Magnetic Molecularly Imprinted Nano-Conjugates for Effective Extraction of Food Components—A Model Study of Tyramine Determination in Craft Beers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Magnetic Sorbent
2.2. Analysis of Magnetic Dispersive Molecularly Imprinted Solid Phase Extraction
2.3. Analytical Method Validation
2.4. Analysis of Tyramine in Beer Samples
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Sorbent
3.2.1. Preparation of Functionalized Magnetic Core
3.2.2. Synthesis of Imprinted Polymeric Shell
Code | Name | Style [41] | Blg a | ABV b | Composistion | ||||
---|---|---|---|---|---|---|---|---|---|
Barley Malts | Wheat/Rye Malts | Hops | Yeast | Additions | |||||
S1 | A ja pale ale | American Pale Ale | 12° | 5.0% | pale ale, Caraamber® | - | (United States): Columbus, Centennial, Cascade, Simcoe®, Citra® | SafAleTM US-05 | - |
S2 | Bawarka | Hefeweizen | 13° | 5.7% | pilsner, Carahell® | Wheat pale | (Germany): Mittlefruh | SafBrewTM WB-06 | - |
S3 | Czarna Dziura | Schwarzbier/Dark Lager | 11.5° (ibu 38) | 4.5% | Weyermann® malts: pilsner, Munich (II), Carafa® (III) Special, dyeing malt extract Sinamar® | - | (Germany): Tradition, Spalt Select | SaflagerTM W 34/70 | - |
S4 | Pierwsza pomoc | Polish Light Pils (pale lager) | 10.5° | 4.1% | pilsner, Munich (II), Caramunic® (II), Carapils® | - | (Poland): Marynka, Lubelski | bottom fermenting yeast: SafLagerTM W 34/70 | - |
S5 | Apetyt na życie | Rye Beer | 13.1° (ibu 18) | 5.0% | Weyermann® malts: pilsner, Vienna, roasted Carafa® Special (I) | Weyermann® rye malt, caramel rye Cararye® | (Germany): Tettnanger, Spalt Select | SafbrewTM WB-06 | - |
S6 | I’m so horny! | Espresso Lager | 18° | 6.7% | Weyermann® malts: pilsner, Munich (I), Chit | Chocolate wheat malt | Styrian Golding (Slovenia) | SaflagerTM S-189 | coffee: Adelante and Rio Azul (Guatemala) |
S7 | Dobry wieczór | Oatmeal Stout | 13.5° (ibu 32) | 4.5% | Weyermann® malts: pale ale, Caramunich® (II), Caraaroma® (II), Carafa® (I) | - | East Kent Golding (United Kingdom) | SafaleTM US-04 | oat flakes |
S8 | Atak chmielu | American India Pale Ale | 15° | 6.1% | pale ale, melanoidin, Carared®, Carapils® | - | (United States): Citra®, Simcoe®, Cascade, Amarillo® | SafAleTM US-05 | - |
S9 | Mini-maxi ipa | Non-Alcoholic Session India Pale Ale | - | >0.5% | Pilsen, Carapils® | - | (United States): Citra®, Mosaic® | SafAleTM LA-01 | - |
S10 | Viva la Wita | Imperial Witbier | 16.5° | 5.7% | Weyermann® malt: pilsner | Weyerman® wheat malt | Styrian Goldings (Slovenia), Saaz (Czech Republic), Citra®, Palisade® (United States) | SafbrewTM S-33 | non-malted wheat, spices: coriander, Curaçao peel, orange peel |
3.3. Instruments
3.4. Adsorption Studies
3.5. Analysis of Magnetic Dispersive Molecularly Imprinted Solid Phase Extraction
3.6. Method Validation
3.7. Beer Sample Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Synthesis of Magnetic Core and Functionalization
References
- Donoghue, S.; Boucher, G.; Peris, F.; Mian, A.; Macgregor, A. Tyramine as a risk factor for migraine attacks: An exploration. Headache 2017, 57, 194–195. [Google Scholar]
- Berry, M.D.; Gainetdinov, R.R.; Hoener, M.C.; Shahid, M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol. Ther. 2017, 180, 161–180. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9, 2393. Available online: www.efsa.europa.eu/efsajournal (accessed on 6 May 2021).
