Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders?
Abstract
:1. Introduction
2. The Central Oxytocinergic System Organization and Potential Therapeutic Applications
3. Fear Memory Extinction and Underpinning Network
4. Oxytocin Effects on Fear Memory Extinction
4.1. Preclinical Studies
4.2. Human Studies
Animals | Route or Site of Administration | Drug Administered | Time of Administration | Effect on Fear Extinction | Reference |
---|---|---|---|---|---|
Male Wistar rats | i.c.v. | OXT (1.0 µg/5 µL) | Preconditioning AFC | + | [180] |
Male Wistar rats | i.c.v. | OXTR-A (0.75 µg/5 µL) | Preconditioning AFC | − | [180] |
Male Wistar rats | i.c.v. | OXT (0.1 or 1.0 µg/5 µL) | Pre-extinction AFC | −Both doses | [180] |
Male Wistar rats | i.c.v. | OXTR-A (0.75 µg/5 µL) | Pre-extinction AFC | No effect | [180] |
Male CB1 mice | i.c.v. | OXT (0.1 or 0.5 µg/2 µL) | Pre-extinction AFC | −(0.1 µg/2 µL) +(0.5 µg/2 µL) | [180] |
Male Wistar rats | i.p. | OXT (1, 10, 100, or 1000 µg/Kg) (multiple injections) | Post-extinction CFC | −(10, 100 or 1000 µg/Kg) | [182] |
Male Wistar rats subjected to SPS procedure | i.p. | OXT (1, 10, 100, or 1000 µg/Kg) (multiple injections) | Postextinction CFC | No effect | [182] |
Male Sprague–Dawley rats | IN | OXT (1 µg/ µL) | Pre-extinction test of CDFC | + | [183] |
Male Sprague–Dawley rats subjected to SPS procedure | IN | OXT (1 µg/ µL) | Pre-extinction test of CDFC | + | [183] |
Male Sprague–Dawley rats | BLA | OXT (0.01 µg/0.5 µL) | Postretrieval CFC | − | [188] |
Male Sprague–Dawley rats | BLA | WAY-267464 (3 µg/0.5 µL) | Postretrieval CFC | + | [188] |
Male Sprague–Dawley rats | BLA | TGOT (3.5 or 7 ng/0.5 µL) | Postretrieval CFC | No effect both doses | [188,201] |
Male Sprague–Dawley rats | BLA | OXT (0.01 µg/0.5 µL) | Preacquisition CFC | - | [188] |
Male Sprague–Dawley rats | BLA | WAY-267464 (3 µg/0.5 µL) | Preacquisition CFC | - | [188] |
Male Sprague–Dawley rats | BLA | TGOT (7 ng/0.5 µL) | Preacquisition CFC | - | [188] |
Male Wistar rats | BLA | OXT (75 ng/0.3 µL) | Preacquisition CFC | + | [189] |
Male Wistar rats | BLA | OXT (0.6, 3, 15, or 75 ng/0.3 µL) | Pre-extinction CFC (single injection) | +within-session extinction (all doses) +LT extinction (higher doses) | [189] |
Male Wistar rats | BLA | OXTA (3 ng/0.3 µL) | Pre-extinction CFC (single injection) | No effect | [189] |
Male Wistar rats | BLA | OXT (3 ng/0.3 µL) + OXTA (15 ng/0.3 µL) | Pre-extinction CFC (single injection) | No effect | [189] |
Male Wistar rats | BLA | OXT (3 ng/0.3 µL) | Postextinction CFC (single injection) | No effect | [189] |
Male juvenile Sprague–Dawley rats (P27) | BLA | TGOT (3.5 or 7 ng/0.5 µL) | Postretrieval CFC | -Both doses | [201] |
Male juvenile Sprague–Dawley rats (P27) | BLA | TGOT (7 ng/0.5 µL) | Preacquisition CFC | No effect | [201] |
Male 129SvImJ mice | BLA | OXT (0.001 µg/side) | Pre-extinction AFC (single injection) | No effect | [191] |
Male 129SvImJ mice | CeA | OXT (0.01 or 1.0 µg/side) | Pre-extinction AFC (single injection) | +(0.01 or 1.0 µg/side) −(1.0 µg/side) | [191] |
Male Sprague–Dawley rats | CeA | TGOT (7ng/0.5 µL) | Pre-retention CFC test | + | [190] |
Female Wistar rats | CeA | Endogenous OXT (released following optogenetic stimulation) | Pre-retention CFC test | + | [40] |
Female Wistar rats | CeA | OXTA (21 ng/0.5 µL) | Pre-retention CFC test | No effect | [40] |
Female Wistar rats | CeA | OXTA + endogenous OXT | Pre-retention CFC test | No effect | [40] |
