The Multifaceted Role of Serotonin in Intestinal Homeostasis
Abstract
:1. Introduction
2. 5-HT in Intestinal Homeostasis
2.1. 5-HT Metabolism in the Gut
2.1.1. Endogenous 5-HT Synthesis
2.1.2. Release and Reuptake of 5-HT
2.1.3. Microbial Synthesis of 5-HT
2.1.4. Modulation of Host 5-HT Synthesis by Gut Microbiota
2.1.5. Host 5-HT Metabolism Affects Microbiota Composition and Functioning
2.2. Signaling of 5-HT
2.2.1. HTRs in the Immune System
2.2.2. Serotonylation
2.3. Role of 5-HT in Inflammation
2.3.1. 5-HT Signaling on Monocytes
2.3.2. 5-HT Signaling on Macrophages
2.3.3. 5-HT Signaling on DCs
2.3.4. 5-HT Signaling on T Cells
2.3.5. 5-HT Signaling on Granulocytes
2.3.6. 5-HT Signaling on Natural Killer Cells and B Cells
2.3.7. 5-HT Signaling in Epithelial Cells
2.4. 5-HT Signaling in Inflammation, Gut Motility, and Wound Healing
2.4.1. Regulation of 5-HT by TpH1 and SERT Affects Inflammation
2.4.2. Altered Abundances of EC Cells and 5-HT during Inflammation
2.4.3. Neuronal Effects of 5-HT on Gut Motility, Enteric Neurogenesis and Maturation, and Wound Healing
2.5. Targeting 5-HT Metabolism and Signaling in IBD
2.5.1. Inhibition of 5-HT Synthesis by Blocking TpH1
2.5.2. SSRIs
2.5.3. Targeting HTR Signaling
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coates, M.D.; Tekin, I.; Vrana, K.E.; Mawe, G.M. Review article: The many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment. Pharmacol. 2017, 46, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Shajib, M.S.; Baranov, A.; Khan, W.I. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem. Neurosci. 2017, 8, 920–931. [Google Scholar] [CrossRef]
- Terry, N.; Margolis, K.G. Serotonergic mechanisms regulating the GI tract: Experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol. 2017, 239, 319–342. [Google Scholar] [CrossRef] [Green Version]
- Banskota, S.; Ghia, J.E.; Khan, W.I. Serotonin in the gut: Blessing or a curse. Biochimie 2019, 161, 56–64. [Google Scholar] [CrossRef]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.; Mittal, J.; Yan, D.; Eshraghi, A.A.; et al. Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, M.; Ding, L.; Wang, D.; Han, J.; Gao, P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front. Immunol. 2020, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.D.; Palanivel, R.; Mottillo, E.P.; Bujak, A.L.; Wang, H.; Ford, R.J.; Collins, A.; Blümer, R.M.; Fullerton, M.D.; Yabut, J.M.; et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 2015, 21, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Toyofuku, Y.; Lynn, F.C.; Chak, E.; Uchida, T.; Mizukami, H.; Fujitani, Y.; Kawamori, R.; Miyatsuka, T.; Kosaka, Y.; et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 2010, 16, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, B.; Lian, J.B.; Mawe, G.M. Regulation of Bone Metabolism by Serotonin. In Understanding the Gut-Bone Signaling Axis; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; Volume 1033, pp. 35–46. [Google Scholar]
- De las Casas-Engel, M.; Domínguez-Soto, A.; Sierra-Filardi, E.; Bragado, R.; Nieto, C.; Puig-Kroger, A.; Samaniego, R.; Loza, M.; Corcuera, M.T.; Gómez-Aguado, F.; et al. Serotonin Skews Human Macrophage Polarization through HTR 2B and HTR 7. J. Immunol. 2013, 190, 2301–2310. [Google Scholar] [CrossRef] [Green Version]
- Mössner, R.; Lesch, K.P. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun. 1998, 12, 249–271. [Google Scholar] [CrossRef] [Green Version]
- Kushnir-Sukhov, N.M.; Brown, J.M.; Wu, Y.; Kirshenbaum, A.; Metcalfe, D.D. Human mast cells are capable of serotonin synthesis and release. J. Allergy Clin. Immunol. 2007, 119, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, L.M.E.; Arzt, E.S.; Fernández-Castelo, S.; Criscuolo, M.; Finkielman, S.; Nahmod, V.E. Serotonin and Melatonin Synthesis in Peripheral Blood Mononuclear Cells: Stimulation by Interferon-7 as Part of an Immunomodulatory Pathway. J. Interferon Res. 1988, 8, 705–716. [Google Scholar] [CrossRef]
- O’Connell, P.J.; Wang, X.; Leon-Ponte, M.; Griffiths, C.; Pingle, S.C.; Ahern, G.P. A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 2006, 107, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Meredith, E.J.; Holder, M.J.; Chamba, A.; Challa, A.; Lee, A.D.; Bunce, C.M.; Drayson, M.T.; Pilkington, G.; Blakely, R.D.; Dyer, M.J.S.; et al. The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: Probing a potential antitumor target for psychotropics. FASEB J. 2005, 19, 1187–1189. [Google Scholar] [CrossRef] [Green Version]
- Faraj, B.A.; Olkowski, Z.L.; Jackson, R.T. Expression of a high-affinity serotonin transporter in human lymphocytes. Int. J. Immunopharmacol. 1994, 16, 561–567. [Google Scholar] [CrossRef]
- Khan, W.I.; Ghia, J.E. Gut hormones: Emerging role in immune activation and inflammation. Clin. Exp. Immunol. 2010, 161, 19–27. [Google Scholar] [CrossRef]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Gershon, M.D.; Tack, J. The Serotonin Signaling System: From Basic Understanding to Drug Development for Functional GI Disorders. Gastroenterology 2007, 132, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Savelieva, K.V.; Zhao, S.; Pogorelov, V.M.; Rajan, I.; Yang, Q.; Cullinan, E.; Lanthorn, T.H. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 2008, 3, e3301. [Google Scholar] [CrossRef] [Green Version]
