Essential Oil-Based Bioherbicides: Human Health Risks Analysis
Abstract
:1. Introduction
1.1. Generalities about Pesticides
1.1.1. Plant Protection Products
1.1.2. Herbicide Mechanisms of Action
1.1.3. Pesticide Regulations
1.2. Definition of “Risk”
1.3. Generalities about Essential Oils (EOs)
- To disrupt the cuticle and cause desiccation or burning of young tissues (constituents: 1,8-cineole, 2-acetonaphthone and 3-isothujone);
- To target photosynthesis and mitochondrial respiration inhibition (EOs: Cymbopogon citratus, Hyptis suaveolens, Artemisia fragrans, Origanum vulgare; constituents: β-pinene, farnesene, eugenol, 1,8-cineole, juglone, α-pinene, camphor, eucalyptol, limonene, pulegone, menthol, menthone);
- To change enzymatic and phytohormone regulation (EOs: Mentha x piperita; constituents: R/S-carvone, farnesene);
- To alter water status (EOs: Syzygium aromaticum; constituents: camphor, menthol, eugenol, citral, trans-caryophyllene);
- To alter membrane properties and interactions (EOs: Mentha piperita, Cinnamomum zylanicum, Cymbopogon winterianus; constituents: 1,8-cineole, thymol, menthol, geraniol, camphor);
- To induce microtubule disruption and genotoxicity (EOs: Citrus aurantiifolia, Plectrantus amboinicus, Mentha longifolia, Nepeta nuda, Salvia leucophylla, Vitex negundo; constituents: citral, limonene, carvacrol, pulegone, menthone, S-carvone);
- To induce reactive oxygen and nitrogen species (EOs: Psilanthus benghalensis, Monarda didyma, Artemisia scoparia, Heterothalamus psiadioides; constituents: α-pinene, β-pinene, citronellol).
2. Risks of the Use of EOs as Bioherbicides
2.1. Hazard Identification for EOs
2.1.1. Cytotoxicity
2.1.2. Mutagenicity and Carcinogenicity
2.1.3. Allergenic Effect
2.1.4. Reproductive Toxicity
2.2. Risk for Human Health Related to the Use of EO Herbicide Products
2.3. Risks for Human Health Related to the Drift in the Air
2.4. Risks for Human Health Related to Residues in Feed
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated weed management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Ben Kaab, S.; Rebey, I.B.; Hanafi, M.; Berhal, C.; Fauconnier, M.L.; De Clerck, C.; Ksouri, R.; Jijakli, H. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res. 2019, 17, e1006. [Google Scholar] [CrossRef] [Green Version]
- De Clerck, C.; Maso, S.D.; Parisi, O.; Dresen, F.; Zhiri, A.; Jijakli, M.H. Screening of antifungal and antibacterial activity of 90 commercial essential oils against 10 pathogens of agronomical importance. Foods 2020, 9, 1418. [Google Scholar] [CrossRef] [PubMed]
- Tanoh, E.A.; Boué, G.B.; Nea, F.; Genva, M.; Wognin, E.L.; LeDoux, A.; Martin, H.; Tonzibo, Z.F.; Frederich, M.; Fauconnier, M.-L. Seasonal effect on the chemical composition, insecticidal properties and other biological activities of Zanthoxylum leprieurii guill. & perr. essential oils. Foods 2020, 9, 550. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werrie, P.-Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.-L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781351246460. [Google Scholar]
- Villaverde, J.J.; Sandín-España, P.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides from Natural Products: Current Development, Legislative Framework, and Future Trends. BioResources 2016, 11, 5618–5640. [Google Scholar] [CrossRef] [Green Version]
- Raveau, R.; Fontaine, J.; Sahraoui, A.L.-H. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef]
- Van Bruggen, A.; He, M.; Shin, K.; Mai, V.; Jeong, K.; Finckh, M.; Morris, J. Environmental and health effects of the herbicide glyphosate. Sci. Total. Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.-A.; Ares, I.; Rodríguez, J.-L.; Martínez, M.; Martínez-Larrañaga, M.-R.; Anadón, A. Neurotransmitter changes in rat brain regions following glyphosate exposure. Environ. Res. 2018, 161, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.A.; Meyer, M.; Kuivila, K.M.; Dietze, J. Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 275–290. [Google Scholar] [CrossRef]