Male Sprague–Dawley rats | CeA | OXT (0.01 µg/0.5 µL) | Preacquisition CFC | No effect | [188] |
Male Sprague–Dawley rats | CeA | WAY-267464 (3 µg/0.5 µL) | Preacquisition CFC | + | [188] |
Male Sprague–Dawley rats | CeA | TGOT (7 ng/0.5 µL) | Preacquisition CFC | + | [188,201] |
Male Sprague–Dawley rats | CeA | OXT (0.01 µg/0.5 µL) | Postretrieval CFC | No effect | [188] |
Male Sprague–Dawley rats | CeA | WAY-267464 (3 µg/0.5 µL) | Postretrieval CFC | No effect | [188] |
Male Wistar rats | CeA | OXT (75 ng/0.3 µL) | Preacquisition CFC | + | [189] |
Male Wistar rats | CeA | OXT (0.6, 3, 15, or 75 ng/0.3 µL) | Pre-extinction CFC | −Both within-session and LT extinction (all doses) | [189] |
Male Wistar rats | CeA | TGOT (7 ng/0.3 µL) | Pre-extinction CFC | −Within-session extinction No effect on LT extinction | [189] |
Male Wistar rats | CeA | OXTA (15 ng/0.3 µL) | Pre-extinction CFC | +Both within-session and LT extinction | [189] |
Male Wistar rats | CeA | OXT (15 ng) + OXTA (75 ng) | Pre-extinction CFC | No effect | [189] |
Male Wistar rats | CeA | OXT (3 ng/0.3 µL) | Postextinction CFC | −LT extinction | [189] |
Male juvenile Sprague–Dawley rats (P27) | CeA | TGOT (7 ng/0.5 µL) | Preacquisition CFC | − | [201] |
Male juvenile Sprague–Dawley rats (P27) | CeA | TGOT (7 ng/0.5 µL) | Postretrieval CFC | No effect | [201] |
Male Sprague–Dawley rats | IL-mPFC | OXT (0.01 µg/0.5 µL) | Postretrieval CFC | + | [188] |
Male Sprague–Dawley rats | IL-mPFC | WAY-267464 (3 µg/ µL) | Postretrieval CFC | + | [188] |
Male Sprague–Dawley rats | IL-mPFC | TGOT (7 ng/0.5 µL) | Pre-extinction CFC | + | [200] |
Male Sprague–Dawley rats | IL-mPFC | OXTA (153 µmol/L) | Pre-extinction CFC | No effect | [200] |
Male juvenile Spague–Dawley rats (P27) | IL-mPFC | TGOT (7 ng/0.5 µL) | Postretrieval CFC | No effect | [201] |
Subjects (Number) | Study Design | Route of Administration | Drug Administered | Time of Administration | Effect on Fear Extinction | Reference |
---|---|---|---|---|---|---|
Healthy volunteers (44) | Double-blind Placebo-controlled study | IN | OXT (24 IU) | Pre-extinction | −At the beginning of extinction training No effect in the middle phase +in the late phase | [184] |
Healthy volunteer (62) | Double-blind Placebo-controlled study | IN | OXT (24 IU) | Post-conditioning and Pre-extinction | −At the beginning of extinction training +in the late phase | [73] |
Healthy volunteers (61) | Double-blind Placebo-controlled study | IN | OXT (40 IU) | Post-conditioning | + | [219] |
Healthy volunteers (15) | Double-blind Placebo-controlled study | IN | OXT (27 IU) | Pre-conditioning | No effect | [65] |
SAD Patients (25) | Double-blind Placebo-controlled study | IN | OXT (24 IU) | Pre-exposure therapy | +(in combination with exposure therapy) | [220] |
Arachnophobic Patients (23) | Double-blind Placebo-controlled study | IN | OXT (24 IU) | Pre-exposure therapy | - | [184] |
PTSD Patients (37) vs. Healthy Subjects (40) | Placebo-controlled Crossover study | IN | OXT (40 IU) | Pre-exposure therapy | +(in combination with exposure therapy) | [68] |
PTSD Patients (17) | Double-blind Placebo-controlled study | IN | OXT (40 IU) | Pre-exposure therapy | − | [30] |
PTSD Patients (range = 37–41) | Double-blind Placebo-controlled study | IN | OXT (40 IU- single dose) | Pre-fMRI | − | [72] |
PTSD Patients (107) | Double-blind Placebo-controlled study | IN | OXT (40 IU- multiple doses) | Post-trauma | + | [72] |