- Mercado, C.P.; Kilic, F. Molecular mechanisms of sert in platelets: Regulation of plasma serotonin levels. Mol. Interv. 2010, 10, 231–241. [Google Scholar] [CrossRef]
- Morrissey, J.J.; Walker, M.N.; Lovenberg, W. The Absence of Tryptophan Hydroxylase Activity in Blood Platelets. Proc. Soc. Exp. Biol. Med. 1977, 154, 496–499. [Google Scholar] [CrossRef]
- Martel, F.; Monteiro, R.; Lemos, C. Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transporter (SERT). J. Pharmacol. Exp. Ther. 2003, 306, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, A.; Rukmini, R.; Mukherjee, S. Photophysics of a neurotransmitter: Ionization and spectroscopic properties of serotonin. Biophys. J. 1996, 71, 1952–1960. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, P.P.; Bertrand, R.L. Serotonin release and uptake in the gastrointestinal tract. Auton. Neurosci. Basic Clin. 2010, 153, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfermeyer, A.; Gratzl, M.; Rad, R.; Dossumbekova, A.; Sachs, G.; Prinz, C. Isolation and receptor profiling of ileal enterochromaffin cells. Acta Physiol. Scand. 2004, 182, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Billett, E.E. Monoamine Oxidase (MAO) in Human Peripheral Tissues. Neurotoxicology 2004, 25, 139–148. [Google Scholar] [CrossRef]
- Keszthelyi, D.; Troost, F.J.; Masclee, A.A.M. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 2009, 21, 1239–1249. [Google Scholar] [CrossRef]
- Margolis, K.G.; Pothoulakis, C. Serotonin Has a Critical Role in the Pathogenesis of Experimental Colitis. Gastroenterology 2009, 137, 1562–1566. [Google Scholar] [CrossRef]
- Sandler, M.; Reveley, M.A.; Glover, V. Human platelet monoamine oxidase activity in health and disease: A review. J. Clin. Pathol. 1981, 34, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Holmsen, H. Physiological functions of platelets. Ann. Med. 1989, 21, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, M.T.; Carlson, J.R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979, 32, 173–178. [Google Scholar] [CrossRef]
- Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity review-article. Mucosal Immunol. 2018, 11, 1024–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Bender, D.A. Biochemistry of tryptophan in health and disease. Mol. Asp. Med. 1983, 6, 101–197. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, K.; Engdahl, C.; Henning, P.; Lerner, U.H.; Tremaroli, V.; Lagerquist, M.K.; Bäckhed, F.; Ohlsson, C. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res. 2012, 27, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F.; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essien, B.E.; Grasberger, H.; Romain, R.D.; Law, D.J.; Veniaminova, N.A.; Saqui-Salces, M.; El-Zaatari, M.; Tessier, A.; Hayes, M.M.; Yang, A.C.; et al. ZBP-89 regulates expression of tryptophan hydroxylase i and mucosal defense against salmonella typhimurium in mice. Gastroenterology 2013, 144, 1466–1477. [Google Scholar] [CrossRef] [Green Version]
- De Vadder, F.; Grasset, E.; Holm, L.M.; Karsenty, G.; Macpherson, A.J.; Olofsson, L.E.; Bäckhed, F. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. USA 2018, 115, 6458–6463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoban, A.E.; Moloney, R.D.; Golubeva, A.V.; McVey Neufeld, K.A.; O’Sullivan, O.; Patterson, E.; Stanton, C.; Dinan, T.G.; Clarke, G.; Cryan, J.F. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 2016, 339, 463–477. [Google Scholar] [CrossRef]
- Desbonnet, L.; Clarke, G.; Traplin, A.; O’Sullivan, O.; Crispie, F.; Moloney, R.D.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav. Immun. 2015, 48, 165–173. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014, 16, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019, 59, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukumoto, S.; Tatewaki, M.; Yamada, T.; Fujimiya, M.; Mantyh, C.; Voss, M.; Eubanks, S.; Harris, M.; Pappas, T.N.; Takahashi, T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1269–R1276. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-C.; Johansson, K.R.; Donahue, M.J. The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production. J. Parasitol. 1986, 72, 545–549. [Google Scholar] [CrossRef]
- Özoǧul, F.; Kuley, E.; Özoǧul, Y.; Özoǧul, I. The function of lactic acid bacteria on biogenic amines production by food-borne pathogens in arginine decarboxylase broth. Food Sci. Technol. Res. 2012, 18, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Shishov, V.A.; Kirovskaya, T.A.; Kudrin, V.S.; Oleskin, A.V. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli k-12. Appl. Biochem. Microbiol. 2009, 45, 494–497. [Google Scholar] [CrossRef]
- Özoğul, F. Production of biogenic amines by Morganella morganii, Klebsíella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur. Food Res. Technol. 2004, 219, 465–469. [Google Scholar] [CrossRef]
- Actis, G.C.; Pellicano, R.; Fagoonee, S.; Ribaldone, D.G. Clinical Medicine History of Inflammatory Bowel Diseases. J. Clin. Med. 2019, 8, 1970. [Google Scholar] [CrossRef] [Green Version]