- Özogul, Y.; Özogul, F. Chapter 1: Biogenic Amines Formation, Toxicity, Regulations in Food. In Biogenic Amines in Food: Analysis, Occurrence and Toxicity; Saad, R., Tofalo, R., Eds.; The Royal Society of Chemistry: London, UK, 2020; pp. 1–17. [Google Scholar]
- Kalac, P.; Krizek, M. A review of biogenic amines and polyamines in beer. J. Inst. Brew. 2003, 109, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Pulido, M.; Marine-Font, A.; Vidal-Carou, M.C. Effect of tyrosine on tyramine formation during beer fermentation. Food Chem. 2000, 70, 329–332. [Google Scholar] [CrossRef]
- Kalac, P.; Savel, J.; Krizek, M.; Pelikanova, T.; Prokopova, M. Biogenic amine formation in bottled beer. Food Chem. 2002, 79, 431–434. [Google Scholar] [CrossRef]
- Donadini, G.; Porretta, S. Uncovering patterns of consumers’ interest for beer: A case study with craft beer. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Donadini, G.; Fumi, M.D.; Kordialik-Bogacka, E.; Maggi, L.; Lambri, M.; Sckokai, P. Consumer interest in specialty beers in three European markets. Food Res. Int. 2016, 85, 301–314. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Torrelli, P.; Marini, F. Flavour component analysis by HS-SPME/GC-MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019, 149, 103991. [Google Scholar] [CrossRef]
- Rodríguez-Saavedra, M.; de Llano, D.G.; Moreno-Arribas, M.V. Beer spoilage lactic acid bacteria from craft brewery microbiota: Microbiological quality and food safety. Food Res. Int. 2020, 138, 109762. [Google Scholar]
- Ordonez, J.L.; Troncoso, A.M.; García-Parrilla, M.C.; Callejon, R.M. Recent trends in the determination of biogenic amines in fermented beverages: A review. Anal. Chim. Acta 2016, 939, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Ruvalcaba, J.E.; Duran-Guerrero, E.; Barroso, C.G.; Castro, R. Development of a stir bar sorptive extraction method to study different beer styles volatile profiles. Food Res. Int. 2019, 126, 108680. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-J.; Jin, C.-X.; Song, S.-L.; Wei, C.-Y.; Liu, Y.-M.; Li, J. Development of an ionic liquid-based ultrasonic-assisted liquid–liquid microextraction method for sensitive determination of biogenic amines: Application to the analysis of octopamine, tyramine and phenethylamine in beer samples. J. Chromatogr. B 2011, 879, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Palomino-Vasco, M.; Acedo-Valenzuela, M.I.; Rodriguez-Caceres, M.I.; Mora-Diez, N. Automated chromatographic method with fluorescent detection to determine biogenic amines and amino acids. Application to craft beer brewing process. J. Chromatogr. A 2019, 1601, 155–163. [Google Scholar] [CrossRef]
- Redruello, B.; Ladero, V.; del Rio, B.; Fernández, M.; Martin, M.C.; Alvarez, M.A. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chem. 2017, 217, 117–124. [Google Scholar] [PubMed]
- Tang, T.; Shi, T.; Qian, K.; Li, P.; Li, J.; Cao, Y. Determination of biogenic amines in beer with pre-column derivatization by high performance liquid chromatography. J. Chromatogr. B 2009, 877, 507–512. [Google Scholar] [CrossRef]
- He, L.; Xu, Z.; Hirokawa, T.; Shen, L. Simultaneous determination of aliphatic, aromatic and heterocyclic biogenic amines without derivatization by capillary electrophoresis and application in beer analysis. J. Chromatogr. A 2017, 1482, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Vinci, G.; Gobbi, L.; Maddaloni, L.; Prencipe, S.A. Simple, reliable determination of biogenic amines in Italian red wines. Direct analysis of underivatized biogenic amines by LC-ESI-MS. J. Adv. Mass. Spec. 2021, 1, 1–6. [Google Scholar]
- Almeida, C.; Fernandes, J.O.; Cunha, S.C. A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer. Food Control 2012, 25, 380–388. [Google Scholar] [CrossRef]
- Daniel, D.; dos Santos, V.B.; Vidal, D.T.R.; do Lago, C.L. Determination of biogenic amines in beer and wine by capillary electrophoresis–tandem mass spectrometry. J. Chromatogr. A 2015, 1416, 121–128. [Google Scholar]
- Miao, E.; Zhang, N.; Lu, S.; Hu, Y.; Fu, L.; Zhou, H.; Zhan, J.; Wu, M. Solid-phase “on-situ” quadraplex isotope dimethyl labeling for the analysis of biogenic amines in beers by liquid chromatography-high resolution mass spectrometry. J. Chromatogr. A 2020, 1613, 460712. [Google Scholar] [CrossRef] [PubMed]