5. Challenges and Perspectives on OXT Research and Therapeutic Exploitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AFC | auditory fear conditioning |
AN | accessory nuclei |
ARC | arcuate nucleus |
AVP | vasopressin |
BA | basal amygdala |
BLA | basolateral amygdala |
BNST | bed nucleus of the stria terminalis |
CCK | cholecystokinin |
CDFC | cued-dependent fear conditioning |
CeA | central amygdala |
CeL | central lateral amygdala |
CeM | central medial amygdala |
CFC | contextual fear conditioning |
CS | conditioned stimulus |
dACC | dorsal anterior cingulate cortex |
fMRI | functional magnetic resonance imaging |
HPA | hypothalamus pituitary axis |
IL | infralimbic area |
IN | intranasal |
ITCs | intercalated cell masses |
LA | lateral amygdala |
ME | median eminence |
mPFC | medial prefrontal cortex |
NTS | nucleus of the solitary tract |
OXT | oxytocin |
OXTR | OXT receptor |
PAG | periaqueductal gray |
PL | prelimbic area |
PTSD | post-traumatic stress disorder |
PVN | paraventricular nucleus |
SAD | social anxiety disorders |
SON | supraoptic nucleus |
SPS | single prolonged stress |
TRPV1 | transient receptor potential vanilloid-1 receptor |
US | unconditioned stimulus |
VMH | ventromedial nucleus of the hypothalamus |
VTA | ventral tegmental area |
References
- Alberini, C.M.; Ledoux, J.E. Memory reconsolidation. Curr. Biol. 2013, 23, R746–R750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanElzakker, M.B.; Dahlgren, M.K.; Davis, F.C.; Dubois, S.; Shin, L.M. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol. Learn. Mem. 2014, 113, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; Dodel, R.; Ekman, M.; Faravelli, C.; Fratiglioni, L.; et al. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 718–779. [Google Scholar] [CrossRef] [Green Version]
- Liberzon, I.; Sripada, C.S. The functional neuroanatomy of PTSD: A critical review. Prog. Brain Res. 2008, 167, 151–169. [Google Scholar] [PubMed]
- Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 655–679. [Google Scholar] [CrossRef] [Green Version]
- Shin, L.M.; Handwerger, K. Is posttraumatic stress disorder a stress-induced fear circuitry disorder? J. Trauma Stress 2009, 22, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, A.; Clark, D.M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 2000, 38, 319–345. [Google Scholar] [CrossRef]
- Lissek, S.; Powers, A.S.; McClure, E.B.; Phelps, E.A.; Woldehawariat, G.; Grillon, C.; Pine, D.S. Classical fear conditioning in the anxiety disorders: A meta-analysis. Behav. Res. Ther. 2005, 43, 1391–1424. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.R.; Olsson, A.; Phelps, E.A. Extending animal models of fear conditioning to humans. Biol. Psychol. 2006, 73, 39–48. [Google Scholar] [CrossRef]
- Parsons, R.G.; Ressler, K.J. Implications of memory modulation for post-traumatic stress and fear disorders. Nat. Neurosci. 2013, 16, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Fendt, M.; Fanselow, M.S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 1999, 23, 743–760. [Google Scholar] [CrossRef]
- Sacchetti, B.; Lorenzini, C.A.; Baldi, E.; Tassoni, G.; Bucherelli, C. Memorization of contextual and CS conditioned fear response (freezing) in a one-trial acquisition paradigm. Arch. Ital. Biol. 1999, 137, 235–248. [Google Scholar]
