.; et al. Early-onset colorectal cancer: Initial clues and current views. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Scheer, A.; Auer, R.A.C. Surveillance after Curative Resection of Colorectal Cancer. Clin. Colon Rectal Surg. 2009, 22, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdollahi, H.; Shiri, I.; Atashzar, M.; Sarebani, M.; Moloudi, K.; Samadian, H. Radiation protection and secondary cancer prevention using biological radioprotectors in radiotherapy. Int. J. Cancer Ther. Oncol. 2015, 3, 335. [Google Scholar] [CrossRef]
- Davila, M.; Bresalier, R. Gastrointestinal complications of oncologic therapy. Nat. Clin. Pr. Gastroenterol. Hepatol. 2008, 5, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Geier, M.S.; Yazbeck, R.; Torres, D.M.; Butler, R.N.; Howarth, G.S. Lactobacillus fermentumBR11 and Fructo-Oligosaccharide Partially Reduce Jejunal Inflammation in a Model of Intestinal Mucositis in Rats. Nutr. Cancer 2008, 60, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Sonis, S.T. The pathobiology of mucositis. Nat. Rev. Cancer 2004, 4, 277–284. [Google Scholar] [CrossRef]
- Ciorba, M.A.; Hallemeier, C.L.; Stenson, W.F.; Parikh, P.J. Probiotics to prevent gastrointestinal toxicity from cancer therapy. Curr. Opin. Support. Palliat. Care 2015, 9, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.S.; Ryan, E.J.; Doherty, G.A. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation. World J. Gastroenterol. 2014, 20, 3751–3761. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.M.; Gibson, R.; Keefe, D.M.; Cummins, A.G. Cytotoxic chemotherapy upregulates pro-poptotic Bax and Bak in the small intestine of rats and humans. Pathology 2005, 37, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.P.; Redinbo, M.R.; Bultman, S.J. The role of the microbiome in cancer development and therapy. CA A Cancer J. Clin. 2017, 67, 326–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, K.; Mizuno, S.; Umesaki, Y.; Ishii, Y.; Sugitani, M.; Imaoka, A.; Otsuka, M.; Hasunuma, O.; Kurihara, R.; Iwasaki, A.; et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment. Pharmacol. Ther. 2004, 20, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Girardin, M.; Seidman, E.G. Indications for the Use of Probiotics in Gastrointestinal Diseases. Dig. Dis. 2011, 29, 574–587. [Google Scholar] [CrossRef]
- Chang, C.-W.; Liu, C.-Y.; Lee, H.-C.; Huang, Y.-H.; Li, L.-H.; Chiau, J.-S.C.; Wang, T.-E.; Chu, C.-H.; Shih, S.-C.; Tsai, T.-H.; et al. Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Front. Microbiol. 2018, 9, 983. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.L.; Liu, F.; Basit, A.W. Colonic treatments and targets: Issues and opportunities. J. Drug Target. 2009, 17, 335–363. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanmani, P.; Kumar, R.S.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Probiotics and Its Functionally Valuable Products—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Laudanno, O.; Vasconcelos, L.; Catalana, J.; Cesolari, J. Anti-Inflammatory Effect of Bioflora Probiotic Administered Orally or Subcutaneously with Live or Dead Bacteria. Dig. Dis. Sci. 2006, 51, 2180–2183. [Google Scholar] [CrossRef]
- Shokryazdan, P.; Jahromi, M.F.; Liang, J.B.; Ho, Y.W. Probiotics: From Isolation to Application. J. Am. Coll. Nutr. 2017, 36, 666–676. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Hawrelak, J. Probiotics. In Textbook of Natural Medicine; Elsevier BV: Amsterdam, The Netherlands, 2013; pp. 979–994. [Google Scholar]
- Sharif, M.K.; Mahmood, S.; Ahsan, F. Role of Probiotics Toward the Improvement of Gut Health With Special Reference to Colorectal Cancer. In Diet, Microbiome and Health; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 35–50. [Google Scholar]