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P.; Dana, M.; Maciejewska, D. Synthesis and characterization of 4-(2-aminoethyl)aniline imprinted polymer as a highly effective sorbent of dopamine. Talanta 2014, 119, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P.; Maciejewska, D. Effective separation of dopamine from bananas on 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymer. J. Sep. Sci. 2012, 35, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P.; Bamburowicz-Klimkowska, M.; Dana, M.; Szutowski, M.; Maciejewska, D. Efficient strategy for the selective determination of dopamine in human urine by molecularly imprinted solid-phase extraction. J. Sep. Sci. 2016, 39, 895–903. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Korytowska, N.; Sobiech, M.; Polak, S.; Wiśniowska, B.; Piotrowski, R.; Kułakowski, P.; Luliński, P. Magnetic core–shell molecularly imprinted nano-conjugates for extraction of antazoline and hydroxyantazoline from human plasma—material characterization, theoretical analysis and pharmacokinetics. Int. J. Mol. Sci. 2021, 22, 3665. [Google Scholar] [CrossRef]
- Li, Y.; Hsieh, C.-H.; Lai, C.-W.; Chang, Y.-F.; Chan, H.-Y.; Tsai, C.-F.; Ho, J.-A.; Wu, L.-C. Tyramine detection using PEDOT:PSS/AuNPs/1-methyl-4-mercaptopyridine modified screen printed carbon electrode with molecularly imprinted polymer solid phase extraction. Biosens. Bioelectron. 2017, 87, 142–149. [Google Scholar]
- Zhang, D.; Liu, H.; Geng, W.; Wang, Y. A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem. 2019, 277, 639–645. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, B.; Zhang, M.; Hu, X.; Chen, W.; Fang, G.; Wang, S. A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine. Sens. Actuators B Chem. 2020, 311, 127901. [Google Scholar]
- Słomkowska, A.; Ambroziak, W. Biogenic amine profile of the most popular Polish beers. Eur. Food Res. Technol. 2002, 215, 380–383. [Google Scholar]
- Marć, M.; Panuszko, A.; Namieśnik, J.; Wieczorek, P.P. Preparation and characterization of dummy-template molecularly imprinted polymers as potential sorbents for the recognition of selected polybrominated diphenyl ethers. Anal. Chim. Acta 2018, 1030, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P.; Maciejewska, D. Impact of functional monomers, cross-linkers and porogens on morphology and recognition properties of 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymers. Mater. Sci. Eng. C 2011, 31, 281–289. [Google Scholar] [CrossRef]
- Fonseca Dinali, L.A.; de Oliveira, H.L.; Suleimara Teixeira, L.; de Souza Borges, W.; Bastos Borges, K. Mesoporous molecularly imprinted polymer core@shell hybrid silica nanoparticles as adsorbent in microextraction by packed sorbent for multiresidue determination of pesticides in apple juice. Food Chem. 2021, 345, 128745. [Google Scholar]
- Angulo, M.F.; Flores, M.; Aranda, M.; Henriquez-Aedo, K. Fast and selective method for biogenic amines determination in wines and beers by ultra high-performance liquid chromatography. Food Chem. 2020, 309, 125689. [Google Scholar] [CrossRef] [PubMed]
- Pradenas, J.; Galarce-Bustos, O.; Henríquez-Aedo, K.; Mundaca-Uribe, R.; Aranda, M. Occurrence of biogenic amines in beers from Chilean market. Food Control 2016, 70, 138–144. [Google Scholar] [CrossRef]
- Restuccia, D.; Spizzirri, U.G.; Parisi, O.I.; Cirillo, G.; Picci, N. Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chem. 2015, 175, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Bagur, M.G.; Sánchez-Viñas, M.; Gázquez, D. The influence of the brewing process on the formation of biogenic amines in beer. Anal. Bioanal. Chem. 2003, 376, 162–167. [Google Scholar]
- Lorencova, E.; Salek, R.N.; Cernikova, M.; Bunkova, L.; Hylkova, A.; Bunka, F. Biogenic amine occurrence in beers produced in Czech microbreweries. Food Control 2020, 117, 107335. [Google Scholar] [CrossRef]
- Hu, C.; Deng, J.; Zhao, Y.; Xia, L.; Huang, K.; Ju, S.; Xiao, N. A novel core-shell magnetic nano-sorbent with surface molecularly imprinted polymer coating for the selective solid phase extraction of dimetridazole. Food Chem. 2014, 158, 366–373. [Google Scholar] [CrossRef]
- Brewers Association 2020 Beer Style Guidelines. Available online: https://cdn.brewersassociation.org/wp-content/uploads/2020/03/BA-beer-style-guidelines-2020.pdf (accessed on 6 May 2021).