- Sacchetti, B.; Lorenzini, C.A.; Baldi, E.; Tassoni, G.; Bucherelli, C. Auditory thalamus, dorsal hippocampus, basolateral amygdala, and perirhinal cortex role in the consolidation of conditioned freezing to context and to acoustic conditioned stimulus in the rat. J. Neurosci. 1999, 19, 9570–9578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ney, L.J.; Wade, M.; Reynolds, A.; Zuj, D.V.; Dymond, S.; Matthews, A.; Felmingham, K.L. Critical evaluation of current data analysis strategies for psychophysiological measures of fear conditioning and extinction in humans. Int. J. Psychophysiol. 2018, 134, 95–107. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, J.L. Memory—A century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Abel, T.; Lattal, K.M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 2001, 11, 180–187. [Google Scholar] [CrossRef]
- Josselyn, S.A.; Köhler, S.; Frankland, P.W. Finding the engram. Nat. Rev. Neurosci. 2015, 16, 521–534. [Google Scholar] [CrossRef]
- Eisenberg, M.; Kobilo, T.; Berman, D.E.; Dudai, Y. Stability of retrieved memory: Inverse correlation with trace dominance. Science 2003, 301, 1102–1104. [Google Scholar] [CrossRef] [Green Version]
- Pedreira, M.E.; Maldonado, H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 2003, 38, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Josselyn, S.A.; Frankland, P.W.; Masushige, S.; Silva, A.J.; Kida, S. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 2004, 24, 4787–4795. [Google Scholar] [CrossRef]
- Bouton, M.E.; Mineka, S.; Barlow, D.H. A modern learning theory perspective on the etiology of panic disorder. Psychol. Rev. 2001, 108, 4–32. [Google Scholar] [CrossRef]
- Rothbaum, B.O.; Davis, M. Applying learning principles to the treatment of post-trauma reactions. Ann. N. Y. Acad. Sci. 2003, 1008, 112–121. [Google Scholar] [CrossRef]
- Craske, M.G.; Kircanski, K.; Zelikowsky, M.; Mystkowski, J.; Chowdhury, N.; Baker, A. Optimizing inhibitory learning during exposure therapy. Behav. Res. Ther. 2008, 46, 5–27. [Google Scholar] [CrossRef]
- Choy, Y.; Fyer, A.J.; Lipsitz, J.D. Treatment of specific phobia in adults. Clin. Psychol. Rev. 2007, 27, 266–286. [Google Scholar] [CrossRef] [PubMed]
- Bandelow, B.; Sher, L.; Bunevicius, R.; Hollander, E.; Kasper, S.; Zohar, J.; Möller, H.J.; WFSBP Task Force on Mental Disorders in Primary Care; WFSBP Task Force on Anxiety Disorders, OCD and PTSD. Guidelines for the pharmacological treatment of anxiety disorders, obsessive-compulsive disorder and posttraumatic stress disorder in primary care. Int. J. Psychiatry Clin. Pract. 2012, 16, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Singewald, N.; Schmuckermair, C.; Whittle, N.; Holmes, A.; Ressler, K.J. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol. Ther. 2015, 149, 150–190. [Google Scholar] [CrossRef] [Green Version]
- Bukalo, O.; Pinard, C.R.; Holmes, A. Mechanisms to medicines: Elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br. J. Pharmacol. 2014, 171, 4690–4718. [Google Scholar] [CrossRef]
- Schmidt, S.D.; Costa, A.; Rani, B.; Godfried Nachtigall, E.; Passani, M.B.; Carta, F.; Nocentini, A.; de Carvalho Myskiw, J.; Furini, C.R.G.; Supuran, C.T.; et al. The role of carbonic anhydrases in extinction of contextual fear memory. Proc. Natl. Acad. Sci. USA 2020, 117, 16000–16008. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.C.; Sippel, L.M.; Wahlquist, A.; Moran-Santa Maria, M.M.; Back, S.E. Augmenting Prolonged Exposure therapy for PTSD with intranasal oxytocin: A randomized, placebo-controlled pilot trial. J. Psychiatr. Res. 2018, 98, 64–69. [Google Scholar] [CrossRef]