- Feldman, M.; Friedman, L.S.; Brandt, L.J. Probiotics and Fecal Microbiota Transplantation. In Sleisenger and Fordtran’s Gastrointestinal and Liver Disease, 10th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2016; pp. 2339–2343. [Google Scholar]
- Hempel, S.; Newberry, S.; Ruelaz, A.; Wang, Z.; Miles, J.N.V.; Suttorp, M.J.; Johnsen, B.; Shanman, R.; Slusser, W.; Fu, N.; et al. Safety of probiotics used to reduce risk and prevent or treat disease. Évid. Rep. Assess. 2011, 1–645. [Google Scholar]
- Boyle, R.; Robins-Browne, R.; Tang, M.L.K. Probiotic use in clinical practice: What are the risks? Am. J. Clin. Nutr. 2006, 83, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Besselink, M.G.; Van Santvoort, H.C.; Buskens, E.; Akkermans, L.M.; Gooszen, H.G. Probiotic prophylaxis in predicted severe acute pancreatitis – Authors’ reply. Lancet 2008, 372, 114. [Google Scholar] [CrossRef]
- Sanders, M.E.; Heimbach, J.T.; Pot, B.; Tancredi, D.J.; Lenoir-Wijnkoop, I.; Lähteenmäki-Uutela, A.; Gueimonde, M.; Bañares, S. Health claims substantiation for probiotic and prebiotic products. Gut Microbes 2011, 2, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front. Immunol. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.L.; Romanuk, T.N. A Meta-Analysis of Probiotic Efficacy for Gastrointestinal Diseases. PLoS ONE 2012, 7, e34938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toumi, R.; Abdelouhab, K.; Rafa, H.; Soufli, I.; Raissi-Kerboua, D.; Djeraba, Z.; Touil-Boukoffa, C. Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis. Immunopharmacol. Immunotoxicol. 2013, 35, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Bibiloni, R.; Fedorak, R.; Tannock, G.W.; Madsen, K.L.; Gionchetti, P.; Campieri, M.; De Simone, C.; Sartor, R.B. VSL#3 Probiotic-Mixture Induces Remission in Patients with Active Ulcerative Colitis. Am. J. Gastroenterol. 2005, 100, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zuo, Z.; Mao, A.-P. Effect of Probiotics on Inducing Remission and Maintaining Therapy in Ulcerative Colitis, Crohnʼs Disease, and Pouchitis. Inflamm. Bowel Dis. 2014, 20, 21–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelesidis, T.; Pothoulakis, C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Ther. Adv. Gastroenterol. 2012, 5, 111–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eslami, M.; Yousefi, B.; Kokhaei, P.; Hemati, M.; Nejad, Z.R.; Arabkari, V.; Namdar, A. Importance of probiotics in the prevention and treatment of colorectal cancer. J. Cell. Physiol. 2019, 234, 17127–17143. [Google Scholar] [CrossRef] [PubMed]
- Liong, M.-T. Roles of Probiotics and Prebiotics in Colon Cancer Prevention: Postulated Mechanisms and In-vivo Evidence. Int. J. Mol. Sci. 2008, 9, 854–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Shin, J.G.; Kim, E.H.; Kang, H.E.; Yim, I.B.; Kim, J.Y.; Joo, H.G.; Woo, H.J. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Veter-Sci. 2004, 5, 41–48. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, D.; Kim, D.; Cho, J.; Yang, J.W.; Chung, M.; Kim, K.; Ha, N. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharmacal Res. 2008, 31, 468–473. [Google Scholar] [CrossRef]
- Govender, M.; Choonara, Y.; Kumar, P.; du Toit, L.; van Vuuren, S.; Pillay, V. A Review of the Advancements in Probiotic Delivery: Conventional vs. Non-conventional Formulations for Intestinal Flora Supplementation. AAPS PharmSciTech 2013, 15, 29–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molska, M.; Reguła, J. Potential Mechanisms of Probiotics Action in the Prevention and Treatment of Colorectal Cancer. Nutrients 2019, 11, 2453. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.; Rashmi, H.M.; Srivastava, A.K.; Batish, V.K. Probiotics for human health –new innovations and emerging trends. Gut Pathogens 2012, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Bajinka, O.; Tan, Y.; Abdelhalim, K.A.; Ozdemir, G.; Qiu, X. Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Jahani-Sherafat, S.; Alebouyeh, M.; Moghim, S.; Amoli, H.A.; Safaei, H.G. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol. Hepatol. Bed bench 2018, 11, 101–109. [Google Scholar]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Bron, P.A.; Kleerebezem, M.; Brummer, R.-J.; Cani, P.D.; Mercenier, A.; Macdonald, T.T.; Garcia-Ródenas, C.L.; Wells, J.M. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 2017, 117, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Melichar, B.; Zezulová, M. The significance of altered gastrointestinal permeability in cancer patients. Curr. Opin. Support. Palliat. Care 2011, 5, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Touchefeu, Y.; Montassier, E.; Nieman, K.; Gastinne, T.; Potel, G.; Varannes, S.B.D.; Le Vacon, F.; De La Cochetière, M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 2014, 40, 409–421. [Google Scholar] [CrossRef]
- Jiang, M.; Dai, C.; Zhao, D.-H. VSL#3 probiotics regulate the intestinal epithelial barrier in�vivo and in vitro via the p38 and ERK signaling pathways. Int. J. Mol. Med. 2011, 29, 202–208. [Google Scholar] [CrossRef]
- Mennigen, R.; Nolte, K.; Rijcken, E.; Utech, M.; Loeffler, B.; Senninger, N.; Bruewer, M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Physiol. Liver Physiol. 2009, 296, G1140–G1149. [Google Scholar] [CrossRef]
- Cinausero, M.; Aprile, G.; Ermacora, P.; Basile, D.; Vitale, M.G.; Fanotto, V.; Parisi, G.; Calvetti, L.; Sonis, S.T. New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury. Front. Pharmacol. 2017, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Venegas, D.P.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Prisciandaro, L.D.; Geier, M.S.; Butler, R.N.; Cummins, A.G.; Howarth, G.S. Evidence Supporting the use of Probiotics for the Prevention and Treatment of Chemotherapy-Induced Intestinal Mucositis. Crit. Rev. Food Sci. Nutr. 2011, 51, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Otte, J.-M.; Podolsky, D.K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am. J. Physiol. Liver Physiol. 2004, 286, G613–G626. [Google Scholar] [CrossRef] [Green Version]
- Stringer, A.M. Interaction between Host Cells and Microbes in Chemotherapy-Induced Mucositis. Nutrients 2013, 5, 1488–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cario, E. BACTERIAL INTERACTIONS WITH CELLS OF THE INTESTINAL MUCOSA: TOLL-LIKE RECEPTORS AND NOD2. Gut 2005, 54, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.J.; Harmsen, H.J.M.; de Bont, E.S.J.M.; Tissing, W.J.E. The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis. PLoS Pathog. 2010, 6, e1000879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blijlevens, N.; Sonis, S. Palifermin (recombinant keratinocyte growth factor-1): A pleiotropic growth factor with multiple biological activities in preventing chemotherapy- and radiotherapy-induced mucositis. Ann. Oncol. 2007, 18, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, S.; Zecha, J.A.E.M.; Barasch, A.; De Lange, J.; Rozema, F.R.; Raber-Durlacher, J.E. Oral Mucositis Induced By Anticancer Therapies. Curr. Oral Heal. Rep. 2015, 2, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.A.; Wanderley, C.W.S.; Wong, D.V.T.; Mota, J.M.; Leite, C.A.V.G.; Souza, M.H.L.P.; Cunha, F.Q.; Lima-Júnior, R.C.P. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: Insights into pathogenesis and therapeutic perspectives. Cancer Chemother. Pharmacol. 2016, 78, 881–893. [Google Scholar] [CrossRef]