- United States Food and Drug Administration (U.S. FDA). Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products, 3rd ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019; pp. 1–39. Available online: https://www.fda.gov/food/laboratory-methods-food/foods-program-methods-validation-processes-and-guidelines (accessed on 6 May 2021).
Extraction Method | Instrumental Analysis | Derivatisation Reagent | Range (mg L−1) | LOD (mg L−1) | Precision (%) (QC Used) b | IS | Ref. |
---|---|---|---|---|---|---|---|
DLLME | GC-MS | isobutyl chloroformate | 0.010–15 | 0.007 | 5 | hydroxyamphetamine | [20] |
- | HPLC-UV | dansyl chloride | 1–40 | 0.03 | 11.5 (5 mg L−1) | 1,7-diaminoheptane | [35] |
d-SPE (PVPP) | CE-MS | - | 0.05–100 | 0.002 | nd | 1,7-diaminoheptane | [21] |
LLE | CE-UV | - | 0.14–21 | 0.08 | 3.1 a (3.4 mg L−1) | no | [18] |
IL-UALLME | HPLC-FL | DMQ | 0.5–50 | 0.005 | 3.5 (nd) | no | [14] |
MSPE | HPLC-MS | - | 0.001–5 | 0.00002 | 4.2 (0.5 mg L−1) | formaldehyde-d2 (dimethyl labeling) | [22] |
- | HPLC-FL | o-phthaldialdehyde | 0.15–5 | 0.053 | 5.7–7.4 (nd) | octylamine | [15] |
- | HPLC-UV | DEEMM | 0.62–206 | 0.12 | 0.72 a (27 mg L−1) | L-aminoadipic acid | [16] |
d-SPE (PVPP) | HPLC-FL | dansyl chloride | 0.5–20 | 0.02 | 2.5 (5 mg L−1) | diaminoheptane | [36] |
m-d-MISPE | HPLC-MS | - | 0.17–75 | 0.033 | 1.7–4.9 (3–75 mg L−1) | tyramine-d4 | this study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luliński, P.; Janczura, M.; Sobiech, M.; Giebułtowicz, J. Magnetic Molecularly Imprinted Nano-Conjugates for Effective Extraction of Food Components—A Model Study of Tyramine Determination in Craft Beers. Int. J. Mol. Sci. 2021, 22, 9560. https://doi.org/10.3390/ijms22179560
Luliński P, Janczura M, Sobiech M, Giebułtowicz J. Magnetic Molecularly Imprinted Nano-Conjugates for Effective Extraction of Food Components—A Model Study of Tyramine Determination in Craft Beers. International Journal of Molecular Sciences. 2021; 22(17):9560. https://doi.org/10.3390/ijms22179560
Chicago/Turabian StyleLuliński, Piotr, Marta Janczura, Monika Sobiech, and Joanna Giebułtowicz. 2021. "Magnetic Molecularly Imprinted Nano-Conjugates for Effective Extraction of Food Components—A Model Study of Tyramine Determination in Craft Beers" International Journal of Molecular Sciences 22, no. 17: 9560. https://doi.org/10.3390/ijms22179560
APA StyleLuliński, P., Janczura, M., Sobiech, M., & Giebułtowicz, J. (2021). Magnetic Molecularly Imprinted Nano-Conjugates for Effective Extraction of Food Components—A Model Study of Tyramine Determination in Craft Beers. International Journal of Molecular Sciences, 22(17), 9560. https://doi.org/10.3390/ijms22179560