- Stoehr, J.D.; Cramer, C.P.; North, W.G. Oxytocin and vasopressin hexapeptide fragments have opposing influences on conditioned freezing behavior. Psychoneuroendocrinology 1992, 17, 267–271. [Google Scholar] [CrossRef]
- Li, K.; Nakajima, M.; Ibañez-Tallon, I.; Heintz, N. A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors. Cell 2016, 167, 60.e11–72.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitre, M.; Marlin, B.J.; Schiavo, J.K.; Morina, E.; Norden, S.E.; Hackett, T.A.; Aoki, C.J.; Chao, M.V.; Froemke, R.C. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors. J. Neurosci. 2016, 36, 2517–2535. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.N.; Ross, A.P.; Sahu, S.P.; Siegel, E.R.; Dooyema, J.M.; Cree, M.A.; Stopa, E.G.; Young, L.J.; Rilling, J.K.; Albers, H.E.; et al. Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. Am. J. Primatol. 2018, 80, e22875. [Google Scholar] [CrossRef]
- Ohlsson, B.; Truedsson, M.; Djerf, P.; Sundler, F. Oxytocin is expressed throughout the human gastrointestinal tract. Regul. Pept. 2006, 135, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Leow, M.K.; Magkos, F. Oxytocin in metabolic homeostasis: Implications for obesity and diabetes management. Obes. Rev. 2019, 20, 22–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinevich, V.; Knobloch-Bollmann, H.S.; Eliava, M.; Busnelli, M.; Chini, B. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol. Psychiatry 2016, 79, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.M. Immunoreactive vasopressin and oxytocin: Concentration in individual human hypothalamic nuclei. Science 1978, 200, 342–343. [Google Scholar] [CrossRef]
- Bargmann, W.; Scharrer, E. The site of origin of the hormones of the posterior pituitary. Am. Sci. 1951, 39, 255–259. [Google Scholar]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofroniew, M.V. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog. Brain Res. 1983, 60, 101–114. [Google Scholar]
- Dölen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.; Grund, T.; Zoicas, I.; Althammer, F.; Fiedler, D.; Biermeier, V.; Bosch, O.J.; Hiraoka, Y.; Nishimori, K.; Eliava, M.; et al. Oxytocin Signaling in the Lateral Septum Prevents Social Fear during Lactation. Curr. Biol. 2018, 28, 1066–1078.e6. [Google Scholar] [CrossRef] [Green Version]
- Mittaud, P.; Labourdette, G.; Zingg, H.; Guenot-Di Scala, D. Neurons modulate oxytocin receptor expression in rat cultured astrocytes: Involvement of TGF-beta and membrane components. Glia 2002, 37, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, H.S.; Grinevich, V. Evolution of oxytocin pathways in the brain of vertebrates. Front. Behav. Neurosci. 2014, 8, 31. [Google Scholar] [CrossRef]
- Hasan, M.T.; Althammer, F.; Silva da Gouveia, M.; Goyon, S.; Eliava, M.; Lefevre, A.; Kerspern, D.; Schimmer, J.; Raftogianni, A.; Wahis, J.; et al. A Fear Memory Engram and Its Plasticity in the Hypothalamic Oxytocin System. Neuron 2019, 103, 133–146.e8. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, transport, and release of posterior pituitary hormones. Science 1980, 207, 373–378. [Google Scholar] [CrossRef]
- Sheldrick, E.L.; Flint, A.P. Post-translational processing of oxytocin-neurophysin prohormone in the ovine corpus luteum: Activity of peptidyl glycine alpha-amidating mono-oxygenase and concentrations of its cofactor, ascorbic acid. J. Endocrinol. 1989, 122, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, R.; Jones, M. Memorial Lecture. Intracerebrally released vasopressin and oxytocin: Measurement, mechanisms and behavioural consequences. J. Neuroendocrinol. 1995, 7, 243–253. [Google Scholar] [CrossRef]