- Lakhan, S.E.; Kirchgessner, A. Neuroinflammation in inflammatory bowel disease. J. Neuroinflamm. 2010, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmer, M.; Garner, A.; Vlamakis, H.; Xavier, R.J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 2019, 17, 497–511. [Google Scholar] [CrossRef]
- Alam, M.T.; Amos, G.C.A.; Murphy, A.R.J.; Murch, S.; Wellington, E.M.H.; Arasaradnam, R.P. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog. 2020, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals 2018, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Bienenstock, J.; Dinan, T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008, 43, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Wang, H.; Denou, E.; Ghia, J.E.; Rossi, L.; Fontes, M.E.; Bernier, S.P.; Shajib, M.S.; Banskota, S.; Collins, S.M.; et al. Modulation of Gut Microbiota Composition by Serotonin Signaling Influences Intestinal Immune Response and Susceptibility to Colitis. CMGH 2019, 7, 709–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaki, M.; Mawe, G.M.; Barasch, J.M.; Gershon, M.D.; Gershon, M.D. Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience 1985, 16, 223–240. [Google Scholar] [CrossRef]
- Hata, T.; Asano, Y.; Yoshihara, K.; Kimura-Todani, T.; Miyata, N.; Zhang, X.T.; Takakura, S.; Aiba, Y.; Koga, Y.; Sudo, N. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 2017, 12, e0180745. [Google Scholar] [CrossRef]
- Esmaili, A.; Nazir, S.F.; Borthakur, A.; Yu, D.; Turner, J.R.; Saksena, S.; Singla, A.; Hecht, G.A.; Alrefai, W.A.; Gill, R.K. Enteropathogenic Escherichia coli Infection Inhibits Intestinal Serotonin Transporter Function and Expression. Gastroenterology 2009, 137, 2074–2083. [Google Scholar] [CrossRef] [Green Version]
- Oleskin, A.V.; Kirovskaya, T.A.; Botvinko, I.V.; Lysak, L.V. Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology 1998, 67, 251–257. [Google Scholar]
- Derrien, M.; Belzer, C.; de Vos, W.M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 2017, 106, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Peyrin-Biroulet, L.; Beisner, J.; Wang, G.; Nuding, S.; Oommen, S.T.; Kelly, D.; Parmentier-Decrucq, E.; Dessein, R.; Merour, E.; Chavatte, P.; et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc. Natl. Acad. Sci. USA 2010, 107, 8772–8777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Are, A.; Aronsson, L.; Wang, S.; Greicius, G.; Yuan, K.L.; Gustafsson, J.Å.; Pettersson, S.; Arulampalam, V. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA 2008, 105, 1943–1948. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.; Campbell, J.I.; King, T.P.; Grant, G.; Jansson, E.A.; Coutts, A.G.P.; Pettersson, S.; Conway, S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-γ and ReIA. Nat. Immunol. 2004, 5, 104–112. [Google Scholar] [CrossRef]
- Fung, T.C.; Vuong, H.E.; Luna, C.D.G.; Pronovost, G.N.; Aleksandrova, A.A.; Riley, N.G.; Vavilina, A.; McGinn, J.; Rendon, T.; Forrest, L.R.; et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat. Microbiol. 2019, 4, 2064–2073. [Google Scholar] [CrossRef]
- Singhal, M.; Turturice, B.A.; Manzella, C.R.; Ranjan, R.; Metwally, A.A.; Theorell, J.; Huang, Y.; Alrefai, W.A.; Dudeja, P.K.; Finn, P.W.; et al. Serotonin Transporter Deficiency is Associated with Dysbiosis and Changes in Metabolic Function of the Mouse Intestinal Microbiome. Sci. Rep. 2019, 9, 2138. [Google Scholar] [CrossRef]
- Oshima, S.I.; Fujimura, M.; Fujimiya, M. Changes in number of serotonin-containing cells and serotonin levels in the intestinal mucosa of rats with colitis induced by dextran sodium sulfate. Histochem. Cell Biol. 1999, 112, 257–263. [Google Scholar] [CrossRef]
- Linden, D.R.; Chen, J.X.; Gershon, M.D.; Sharkey, K.A.; Mawe, G.M. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G207–G216. [Google Scholar] [CrossRef] [Green Version]
- Linden, D.R.; Foley, K.F.; McQuoid, C.; Simpson, J.; Sharkey, K.A.; Mawe, G.M. Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterol. Motil. 2005, 17, 565–574. [Google Scholar] [CrossRef]
- O’Hara, J.R.; Skinn, A.C.; MacNaughton, W.K.; Sherman, P.M.; Sharkey, K.A. Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. Cell. Microbiol. 2006, 8, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Ramanan, V.; Korolev, K.S. Interactions between species introduce spurious associations in microbiome studies. PLoS Comput. Biol. 2018, 14, e1005939. [Google Scholar] [CrossRef] [Green Version]
- Kerage, D.; Sloan, E.K.; Mattarollo, S.R.; McCombe, P.A. Interaction of neurotransmitters and neurochemicals with lymphocytes. J. Neuroimmunol. 2019, 332, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Barnes, N.M.; Neumaier, J.F. Neuronal 5-HT Receptors and SERT. Tocris Biosci. Sci. Rev. Ser. 2011, 34, 1–15. [Google Scholar]
- Pauwels, P.J. 5-HT receptors and their ligands. Neuropharmacology 2003, 1083, 38–50. [Google Scholar]