- Colosio, C.; Rubino, F.M.; Moretto, A. Pesticides. In International Encyclopedia of Public Health; Academic Press: Cambridge, MA, USA, 2017; pp. 454–462. [Google Scholar]
- Zimdahl, R. Herbicides and the environment. In Fundamentals of Weed Science, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 557–590. ISBN 9780128111437. [Google Scholar]
- Richardson, J.; Grosskopf, C.; Hamey, P.Y.; Machera, K.; Martin, S.; Jacobi, L.E.; Tiramani, M. Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products. EFSA J. 2014, 12, 3874. [Google Scholar] [CrossRef]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juroszek, P.; Von Tiedemann, A. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol. 2011, 60, 100–112. [Google Scholar] [CrossRef]
- Mithila, J.; Hall, J.C.; Johnson, W.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O. Glyphosate: Uses other than in glyphosate-resistant crops, mode of action, degradation in plants, and effects on non-target plants and agricultural microbes. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- De María, N.; Becerril, J.M.; Garcia-Plazaola, J.I.; Hernández, A.; De Felipe, M.R.; Fernández-Pascual, M. New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. J. Agric. Food Chem. 2006, 54, 2621–2628. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yu, Q.; Han, H.; Owen, M.J.; Powles, S.B. Metribuzin resistance in a wild radish (Raphanus raphanistrum) population via both psbA gene mutation and enhanced metabolism. J. Agric. Food Chem. 2019, 67, 1353–1359. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels Bioprod. Biorefin. 2019, 13, 1476–1482. [Google Scholar] [CrossRef]
- Fukuda, M.; Tsujino, Y.; Fujimori, T.; Wakabayashi, K.; Böger, P. Phytotoxic activity of middle-chain fatty acids I: Effects on cell constituents. Pestic. Biochem. Physiol. 2004, 80, 143–150. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraim, A.S.B.; Uddin, J.M.K.; Asib, N.B.; Islam, A.M.; Hasan, M. Assessment of allelopathic compounds to develop new natural herbicides: A review. Allelopath. J. 2021, 52, 21–40. [Google Scholar] [CrossRef]
- Donley, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ. Health 2019, 18, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, A.R.C.; De Rosso, V.V.; Harayashiki, C.A.Y.; Jimenez, P.C.; Castro, B. Global health risks from pesticide use in Brazil. Nat. Food 2020, 1, 312–314. [Google Scholar] [CrossRef]
- Skevas, T.; Lansink, A.O.; Stefanou, S. Designing the emerging EU pesticide policy: A literature review. NJAS-Wagening. J. Life Sci. 2012, 64-65, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, C.; Gu, H.; Yue, C. Market incentive, government regulation and the behavior of pesticide application of vegetable farmers in China. Food Control 2018, 85, 308–317. [Google Scholar] [CrossRef]
- Handford, C.E.; Elliott, C.T.; Campbell, K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr. Environ. Assess. Manag. 2015, 11, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Jacquemyn, H.; Delvigne, F.; Lievens, B. From Diverse Origins to Specific targets: Role of microorganisms in indirect pest biological control. Insects 2020, 11, 533. [Google Scholar] [CrossRef]
- Eddaya, T.; Boughdad, A.; Becker, L.; Chaimbault, P.; Zaïd, A. Use and risks of pesticides in sanitary protection of spearmint in South-Central Morocco. J. Mater. Environ. Sci. 2015, 6, 656–665. [Google Scholar]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogaľová, Z.; Poráčová, J.; Camele, I.; De Feo, V. Thymol chemotype Origanum vulgare L. essential oil as a potential selective bio-based herbicide on monocot plant species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef] [Green Version]