- Al-Dasooqi, N.; For The Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO); Sonis, S.T.; Bowen, J.; Bateman, E.; Blijlevens, N.; Gibson, R.; Logan, R.M.; Nair, R.; Stringer, A.; et al. Emerging evidence on the pathobiology of mucositis. Support. Care Cancer 2013, 21, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Chaveli-López, B. Oral toxicity produced by chemotherapy: A systematic review. J. Clin. Exp. Dent. 2014, 6, e81–e90. [Google Scholar] [CrossRef] [Green Version]
- Villa, A.; Sonis, S.T. Mucositis. Curr. Opin. Oncol. 2015, 27, 159–164. [Google Scholar] [CrossRef]
- Sukhotnik, I.; Geyer, T.; Pollak, Y.; Mogilner, J.G.; Coran, A.G.; Berkowitz, D. The Role of Wnt/β-Catenin Signaling in Enterocyte Turnover during Methotrexate-Induced Intestinal Mucositis in a Rat. PLoS ONE 2014, 9, e110675. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; On behalf of the Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO); Al-Dasooqi, N.; Bossi, P.; Wardill, H.; Van Sebille, Y.; Al-Azri, A.; Bateman, E.; Correa, M.E.; Raber-Durlacher, J.; et al. The pathogenesis of mucositis: Updated perspectives and emerging targets. Support. Care Cancer 2019, 27, 4023–4033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongchana, W.; Palaga, T. Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell. Mol. Immunol. 2011, 9, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lappas, M. NOD1 and NOD2 Regulate Proinflammatory and Prolabor Mediators in Human Fetal Membranes and Myometrium via Nuclear Factor-Kappa B1. Biol. Reprod. 2013, 89, 14. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.M.; Gibson, R.; Sonis, S.T.; Keefe, D.M. Nuclear factor-κB (NF-κB) and cyclooxygenase-2 (COX-2) expression in the oral mucosa following cancer chemotherapy. Oral Oncol. 2007, 43, 395–401. [Google Scholar] [CrossRef]
- Sonis, S.T. The Biologic Role for Nuclear Factor-KappaB in Disease and its Potential Involvement in Mucosal Injury Associated with Anti-neoplastic Therapy. Crit. Rev. Oral Biol. Med. 2002, 13, 380–389. [Google Scholar] [CrossRef]
- Logan, R.M.; Stringer, A.; Bowen, J.; Gibson, R.; Sonis, S.T.; Keefe, D.M.K. Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother. Pharmacol. 2009, 63, 239–251. [Google Scholar] [CrossRef]
- Lalla, R.V.; Peterson, D.E. Treatment of Mucositis, Including New Medications. Cancer J. 2006, 12, 348–354. [Google Scholar] [CrossRef]
- Yeung, C.-Y.; Chan, W.-T.; Jiang, C.-B.; Cheng, M.-L.; Liu, C.-Y.; Chang, S.-W.; Chiau, J.-S.C.; Lee, H.-C. Correction: Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model. PLoS ONE 2015, 10, e0141402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, R.M.; Stringer, A.M.; Bowen, J.M.; Gibson, R.J.; Sonis, S.T.; Keefe, D.M.K. Serum levels of NF-κB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biol. Ther. 2008, 7, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.M.; Stringer, A.M.; Gibson, R.J.; Yeoh, A.S.J.; Hannam, S.; Keefe, D.M.K. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol. Ther. 2007, 6, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Krebs, B. Prebiotic and Synbiotic Treatment before Colorectal Surgery--Randomised Double Blind Trial. Coll. Antropol. 2016, 40, 35–40. [Google Scholar] [PubMed]
- Mego, M.; Chovanec, J.; Vochyanova-Andrezalova, I.; Konkolovsky, P.; Mikulova, M.; Reckova, M.; Miskovska, V.; Bystricky, B.; Beniak, J.; Medvecova, L.; et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement. Ther. Med. 2015, 23, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Bastos, R.; Pedroso, S.; Vieira, A.; Moreira, L.; França, C.; Cartelle, C.; Arantes, R.; Generoso, S.; Cardoso, V.; Neves, M.; et al. Saccharomyces cerevisiae UFMG A-905 treatment reduces intestinal damage in a murine model of irinotecan-induced mucositis. Benef. Microbes 2016, 7, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.; Usta, U.; Cicin, I. The effect of Saccharomyces boulardii on reducing irinotecan-induced intestinal mucositis and diarrhea. Med Oncol. 