- Derkach, V.; Surprenant, A.; North, R.A. 5-HT3 receptors are membrane ion channels. Nature 1989, 339, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Baganz, N.L.; Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2013, 4, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Idzko, M.; Panther, E.; Stratz, C.; Müller, T.; Bayer, H.; Zissel, G.; Dürk, T.; Sorichter, S.; Di Virgilio, F.; Geissler, M.; et al. The Serotoninergic Receptors of Human Dendritic Cells: Identification and Coupling to Cytokine Release. J. Immunol. 2004, 172, 6011–6019. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.N.; Ha, S.G.; Bahaie, N.S.; Hosseinkhani, M.R.; Ge, X.N.; Blumenthal, M.N.; Rao, S.P.; Sriramarao, P. Regulation of Serotonin-Induced Trafficking and Migration of Eosinophils. PLoS ONE 2013, 8, e54840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushnir-Sukhov, N.M.; Gilfillan, A.M.; Coleman, J.W.; Brown, J.M.; Bruening, S.; Toth, M.; Metcalfe, D.D. 5-Hydroxytryptamine Induces Mast Cell Adhesion and Migration. J. Immunol. 2006, 177, 6422–6432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire-Garabal, M.; Núñez, M.J.; Balboa, J.; López-Delgado, P.; Gallego, R.; García-Caballero, T.; Fernández-Roel, M.D.; Brenlla, J.; Rey-Méndez, M. Serotonin upregulates the activity of phagocytosis through 5-HT 1A receptors. Br. J. Pharmacol. 2003, 139, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Mikulski, Z.; Zasłona, Z.; Cakarova, L.; Hartmann, P.; Wilhelm, J.; Tecott, L.H.; Lohmeyer, J.; Kummer, W. Serotonin activates murine alveolar macrophages through 5-HT2C receptors. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299, L272–L280. [Google Scholar] [CrossRef]
- Dürk, T.; Panther, E.; Müller, T.; Sorichter, S.; Ferrari, D.; Pizzirani, C.; Di Virgilio, F.; Myrtek, D.; Norgauer, J.; Idzko, M. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int. Immunol. 2005, 17, 599–606. [Google Scholar] [CrossRef]
- León-Ponte, M.; Ahern, G.P.; O’Connell, P.J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 2007, 109, 3139–3146. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Albert, R.H.; Tretiakova, A.P.; Jameson, B.A. 5-HT1B receptors play a prominent role in the proliferation of T-lymphocytes. J. Neuroimmunol. 2006, 181, 68–81. [Google Scholar] [CrossRef]
- Inoue, M.; Okazaki, T.; Kitazono, T.; Mizushima, M.; Omata, M.; Ozaki, S. Regulation of antigen-specific CTL and Th1 cell activation through 5-Hydroxytryptamine 2A receptor. Int. Immunopharmacol. 2011, 11, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Aune, T.M.; McGrath, K.M.; Sarr, T.; Bombara, M.P.; Kelley, K.A. Expression of 5HT1a receptors on activated human T cells. Regulation of cyclic AMP levels and T cell proliferation by 5-hydroxytryptamine. J. Immunol. 1993, 151, 1175–1183. [Google Scholar]
- Schoenichen, C.; Bode, C.; Duerschmied, D. Role of platelet serotonin in innate immune cell recruitment. Front. Biosci. Landmark 2019, 24, 514–526. [Google Scholar]
- Fiorica-Howells, E.; Hen, R.; Gingrich, J.; Li, Z.; Gershon, M.D. 5-HT(2A) receptors: Location and functional analysis in intestines of wild-type and 5-HT(2A) knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G877–G893. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Tyler, K.; MacEachern, S.J.; Balemba, O.B.; Johnson, A.C.; Brooks, E.M.; Zhao, H.; Swain, G.M.; Moses, P.L.; Galligan, J.J.; et al. Activation of colonic mucosal 5-HT4 receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 2012, 142, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Engevik, M.A.; Chang-Graham, A.; Hyser, J.M.; Versalovic, J. Serotonin promotes epithelial restitution through goblet cell mediated secretion of Muc2 and TFF3. FASEB J. 2019, 33, 869-1. [Google Scholar] [CrossRef]
- Rapalli, A.; Bertoni, S.; Arcaro, V.; Saccani, F.; Grandi, A.; Vivo, V.; Cantoni, A.M.; Barocelli, E. Dual role of endogenous serotonin in 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Front. Pharmacol. 2016, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Walther, D.J.; Peter, J.U.; Winter, S.; Höltje, M.; Paulmann, N.; Grohmann, M.; Vowinckel, J.; Alamo-Bethencourt, V.; Wilhelm, C.S.; Ahnert-Hilger, G.; et al. Serotonylation of Small GTPases Is a Signal Transduction Pathway that Triggers Platelet α-Granule Release. Cell 2003, 115, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Schneider, E.; MacHavoine, F.; Bricard-Rignault, R.; Levasseur, M.; Petit-Bertron, A.F.; Gautron, S.; Ribeil, J.A.; Launay, J.M.; Mecheri, S.; Côté, F.; et al. Downregulation of basophil-derived IL-4 and in vivo TH2 IgE responses by serotonin and other organic cation transporter 3 ligands. J. Allergy Clin. Immunol. 2011, 128, 864–871. [Google Scholar] [CrossRef]
- Iken, K.; Chheng, S.; Fargin, A.; Goulet, A.C.; Kouassi, E. Serotonin upregulates mitogen-stimulated b lymphocyte proliferation through 5-HT1Areceptors. Cell. Immunol. 1995, 163, 1–9. [Google Scholar] [CrossRef]
- Müller, T.; Dürk, T.; Blumenthal, B.; Grimm, M.; Cicko, S.; Panther, E.; Sorichter, S.; Herouy, Y.; Di Virgilio, F.; Ferrari, D.; et al. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS ONE 2009, 4, e6453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holst, K.; Guseva, D.; Schindler, S.; Sixt, M.; Braun, A.; Chopra, H.; Pabst, O.; Ponimaskin, E. The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells. J. Cell Sci. 2015, 128, 2866–2880. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ghia, J.E.; Wang, H.; McClemens, J.; Cote, F.; Suehiro, Y.; Mallet, J.; Khan, W.I. Serotonin activates dendritic cell function in the context of gut inflammation. Am. J. Pathol. 2011, 178, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Ghia, J.E.; Li, N.; Wang, H.; Collins, M.; Deng, Y.; El–Sharkawy, R.T.; Côté, F.; Mallet, J.; Khan, W.I. Serotonin Has a Key Role in Pathogenesis of Experimental Colitis. Gastroenterology 2009, 137, 1649–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regmi, S.C.; Park, S.Y.; Ku, S.K.; Kim, J.A. Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species. Free Radic. Biol. Med. 2014, 69, 377–389. [Google Scholar] [CrossRef]