- De Martino, L.; Mancini, E.; De Almeida, L.F.R.; De Feo, V. The antigerminative activity of twenty-seven monoterpenes. Molecules 2010, 15, 6630–6637. [Google Scholar] [CrossRef] [Green Version]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Weis, G.C.C.; Alves, A.D.O.; Assmann, C.E.; Bonadiman, B.D.S.R.; Costabeber, I.H. Pesticides: Classifications, exposure and risks to human health. Arch. Biosci. Health 2019, 1, 29–44. [Google Scholar] [CrossRef]
- Yadav, I.C.; Linthoingambi, N.D. Pesticides classification and its impact on human and environment. Environ. Sci. Eng. 2017, 6, 140–158. [Google Scholar]
- Lins, L.; Maso, S.D.; Foncoux, B.; Kamili, A.; Laurin, Y.; Genva, M.; Jijakli, M.H.; De Clerck, C.; Fauconnier, M.L.; Deleu, M. Insights into the relationships between herbicide activities, molecular structure and membrane interaction of cinnamon and citronella essential oils components. Int. J. Mol. Sci. 2019, 20, 4007. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.; Rueff, J.; Rodrigues, A.S. Genotoxic alkenylbenzene flavourings, a contribution to risk assessment. Food Chem. Toxicol. 2018, 118, 861–879. [Google Scholar] [CrossRef] [PubMed]
- Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (Tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J. Agric. Food Chem. 2011, 59, 11367–11384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, A.C.; Schmidt, E. Essential Oils: Contact Allergy and Chemical Composition; Routledge: Boca Raton, FL, USA, 1998; Volume 54. [Google Scholar]
- Scientific Committee on Consumer Safety. Opinion on Fragrance Allergens in Cosmetic Products; SCCS/1459/11; Scientific Committee on Consumer Safety: Brussels, Belgium, 2012; pp. 2–334. [Google Scholar]
- Nathalie, D.; Yannick, G.; Caroline, B.; Sandrine, D.; Claude, F.; Corinne, C.; Pierre-Jacques, F. Assessment of the phototoxic hazard of some essential oils using modified 3T3 neutral red uptake assay. Toxicol. Vitr. 2006, 20, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Dosoky, N.; Setzer, W. Maternal reproductive toxicity of some essential oils and their constituents. Int. J. Mol. Sci. 2021, 22, 2380. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Maralhas, A.; Monteiro, A.; Martins, C.; Kranendonk, M.; Laires, A.; Rueff, J.; Rodrigues, A.S. Genotoxicity and endoreduplication inducing activity of the food flavouring eugenol. Mutagenesis 2006, 21, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleasel, N.; Tate, B.; Rademaker, M. Allergic contact dermatitis following exposure to essential oils. Australas. J. Dermatol. 2002, 43, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, L.; Jolanki, R.; Alanko, K.; Aalto-Korte, K. Occupational allergic contact dermatitis from cinnamon including one case from airborne exposure. Contact Dermat. 2009, 60, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Trattner, A.; David, M.; Lazarov, A. Occupational contact dermatitis due to essential oils. Contact Dermat. 2008, 58, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Türkmenoğlu, A.; Özmen, D. Allergenic components, biocides, and analysis techniques of some essential oils used in food products. J. Food Sci. 2021, 86, 2225–2241. [Google Scholar] [CrossRef] [PubMed]
- Nurmatov, U.B.; Tagiyeva, N.; Semple, S.; Devereux, G.; Sheikh, A. Volatile organic compounds and risk of asthma and allergy: A systematic review. Eur. Respir. Rev. 2015, 24, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.; Neukirch, C.; Larfi, I.; Demoly, P.; Thabut, G. Tolerance to exposure to essential oils exposure in patients with allergic asthma. J. Asthma 2018, 56, 853–860. [Google Scholar] [CrossRef]
- Dhakad, A.K.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, medicinal and toxicological significance of eucalyptus leaf essential oil: A review. J. Sci. Food Agric. 2017, 98, 833–848. [Google Scholar] [CrossRef]
- Mossa, A.-T. Green Pesticides: Essential Oils as Biopesticides in Insect-pest Management. J. Environ. Sci. Technol. 2016, 9, 354–378. [Google Scholar] [CrossRef] [Green Version]