2008, 26, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chiau, J.-S.C.; Cheng, M.-L.; Chan, W.-T.; Jiang, C.-B.; Chang, S.-W.; Yeung, C.-Y.; Lee, H.-C. SCID/NOD mice model for 5-FU induced intestinal mucositis: Safety and effects of probiotics as therapy. Pediatr. Neonatol. 2019, 60, 252–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Hamouda, N.; Kano, Y.; Oikawa, Y.; Tanaka, Y.; Matsumoto, K.; Amagase, K.; Shimakawa, M. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. Clin. Exp. Pharmacol. Physiol. 2017, 44, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Dong, Y.; Zhang, B.; Wang, H.; Peter, C.C.; Gao, P.; Fu, H.; Gao, Y. Bifidobacterium Infantis Ameliorates Chemotherapy-Induced Intestinal Mucositis Via Regulating T Cell Immunity in Colorectal Cancer Rats. Cell. Physiol. Biochem. 2017, 42, 2330–2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Brook, C.L.; Whittaker, A.L.; Lawrence, A.; Yazbeck, R.; Howarth, G.S. Effects ofStreptococcus thermophilusTH-4 in a rat model of doxorubicin-induced mucositis. Scand. J. Gastroenterol. 2013, 48, 959–968. [Google Scholar] [CrossRef]
- Whitford, E.J.; Cummins, A.G.; Butler, R.N.; Prisciandaro, L.D.; Fauser, J.K.; Yazbeck, R.; Lawrence, A.; Cheah, K.Y.; Wright, T.H.; Lymn, K.A.; et al. Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent, 5-Fluorouracil (5-FU). Cancer Biol. Ther. 2009, 8, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.-T.; Yu, H.-L.; Feng, W.-D.; Chong, P.; Yang, T.; Xue, C.-L.; Yu, M.; Shi, H.-P. Bifidobacterium infantis has a beneficial effect on 5-fluorouracil-induced intestinal mucositis in rats. Benef. Microbes 2015, 6, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, Y.; Huang, Z.; Dong, W.; Deng, Y.; Wang, F.; Li, M.; Yuan, J. Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil–induced intestinal mucositis and dysbiosis in rats. Nutrition 2017, 33, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Justino, P.F.C.; Melo, L.F.M.; Nogueira, A.F.; Morais, C.M.; Mendes, W.O.; Franco, A.X.; Souza, E.P.; Ribeiro, R.A.; Souza, M.H.L.P.; Soares, P.M.G. Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother. Pharmacol. 2015, 75, 559–567. [Google Scholar] [CrossRef] [PubMed]
Lactobacillus spp. | Bifidobacterium spp. | Other Lactic Acid Bacteria | Non Lactic Acid Bacteria |
---|---|---|---|
L. acidophilus | B. animalis | Streptococcus thermophilus | Saccharomyces cerevisiae |
L. brevis | B. adolescentis | Enterococcus faecium | Saccharomyces boulardii |
L. casei | B. bifidum | Pediococcus acidilactici | |
L. fermentum | B. breve | Bacillus coagulans | |
L. johnsonii | B. infantis | ||
L. lactis | B. lactis | ||
L. paracasei | B. longum | ||
L. plantarum | B. thermophilum | ||
L. rhamnosus L. bulgaricus |
Study | Main Objective | Number and Strain of Animals | CTx Regimen | Probiotics | Major Findings |
---|---|---|---|---|---|
Chun-Yan Yeung et al. [75] | To investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis | 72 Balb/c mice | A 5-day repeated 30 mg/kg/day intraperitoneal dose of 5-FU | Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium bifidum (1 × 107 cfu/d) daily for 5 days | General condition: in 5-FU + probiotics group the decrease in BW was significantly less severe versus (vs) 5-FU + saline group. Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: 5-FU + probiotics group was significantly increased jejunal villus length, restored crypts depth and increased number of goblet cells vs. 5-FU + saline; Serum analysis: Proinflammatory cytokines TNF-α, IL-1β, IL-6 levels significantly decreased in 5-FU + probiotics group vs. 5-FU + saline; |