- Duerschmied, D.; Suidan, G.L.; Demers, M.; Herr, N.; Carbo, C.; Brill, A.; Cifuni, S.M.; Mauler, M.; Cicko, S.; Bader, M.; et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013, 121, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellstrand, K.; Hermodsson, S. Enhancement of human natural killer cell cytotoxicity by serotonin: Role of non-T/CD16+ NK cells, accessory monocytes, and 5-HT1A receptors. Cell. Immunol. 1990, 127, 199–214. [Google Scholar] [CrossRef]
- Hoffmann, T.; Troup, B.; Szabo, A.; Hungerer, C.; Jahn, D. The anaerobic life of Bacillus subtilis: Cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol. Lett. 1995, 131, 219–225. [Google Scholar] [CrossRef]
- Hoffmann, T.W.; Pham, H.-P.; Bridonneau, C.; Aubry, C.; Lamas, B.; Martin-Gallausiaux, C.; Moroldo, M.; Rainteau, D.; Lapaque, N.; Six, A.; et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 2016, 10, 460–477. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.T.; Hatton, R.D. Interplay between the TH 17 and TReg cell lineages: A (co-)evolutionary perspective. Nat. Rev. Immunol. 2009, 9, 883–889. [Google Scholar] [CrossRef]
- Coates, M.D.; Mahoney, C.R.; Linden, D.R.; Sampson, J.E.; Chen, J.; Blaszyk, H.; Crowell, M.D.; Sharkey, K.A.; Gershon, M.D.; Mawe, G.M.; et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004, 126, 1657–1664. [Google Scholar] [CrossRef]
- Guseva, D.; Holst, K.; Kaune, B.; Meier, M.; Keubler, L.; Glage, S.; Buettner, M.; Bleich, A.; Pabst, O.; Bachmann, O.; et al. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm. Bowel Dis. 2014, 20, 1516–1529. [Google Scholar] [CrossRef] [PubMed]
- Shajib, M.S.; Chauhan, U.; Adeeb, S.; Chetty, Y.; Armstrong, D.; Halder, S.L.S.; Marshall, J.K.; Khan, W.I. Characterization of Serotonin Signaling Components in Patients with Inflammatory Bowel Disease. J. Can. Assoc. Gastroenterol. 2019, 2, 132–140. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Mailer, R.; Pabst, O.; Weier, G.; Sedlik, W.; Li, Z.; Chen, J.J.; Murphy, D.L.; Gershon, M.D. Role of serotonin in intestinal inflammation: Knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G685–G695. [Google Scholar] [CrossRef]
- Haub, S.; Ritze, Y.; Bergheim, I.; Pabst, O.; Gershon, M.D.; Bischoff, S.C. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol. Motil. 2010, 22, 826-e229. [Google Scholar] [CrossRef] [Green Version]
- Latorre, E.; Mendoza, C.; Matheus, N.; Castro, M.; Grasa, L.; Mesonero, J.E.; Alcalde, A.I. IL-10 modulates serotonin transporter activity and molecular expression in intestinal epithelial cells. Cytokine 2013, 61, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Jørandli, J.W.; Thorsvik, S.; Skovdahl, H.K.; Kornfeld, B.; Sæterstad, S.; Gustafsson, B.I.; Sandvik, A.K.; van Beelen Granlund, A. The serotonin reuptake transporter is reduced in the epithelium of active Crohn’s disease and ulcerative colitis. Am. J. Physiol. Liver Physiol. 2020, 19, G761–G768. [Google Scholar] [CrossRef]
- El-Salhy, M.; Danielsson, Å.; Stenling, R.; Grimelius, L. Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med. 1997, 242, 413–419. [Google Scholar] [CrossRef]
- Khan, W.I.; Motomura, Y.; Wang, H.; El-Sharkawy, R.T.; Verdu, E.F.; Verma-Gandhu, M.; Rollins, B.J.; Collins, S.M. Critical role of MCP-1 in the pathogenesis of experimental colitis in the context of immune and enterochromaffin cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G803–G811. [Google Scholar] [CrossRef]
- Magro, F.; Vieira-Coelho, M.A.; Fraga, S.; Serräo, M.P.; Veloso, F.T.; Ribeiro, T.; Soares-da-Silva, P. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig. Dis. Sci. 2002, 47, 216–224. [Google Scholar] [CrossRef]
- Tada, Y.; Ishihara, S.; Kawashima, K.; Fukuba, N.; Sonoyama, H.; Kusunoki, R.; Oka, A.; Mishima, Y.; Oshima, N.; Moriyama, I.; et al. Downregulation of serotonin reuptake transporter gene expression in healing colonic mucosa in presence of remaining low-grade inflammation in ulcerative colitis. J. Gastroenterol. Hepatol. 2016, 31, 1443–1452. [Google Scholar] [CrossRef]
- Wojtal, K.A.; Eloranta, J.J.; Hruz, P.; Gutmann, H.; Drewe, J.; Staumann, A.; Beglinger, C.; Fried, M.; Kullak-Ublick, G.A.; Vavricka, S.R. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab. Dispos. 2009, 37, 1871–1877. [Google Scholar] [CrossRef] [Green Version]
- Nau, F.; Yu, B.; Martin, D.; Nichols, C.D. Serotonin 5-HT2A Receptor Activation Blocks TNF-α Mediated Inflammation In Vivo. PLoS ONE 2013, 8, e75426. [Google Scholar] [CrossRef]
- Mousavizadeh, K.; Rahimian, R.; Fakhfouri, G.; Aslani, F.S.; Ghafourifar, P. Anti-inflammatory effects of 5-HT 3 receptor antagonist, tropisetron on experimental colitis in rats. Eur. J. Clin. Investig. 2009, 39, 375–383. [Google Scholar] [CrossRef]