- Geng, S.; Cui, Z.; Huang, X.; Chen, Y.; Xu, D.; Xiong, P. Variations in essential oil yield and composition during Cinnamomum cassia bark growth. Ind. Crop. Prod. 2011, 33, 248–252. [Google Scholar] [CrossRef]
- Jijakli, H.; Dal Maso, S.; Parisi, O. Bio-Herbicide Based on Essential Oil. International Patent WO 2019/238948 A1, 19 December 2019. [Google Scholar]
- Su, H.-J.; Chao, C.-J.; Chang, H.-Y.; Wu, P.-C. The effects of evaporating essential oils on indoor air quality. Atmos. Environ. 2007, 41, 1230–1236. [Google Scholar] [CrossRef]
- Angulo-Milhem, S.; Verriele, M.; Nicolas, M.; Thevenet, F. Indoor use of essential oils: Emission rates, exposure time and impact on air quality. Atmos. Environ. 2020, 244, 117863. [Google Scholar] [CrossRef]
- Huang, X.; He, J.; Yan, X.; Hong, Q.; Chen, K.; He, Q.; Zhang, L.; Liu, X.; Chuang, S.; Li, S.; et al. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic. Biochem. Physiol. 2017, 143, 272–297. [Google Scholar] [CrossRef]
- Chawla, P.; Kaushik, R.; Swaraj, V.S.; Kumar, N. Organophosphorus pesticides residues in food and their colorimetric detection. Environ. Nanotechnol. Monit. Manag. 2018, 10, 292–307. [Google Scholar] [CrossRef]
- European Food Safety Authority. Reporting data on pesticides residues in food and feeding according to Regulation (EC) No 396/2005 (2015 data collection). EFSA J. 2016, 14, e04496. [Google Scholar]
Hazard | Compounds (Oral LD50 for Rodents, mg/kg) | EOs | References |
---|---|---|---|
Cytotoxicity | Eugenol (2680), isoeugenol, safrole methyleugenol (1179), estragole, 1,8-cineole (3849) | Laurus nobilis Melaleuca leucadendron Sassafras albidum Ocotea pretiosa Ocimum basilicum Artemisia dracunculus Fusanus spicatus | [35,38] |
Mutagenicity | menthone, anethol (2090), asarone, trans-anethole oxide, trans-asarone oxide, terpineol (4300), cinnamaldehyde (2220), carvacrol, thymol (1800) and carvone (1640) | Mentha Arvensis Pelargonium Pimpinella anisul Acorus Cinnamomum Thymbra capitata Thymus Vulgaris Carum carvi | [42] |
Carcinogenicity | Pulegone, safrole, methyleugenol, limonene (4600) and estragole | Salvia sclarea Melaleuca quinquenervia | [35,43] |
Allergenic effect | Limonene (4600), linalool (>1000), estragole, phenyl acetaldehyde, methyl octinoate, citronellol, geraniol, benzyl alcohol, neral, geranial, α-isomethyl ionone, methyl eugenol (1179), hydroxy citronellal, α-ionone, eugenol (2680), cinnamaldehyde (2220), vanillin, coumarin, benzyl benzoate, benzyl salicylate, benzyl cinnamate | Malaleuca alternifolia Cananga odorata Lavandula Mentha x piperita Pelargonium Rosa damascena Pistacia terebinthus Santalum album | [44,45] |
Phototoxicity | Citrus aurantium dulcis Cymbopogon citratus | [46] | |
Reproductive toxicity | Anethole (2090), apiole, citral (4960), camphor, thymoquinone, trans-sabinyl acetate, methyl salicylate, thujone, pulegone, β-elemene, β-eudesmol and costus lactone | Pelargonium Petroselinum Anethum graveolens Cymbopogon Cinnamomum camphora Nigella sativa | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maes, C.; Meersmans, J.; Lins, L.; Bouquillon, S.; Fauconnier, M.-L. Essential Oil-Based Bioherbicides: Human Health Risks Analysis. Int. J. Mol. Sci. 2021, 22, 9396. https://doi.org/10.3390/ijms22179396
Maes C, Meersmans J, Lins L, Bouquillon S, Fauconnier M-L. Essential Oil-Based Bioherbicides: Human Health Risks Analysis. International Journal of Molecular Sciences. 2021; 22(17):9396. https://doi.org/10.3390/ijms22179396
Chicago/Turabian StyleMaes, Chloë, Jeroen Meersmans, Laurence Lins, Sandrine Bouquillon, and Marie-Laure Fauconnier. 2021. "Essential Oil-Based Bioherbicides: Human Health Risks Analysis" International Journal of Molecular Sciences 22, no. 17: 9396. https://doi.org/10.3390/ijms22179396
APA StyleMaes, C., Meersmans, J., Lins, L., Bouquillon, S., & Fauconnier, M. -L. (2021). Essential Oil-Based Bioherbicides: Human Health Risks Analysis. International Journal of Molecular Sciences, 22(17), 9396. https://doi.org/10.3390/ijms22179396