Joanne M Bowen et al. [77] | To investigate the probiotic mixture, VSL#3, for amelioration of chemotherapy-induced diarrhea | 48 female DA rats | A single intraperitoneal dose of 225 mg/kg irinotecan (CPT-11) | VSL3# (3.0 × 108 cfu/d) daily for 21 days pre-treatment and 7 days post-treatment | General condition: Probiotics reduced BW loss; Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: increased crypt proliferation in irinotecan + VSL3# group combined with an inhibition of apoptosis in both the small and large intestines |
R.W.Bastos et al. [80] | To evaluate the pre- or post-treatment with viable or inactivated Saccharomyces cerevisiae could prevent weight loss and intestinal lesions, and maintain integrity of the mucosal barrier in a mucositis model | 88 Swiss male mice | A 3-day repeated 75 mg/kg/day intraperitoneal dose of irinotecan | Saccharomyces cerevisiae UFMG A-905 (Sc-905) (1 × 109 cfu/d) daily, 10 days before, during and 2 days after CTx | Only post-treatment with viable Sc-905 was able to protect mice against the damage caused by CTx. General condition: Saccharomyces cerevisiae after CTx reduced BW loss. Gut function: yeast reduced intestinal permeability. Histology: Irinotecan + yeast group was significantly increased jejunal villus length, prevented the decrease of goblet cells and stimulated the replication of cells in the intestinal crypts vs. Irinotecan + saline; Oxidative stress assessment: A significant reduce in lipid peroxidation was in Irinotecan + yeast group vs. Irinotecan + saline; |
Sezer A et al. [81] | To investigate the efficiency of Saccharomyces boulardii on irinotecan-induced mucosal damage and diarrhea in rats | 50 male Sprague-Dawley rats | A 4-day repeated 60 mg/kg/day intravenously dose of irinotecan | Saccharomyces boulardii (800 mg/kg) daily, 3 days before, during and 3 days after CTx | General condition: Probiotics reduced BW loss; Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: Irinotecan + probiotics group was significantly increased jejunal villus length and reduced mucosal edema vs. Irinotecan group; |
Ching-Wei Chang et al. [19] | To evaluate the effect of Lactobacillus casei variety FOLFOX-induced mucosal injury rhamnosus (Lcr35) on | 48 BALB/c mice | A 5-day repeated 30 and 10 mg/kg intraperitoneal 5-FU and LV. Single dose of oxaliplatin 1 mg/kg i.p. on first day | Lactobacillus casei variety rhamnosus Lcr35 (1 × 103−7 cfu/d) daily, 7 days before, during and 2 days after CTx | Gut function: Diarrhea scores significantly lower in FOLFOX + Lcr35 (1 × 107 CFU/daily) group; Histology: FOLFOX + Lcr35 (1 × 105−7 CFU/daily) groups was significantly increased jejunal villus length and restored crypts depth vs. FOLFOX group; But FOLFOX + Lcr35 at the highest dose did not significantly reduce goblet cell damage; Imunohistochemistry: FOLFOX + Lcr35 (1 × 107 CFU/daily) significantly reduced TUNEL-positive cells, number of p65-reactive cells and BAX-positive cells in the intestine; Lcr35 did not affect the proliferative activity and caspase-8 protein expression after FOLFOX; Lcr35 (1 × 107 CFU/daily) significantly suppressed FOLFOX-induced IL-6, TNF-α in jejunum; |
Lawrence Huang et al. [82] | To evaluate the safety of probiotic supplementation and to determine the probiotic effect in response to 5-FU intestinal mucositis | 36 male SCID/NOD mice | A 5-day repeated 30 mg/kg/day intraperitoneal dose of 5-FU | Lactobacillus casei variety rhamnosus Lcr35; Lactobacillus acidophilus; Bifidobacterium bifidum LaBi (1 × 107 cfu/d) daily for 5 days | General condition: in 5-FU + probiotics group the decrease in BW was significantly less severe vs. 5-FU + saline group. Lac35 had stronger protective effect vs. LaBi; Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: 5-FU + probiotics groups was significantly increased jejunal villus length and restored crypts depth vs. 5-FU + saline; Serum analysis: both Lcr35 and LaBi significantly inhibited serum cytokines TNF-α, IL-1β, IFNγ, IL-6, IL-4, IL-10, and IL-17; Lcr35 and LaBi potentially safe therapeutic option with no evidence of bacteremia; |