- Fakhfouri, G.; Rahimian, R.; Daneshmand, A.; Bahremand, A.; Rasouli, M.R.; Dehpour, A.R.; Mehr, S.E.; Mousavizadeh, K. Granisetron ameliorates acetic acid-induced colitis in rats. Hum. Exp. Toxicol. 2010, 29, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Pascual, D.; Alsasua, A.; Goicoechea, C.; Martín, M.I. The involvement of 5-HT3 and 5-HT4 receptors in two models of gastrointestinal transit in mice. Neurosci. Lett. 2002, 326, 163–166. [Google Scholar] [CrossRef]
- Spohn, S.N.; Bianco, F.; Scott, R.B.; Keenan, C.M.; Linton, A.A.; O’Neill, C.H.; Bonora, E.; Dicay, M.; Lavoie, B.; Wilcox, R.L.; et al. Protective Actions of Epithelial 5-Hydroxytryptamine 4 Receptors in Normal and Inflamed Colon. Gastroenterology 2016, 151, 933–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.J.; Bridle, B.W.; Ghia, J.-E.; Wang, H.; Syed, S.N.; Manocha, M.M.; Rengasamy, P.; Shajib, M.S.; Wan, Y.; Hedlund, P.B.; et al. Targeted Inhibition of Serotonin Type 7 (5-HT 7) Receptor Function Modulates Immune Responses and Reduces the Severity of Intestinal Inflammation. J. Immunol. 2013, 190, 4795–4804. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.T.; Kuan, Y.H.; Wang, J.; Hen, R.; Gershon, M.D. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J. Neurosci. 2009, 29, 9683–9699. [Google Scholar] [CrossRef]
- Houghton, L.A.; Foster, J.M.; Whorwell, P.J. Alosetron, n 5-HT3 receptor antagonist, delays colonic transit in patients with irritable bowel syndrome and healthy volunteers. Aliment. Pharmacol. Ther. 2000, 14, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Bearcroft, C.P.; Perrett, D.; Farthing, M.J.G. Postprandial plasma 5-hydroxytryptamine in diarrhoea predominant irritable bowel syndrome: A pilot study. Gut 1998, 42, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlop, S.P.; Coleman, N.S.; Blackshaw, E.; Perkins, A.C.; Singh, G.; Marsden, C.A.; Spiller, R.C. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2005, 3, 349–357. [Google Scholar] [CrossRef]
- Minderhoud, I.M.; Oldenburg, B.; Schipper, M.E.I.; ter Linde, J.J.M.; Samsom, M. Serotonin Synthesis and Uptake in Symptomatic Patients With Crohn’s Disease in Remission. Clin. Gastroenterol. Hepatol. 2007, 5, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Heredia, D.J.; Gershon, M.D.; Koh, S.D.; Corrigan, R.D.; Okamoto, T.; Smith, T.K. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: In vitro analyses in mice lacking tryptophan hydroxylase 1. J. Physiol. 2013, 591, 5939–5957. [Google Scholar] [CrossRef]
- Li, Z.; Chalazonitis, A.; Huang, Y.Y.; Mann, J.J.; Margolis, K.G.; Yang, Q.M.; Kim, D.O.; Côté, F.; Mallet, J.; Gershon, M.D. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 2011, 31, 8998–9009. [Google Scholar] [CrossRef]
- Gershon, M.D. Serotonin is a sword and a shield of the bowel: Serotonin plays offense and defense. Trans. Am. Clin. Clim. Assoc. 2012, 123, 268. [Google Scholar]
- Margolis, K.G.; Gershon, M.D. Enteric Neuronal Regulation of Intestinal Inflammation. Trends Neurosci. 2016, 39, 614–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, E.R.; Gershon, M.D.; Margolis, K.G.; Gertsberg, Z.V.; Cowles, R.A. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 2012, 143, 408.e2–417.e2. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.E.; Cho, H.; Ishihara, A.; Kim, B.; Kim, O. Cell proliferation and migration mechanism of caffeoylserotonin and serotonin via serotonin 2B receptor in human keratinocyte HaCaT cells. BMB Rep. 2018, 51, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Ruddell, R.G.; Oakley, F.; Hussain, Z.; Yeung, I.; Bryan-Lluka, L.J.; Ramm, G.A.; Mann, D.A. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am. J. Pathol. 2006, 169, 861–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junli, H.; Hongyan, T.; Ya, L.; Fenling, F. 5-HT promotes pulmonary arterial smooth muscle cell proliferation through the TRPC channel. Cell. Mol. Biol. 2018, 64, 89–96. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Q.; Sun, W.; Vogel, P.; Heydorn, W.; Yu, X.Q.; Hu, Z.; Yu, W.; Jonas, B.; Pineda, R.; et al. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther. 2008, 325, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolis, K.G.; Stevanovic, K.; Li, Z.; Yang, Q.M.; Oravecz, T.; Zambrowicz, B.; Jhaver, K.G.; Diacou, A.; Gershon, M.D. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 2014, 63, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Sangkuhl, K.; Klein, T.E.; Altman, R.B. Selective serotonin reuptake inhibitors pathway. Pharmacol. Genom. 2009, 19, 907–909. [Google Scholar] [CrossRef] [Green Version]
- Macer, B.J.D.; Prady, S.L.; Mikocka-Walus, A. Antidepressants in Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2017, 23, 534–550. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.J.; Kim, J.M.; Kim, I.K.; Kim, N.; Jung, H.C.; Song, I.S.; Kim, J.S. Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G9–G19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, S.J.; Kim, J.W.; Kim, B.G.; Lee, K.L.; Im, J.P.; Kim, J.S. Fluoxetine Inhibits Hyperresponsive Lamina Propria Mononuclear Cells and Bone Marrow-Derived Dendritic Cells, and Ameliorates Chronic Colitis in IL-10-Deficient Mice. Dig. Dis. Sci. 2014, 60, 101–108. [Google Scholar] [CrossRef]