Shinichi Kato et al. [83] | To evaluate the effect of Bifidobacterium bifidum on 5-FU-induced intestinal mucositis in mice | 35 male mice | A 6-day repeated 50 mg/kg/day intraperitoneal dose of 5-FU | Bifidobacterium bifidum G9-1 (BBG9-1) (1 × 107−9 cfu/d) daily for 9 days, begining 3 days before onset of 5-FU | General condition: BW loss was significantly lower in 5-FU + BBG9-1 (1 × 109 CFU/mouse) group; Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: In 5-FU + BBG9-1 (1 × 109 CFU/mouse) group was significantly increased jejunal villus length and restored crypts depth vs. 5-FU group Cytokine and enzyme assessment: MPO, TNF-α and IL-1β levels significantly decreased in 5-FU + BBG9-1 (1 × 109 CFU/mouse) group vs. 5-FU; |
Hui Mi et al. [84] | To investigate the effect of Bifidobacterium infantis in attenuating the severity of chemotherapy-induced intestinal mucositis in rats with colorectal cancer | 30 male Sprague-Dawley rats | Dimethyl hydrazine injected subcutaneously weekly for 10 weeks, and then injected with SW480 cells in rectal mucosa to create a CRC model. On the 8th day, a 3-day repeated 75 mg/kg i.p. of 5-FU and 8 mg/kg i.p. of oxaliplatin | Bifidobacterium infantis (1 × 109 cfu/d) daily for 11 days, beginning 8 days before CTx | General condition: Probiotics reduced BW loss; Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: In 5-FU and oxaliplatin + B. infantis group was significantly increased jejunal villus length and restored crypts depth vs. 5-FU + saline group; Serum analysis: cytokines TNF-α, IL-1β, L-6 levels were significantly reduced in 5-FU and oxaliplatin + B. infantis group; B. infantis effectively attenuated chemotherapy-induced intestinal mucositis by decreasing Th1 and Th17 response; |
Hanru Wang et al. [85] |
To investigate the effects of Streptococcus thermophilus in a rat model of mucositis induced by the anthracycline chemotherapy drug, doxorubicin | 32 female Dark Agouti rats | A single intraperitoneal dose of 20 mg/kg doxorubicin | Streptococcus thermophilus TH-4 (1 × 109 cfu/mL) daily for 9 days, on day 6 received CTx | General condition: TH-4 partially prevented the loss of BW induced by doxorubicin; Histology: TH4 failed to reduce damage of jejunum and ileum tissue: to increase villus length and restore crypts depth after doxorubicin injection; Enzyme assessment: MPO levels significantly decreased in the jejunum in doxorubicin + TH4 group vs. doxorubicin; |
Whitford et al. [86] | To investigate S. thermophilus (TH-4) for their potential to reduce the severity of 5-FU-induced small intestinal damage in rats | 45 female Dark Agouti rats | A single intraperitoneal dose of 150 mg/kg 5-FU | Streptococcus thermophilus TH-4 (6 × 109 cfu/mL) live, supernatant and dead formulation daily for 6 days, on day 3 received CTx | General condition: there were no significant differences in reducing BW loss after 5-FU injection + TH-4 live, supernatant or dead formulation; Histology: 5-FU + live and supernatant TH4 significantly reduced crypt fission vs. 5-FU + skim milk; 5-FU + live TH-4 partially normalized mitotic count; Enzyme assessment: no significant difference of MPO levels was in 5-FU + either live, dead or supernatant TH4 group vs. 5-FU + skim milk; |
K.-T. Yuan et al. [87] | To evaluate the beneficial effects of Bifidobacterium infantis in a rat model of intestinal mucositis induced by 5-fluorouracil | 30 male Sprague-Dawley rats | A single intraperitoneal dose of 150 mg/kg 5-FU | Bifidobacterium infantis (1 × 109 cfu/d) daily for 11 days, starting from 7 days before CTx | General condition: Probiotics significantly reduced BW loss; Gut function: Diarrhea scores significantly lower after probiotics administration; Histology: In 5-FU + B. Infantis group was significantly increased jejunal villus length vs. 5-FU group; Imunohistochemistry: in 5-FU + B. infantis group significantly increased expression of proliferating cell nuclear antigen (PCNA), reduced expression of NF-κB vs. 5-FU group; Cytokine and enzyme assessment: plasma cytokines TNF-α, IL-1β and MPO activity were significantly reduced in 5-FU + B. infantis vs. 5-FU group; |
Yan Tang et al. [88] | To evaluate the effects of a probiotic mixture, DM#1, on intestinal mucositis and dysbiosis of rats treated with 5-fluorouracil | 28 male Sprague-Dawley rats | A 5-day repeated 30 mg/kg/day intraperitoneal dose of 5-FU | DM#1 (1 × 108−9) cfu/d) daily, during and 3 days after CTx | General condition: in 5-FU + probiotic group was significantly reduced BW loss vs. 5-FU group; Histology: In 5-FU + DM#1 group was significantly increased ileal villus height and restored crypts depth vs. 5-FU group; Cytokine and enzyme assessment: MPO activity, expression levels of TLR2 and TLR4 and pro-inflammatory cytokines TNF-α, IL-4, IL-6 were significantly reduced in 5-FU + DM#1 vs. 5-FU group; Increased intestinal permeability caused by 5-FU was normalized after administration of DM#1 mixture; |
Justino PF et al. [89] | To evaluate the effect of L. acidophilus on the inflammatory and functional outcomes of 5-FU-induced IM in mice | 24 male Swiss mice | A single intraperitoneal dose of 450 mg/kg 5-FU | Lactobacillus acidophilus (16 × 109 cfu/d) daily for 3 days after CTx | General condition: in 5-FU + probiotic group was significantly reduced BW loss vs. 5-FU group; Gut function: slower GI transit, gastric retention and increased retention in the distal bowel segment caused by 5-FU was reversed by treatment with L. acidophilus; Histology: In 5-FU + probiotic group was significantly increased ileal and jejunal villus height and restored crypts depth vs. 5-FU group; Cytokine, oxidative stress and enzyme assessment: MPO activity and cytokine TNF-α, IL-1β, CXCL1 levels were significantly reduced in the jejunum and in the ileum in 5-FU + L. acidophilus vs. 5-FU group; glutatione (GSH) concentrations and anti-inflammatory cytokine IL-10 level in the jejunum and in the ileum caused by 5-FU was reduced after administration of L. acidophilus; |
Smith CL et al. [11] | To evaluate L. fermentum BR11 potential to decrease the severity of 5-FU-induced small intestinal damage in rats | 56 female dark agouti rats | A single intraperitoneal dose of 150 mg/kg 5-FU | L. fermentum BR11 (1 × 106−9 cfu/d) daily for 9 days starting from 7 days before CTx | General condition: BR11 partially prevented the loss of BW induced by 5-FU; Histology: In 5-FU + probiotic group was no significant differences in ileal and jejunal villus height and crypts depth vs. 5-FU group; Enzyme assessment: MPO activity was significantly reduced in 5-FU + BR11 vs. 5-FU group; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miknevicius, P.; Zulpaite, R.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int. J. Mol. Sci. 2021, 22, 9347. https://doi.org/10.3390/ijms22179347
Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. International Journal of Molecular Sciences. 2021; 22(17):9347. https://doi.org/10.3390/ijms22179347
Chicago/Turabian StyleMiknevicius, Povilas, Ruta Zulpaite, Bettina Leber, Kestutis Strupas, Philipp Stiegler, and Peter Schemmer. 2021. "The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies" International Journal of Molecular Sciences 22, no. 17: 9347. https://doi.org/10.3390/ijms22179347
APA StyleMiknevicius, P., Zulpaite, R., Leber, B., Strupas, K., Stiegler, P., & Schemmer, P. (2021). The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. International Journal of Molecular Sciences, 22(17), 9347. https://doi.org/10.3390/ijms22179347