- Minaiyan, M.; Hajhashemi, V.; Rabbani, M.; Fattahian, E.; Mahzouni, P. Evaluation of anti-colitic effect of fluvoxamine against acetic acid-induced colitis in normal and reserpinized depressed rats. Eur. J. Pharmacol. 2015, 746, 293–300. [Google Scholar] [CrossRef]
- Bonderup, O.K.; Fenger-Grøn, M.; Wigh, T.; Pedersen, L.; Nielsen, G.L. Drug exposure and risk of microscopic colitis: A nationwide Danish case-control study with 5751 cases. Inflamm. Bowel Dis. 2014, 20, 1702–1707. [Google Scholar] [CrossRef]
- Fernández-Bañares, F.; Esteve, M.; Espinós, J.C.; Rosinach, M.; Forné, M.; Salas, A.; Viver, J.M. Drug consumption and the risk of microscopic colitis. Am. J. Gastroenterol. 2007, 102, 324–330. [Google Scholar] [CrossRef]
- Cussotto, S.; Strain, C.R.; Fouhy, F.; Strain, R.G.; Peterson, V.L.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology 2019, 236, 1671–1685. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Cao, Y.; Wang, C.; Zhao, C.; Wang, H.; Cui, G.; Wang, M.; Pan, Y.; Shi, Y.; et al. Fluoxetine ameliorates dysbiosis in a depression model induced by chronic unpredicted mild stress in mice. Int. J. Med. Sci. 2019, 16, 1260–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmulson, M.J.; Drossman, D.A. What is new in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Videlock, E.J.; Chang, L. Latest Insights on the Pathogenesis of Irritable Bowel Syndrome. Gastroenterol. Clin. N. Am. 2021, 50, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Törnblom, H.; Drossman, D.A. Psychopharmacologic Therapies for Irritable Bowel Syndrome. Gastroenterol. Clin. N. Am. 2021, 50, 655–669. [Google Scholar] [CrossRef]
- Drossman, D.A.; Tack, J.; Ford, A.C.; Szigethy, E.; Törnblom, H.; Van Oudenhove, L. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut−Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology 2018, 154, 1140.e1–1171.e1. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Gros, B.; Mesonero, J.E.; Latorre, E. Neurotransmitter Dysfunction in Irritable Bowel Syndrome: Emerging Approaches for Management. J. Clin. Med. 2021, 10, 3429. [Google Scholar] [CrossRef] [PubMed]
Cell Type | TpH1 | SERT |
---|---|---|
B cells [15] | + | |
DCs [14] | + | |
Mast cells [12] | + | + |
Macrophages [10,13] | + | + |
Monocytes [10,11] | + | + |
T cells [13,16] | + | + |
Platelets [21,22] | + | |
Enterocytes [23] | + | |
EC cells [19,24,25] | + | + |
Bacterial Strains | Present in Human Gut | Phylum | Family |
---|---|---|---|
Lactococcus lactis subsp. cremoris (MG 1363) [51] | Used as probiotic | Firmicutes | Streptococcaceae |
Lactococcus lactis subsp. lactis (IL1403) [51] | Used as probiotic | Firmicutes | Streptococcaceae |
Lactobacillus plantarum (FI8595) [51] | + | Firmicutes | Lactobacillaceae |
Streptococcus thermophilus (NCFB2392) [51] | Used as probiotic | Firmicutes | Streptococcaceae |
Escherichia coli K-12 [52] | + | Proteobacteria | Enterobacteriaceae |
Morganella morganii (NCIMB, 10466) [53] | + | Proteobacteria | Morganellaceae |
Klebsiella pneumoniae (NCIMB, 673) [50,53] | + | Proteobacteria | Enterobacteriaceae |
Hafnia alvei (NCIMB, 11999) [53] | + | Proteobacteria | Hafniaceae |
Corynebacterium sp. [50] | + | Actinobacteria | Corynebacteriaceae |
Aeromonas [50] | + | Proteobacteria | Aeromonadaceae |
Citrobacter [50] | + | Proteobacteria | Enterobacteriaceae |
Enterobacteria aglomerans [50] | Pathological conditions | Proteobacteria | Erwiniaceae |
Shigella [50] | + | Proteobacteria | Enterobacteriaceae |
Achromobacter xylosoxidans [50] | + | Proteobacteria | Alcaligenaceae |
Chromobacterium [50] | Pathological conditions | Proteobacteria | Neisseriaceae |
Acinetobacter [50] | + | Proteobacteria | Moraxellaceae |
Listeria monocytogenes [50] | + | Firmicutes | Listeriaceae |
Staphylococcus aureus [50] | + | Firmicutes | Staphylococcaceae |
Cell Type | Receptor Subtype (HTR-) |
---|---|
B cells [82] | 1A, 2, 3, 7 |
Immature dendritic cells (DCs) [83] | 1B, 1E, 2A, 2B, 3 |
Mature dendritic cells (DCs) [83] | 2A, 3, 4, 7 |
Eosinophils [84] | 1A, 1B, 1E, 2A, 2B, 6 |
Mast cells [85] | 1A, 1B, 1E, 2A, 2B, 2C, 3, 4, 7 |
Macrophages [10,82,86,87] | 1A, 2A, 2B, 2C, 3, 4, 7 |
Monocytes [88] | 1E, 2A, 3, 4, 7 |
Neutrophils [82] | 7 |
NK [82] | 1A, 2A, 2B, 2C |
T cells [89,90,91,92] | 1A, 1B, 2A, 7 |
Platelets [93] | 2A, 3 |
Paneth cells [94] | 2A |
Enterocytes [94,95] | 2A, 4 |
Goblet cells [95,96] | 4 |
EC cells [95,97] | 1A, 4 |
Cell Type | Sample Source and 5-HTR Stimulation | Effect |
---|---|---|
Basophils | Mice (IL-3 co-stimulation) [99] | IL-4 ↓ IL-6 ↓ Histamine secretion ↓ |
Human blood (IL-3 co-stimulation) [99] | IL-4 ↓ IL-13 ↓ | |
B cells | Murine and rat spleen cells (HTR1A) [100] | Proliferation ↑ |
Immature DCs | Human monocyte-derived DCs (HTR1 and HTR2) [101] | Migration ↑ |
Mature DCs | Mice (HTR7) [102] | Migration ↑ |
Human monocyte-derived DCs (HTR3, HTR4, and HTR7) [101] | IL-6 ↑ | |
Human DCs (HTR4 and HTR7) [83] | IL-1β ↑ IL-8 ↑ | |
Mice with DSS-induced colitis [103] | IL-12p40 ↑ | |
Eosinophils | Human eosinophils from patients with asthma and/or rhinitis (HTR2A) [84] | Recruitment of eosinophils Epithelial adhesion ↑ (VCAM-1) |
Mast cells | Murine bone marrow-derived mast cells and human CD34+ mast cells [12] | Epithelial adhesion ↑ (fibronectin) Migration ↑ |
Macrophages | Peritoneal cavity of TpH1−/−, and DSS-induced colitis in mice with or without LPS stimulation (HTR1A) [104] | IL-1β ↑ IL-6 ↑ TNF-α ↑ |
Murine peritoneal macrophages (HTR1A) [86] | Phagocytosis ↑ | |
Human monocyte-derived macrophages (HTR2B and HTR7) [10] | Anti-inflammatory polarization | |
Monocytes | Rats with TNBS-induced colitis [105] Human peripheral blood mononuclear cells (HTR3, HTR4, and HTR7) [88] Human peripheral blood mononuclear cells (HTR7) [88] | Adhesion to colonic epithelial cells ↑ IL-6 ↑ IL-8 ↑ MCP-1 ↑ IL-1β ↑ IL-6 ↑ IL-8 ↑ TNF-α ↓ IL-12p40 ↑ |
Neutrophils | TpH1−/− mice and mice with acute peritonitis, lung inflammation, and aseptic skin wounds [106] | Recruitment of neutrophils |
NK cells | Human peripheral blood mononuclear cells (HTR1A) [107] | Cytotoxicity ↑ Interaction with monocytes ↓ |
T cells | Murine spleen cells (HTR7) [89] Human peripheral blood mononuclear cells (HTR1B) [90] Mice (HTR2A) [91] | Proliferation of naive T cells ↑ Proliferation of Th cells ↑ IFN-γ ↑ and IL-2 ↑ in Th1 and CTL cell line |
Platelets | TpH1−/− mice (HTR2A, HTR3) [93,98] | Ca2+ release ↑ Exocytosis of α-granules ↑ Stabilization of platelet activation ↑ |
Paneth cells | HTR2A−/− murine cells (HTR2A) [94] | Paneth cells density ↓ |
Enterocytes | HTR2A−/− murine cells (HTR2A)96 Murine cells (HTR4) [108] | Enterocytes size ↓ Colonic transit |
Goblet cells | Murine cells (HTR4) [108] Human intestinal enteroids (HTR4) [96] | Colonic transit Goblet cell degranulation TFF3 release ↑ Actin cytoskeleton rearrangement and epithelial repair |
EC cells | Murine cells (HTR4) [109] TNBS-induced colitis in mice (HTR1A) [97] | Colonic transit 5-HT content ↓ |
Organism | Study | Experimental Design | Effect |
---|---|---|---|
Mouse | Khan et al. (2006) [119] | DNBS-induced colitis in mice | EC cell numbers ↑ |
Oshima et al., (1999) [73] | DSS-induced colitis in rats | EC cell numbers ↑ 5-HT content ↑ | |
Linden et al. (2003) [74] | TNBS-induced colitis in guinea pigs | EC cell numbers ↑ 5-HT content ↑ SERT expression ↓ | |
Linden et al. (2005) [75] | TNBS-induced colitis in mice | Unchanged EC cell numbers 5-HT content ↑ SERT expression ↓ | |
O’Hara et al. (2005) [76] | Mice infected with Citrobacter rodentium | EC cell numbers ↓ 5-HT content ↑ SERT expression ↓ | |
Tada et al. (2016) [121] | DSS-induced colitis/Transfer of CD4+ T cells in mice | SERT expression ↓ | |
Human | El-Salhy et al. (2020) [118] | Patients with CD and UC | EC cell numbers ↑ |
Magro et al. (2002) [120] | Patients with CD and UC | 5-HT content ↓ | |
Coates et al. (2004) [111] | Patients with severe UC | EC cell numbers ↓ 5-HT content ↓ SERT expression ↓ TpH1 expression ↓ | |
Tada et al. (2016) [121] | Inflamed mucosa of patients with UC | SERT expression ↓ | |
Wojtal et al. (2009) [122] | Patients with CD and UC | SERT expression ↑ |
HTR | Agonist/ Antagonist | Compound | Experimental Design | Impact on Inflammation |
---|---|---|---|---|
HTR1A | Antagonist | WAY100135 | Mice with TNBS-induced colitis [97] | ↑ |
Agonist | 8-OH-DPAT | Mice with TNBS-induced colitis [97] | ↓ | |
HTR2A | Antagonist | Ketanserin | Mice with TNBS-induced colitis [97] | ↓ |
Antagonist | M100907 | Mice with TNF-α -induced inflammation [123] | ↓ | |
Agonist | (R)-DOI | Mice with TNF-α-induced inflammation [123] | ↓ | |
HTR3 | Antagonist | Tropisetron | Rats with acetic acid-induced colitis [124] | ↓ |
Antagonist | Granisetron | Rats with acetic acid-induced colitis [125] | ↓ | |
Antagonist | Ondansetron | Murine models of croton oil-induced colitis [126] | ↓ | |
HTR4 | Agonist | Tegaserod | Mice with TNBS and DSS-induced colitis [127] | ↓ |
Antagonist | GR113808 | Wild-type mice [127] | ↑ | |
HTR7 | Antagonist | SB-269970 | Mice with DSS-induced colitis [128] | ↓ |
Antagonist | SB-269970 | Mice with DSS and IL-10-induced colitis [112] | ↑ | |
Agonist | 5-carboxamidotryptamine maleate | Mice with DSS-induced colitis [112] | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koopman, N.; Katsavelis, D.; Ten Hove, A.S.; Brul, S.; de Jonge, W.J.; Seppen, J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. Int. J. Mol. Sci. 2021, 22, 9487. https://doi.org/10.3390/ijms22179487
Koopman N, Katsavelis D, Ten Hove AS, Brul S, de Jonge WJ, Seppen J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. International Journal of Molecular Sciences. 2021; 22(17):9487. https://doi.org/10.3390/ijms22179487
Chicago/Turabian StyleKoopman, Nienke, Drosos Katsavelis, Anne S. Ten Hove, Stanley Brul, Wouter J. de Jonge, and Jurgen Seppen. 2021. "The Multifaceted Role of Serotonin in Intestinal Homeostasis" International Journal of Molecular Sciences 22, no. 17: 9487. https://doi.org/10.3390/ijms22179487
APA StyleKoopman, N., Katsavelis, D., Ten Hove, A. S., Brul, S., de Jonge, W. J., & Seppen, J. (2021). The Multifaceted Role of Serotonin in Intestinal Homeostasis. International Journal of Molecular Sciences, 22(17), 9487. https://doi.org/10.3390/ijms22179487