- Sjöholm, I. Oxytocinase and its possible significance in the degradation of oxytocin during pregnancy. FEBS Lett. 1969, 4, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Tobin, V.A.; Arechaga, G.; Brunton, P.J.; Russell, J.A.; Leng, G.; Ludwig, M.; Douglas, A.J. Oxytocinase in the female rat hypothalamus: A novel mechanism controlling oxytocin neurones during lactation. J. Neuroendocrinol. 2014, 26, 205–216. [Google Scholar] [CrossRef]
- Inoue, T.; Kimura, T.; Azuma, C.; Inazawa, J.; Takemura, M.; Kikuchi, T.; Kubota, Y.; Ogita, K.; Saji, F. Structural organization of the human oxytocin receptor gene. J. Biol. Chem. 1994, 269, 32451–32456. [Google Scholar] [CrossRef]
- Verbalis, J.G.; Mangione, M.P.; Stricker, E.M. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 1991, 128, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Manning, M.; Stoev, S.; Chini, B.; Durroux, T.; Mouillac, B.; Guillon, G. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: Research tools and potential therapeutic agents. Prog. Brain Res. 2008, 170, 473–512. [Google Scholar]
- Daza, O.D.; Lewicka, M.; Larhammar, D. The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes. Gen. Comp. Endocrinol. 2012, 175, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Nersesyan, Y.; Demirkhanyan, L.; Cabezas-Bratesco, D.; Oakes, V.; Kusuda, R.; Dawson, T.; Sun, X.; Cao, C.; Cohen, A.M.; Chelluboina, B.; et al. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1. Cell Rep. 2017, 21, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Wee, C.L.; Nikitchenko, M.; Wang, W.C.; Luks-Morgan, S.J.; Song, E.; Gagnon, J.A.; Randlett, O.; Bianco, I.H.; Lacoste, A.M.B.; Glushenkova, E.; et al. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat. Neurosci. 2019, 22, 1477–1492. [Google Scholar] [CrossRef]
- Meguro, Y.; Miyano, K.; Hirayama, S.; Yoshida, Y.; Ishibashi, N.; Ogino, T.; Fujii, Y.; Manabe, S.; Eto, M.; Nonaka, M.; et al. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J. Pharmacol. Sci. 2018, 137, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, M.; Landgraf, R. Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiol. Behav. 1994, 55, 145–149. [Google Scholar] [CrossRef]
- Neumann, I.D. Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamo-pituitary-adrenal axis. Prog. Brain Res. 2002, 139, 147–162. [Google Scholar] [PubMed]
- Amico, J.A.; Mantella, R.C.; Vollmer, R.R.; Li, X. Anxiety and stress responses in female oxytocin deficient mice. J. Neuroendocrinol. 2004, 16, 319–324. [Google Scholar] [CrossRef]
- Zhu, L.; Onaka, T. Involvement of medullary A2 noradrenergic neurons in the activation of oxytocin neurons after conditioned fear stimuli. Eur. J. Neurosci. 2002, 16, 2186–2198. [Google Scholar] [CrossRef]
- Martinon, D.; Paulina Lis, P.; Roman, A.N.; Tornesi, P.; Applebey, S.V.; Buechner, G.; Olivera, V.; Dabrowska, J. Oxytocin receptors in the dorsolateral bed nucleus of the stria terminalis (BNST) bias fear learning toward temporally predictable cued fear. Transl. Psychiatry 2019, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Lindenberg, A.; Domes, G.; Kirsch, P.; Heinrichs, M. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat. Rev. Neurosci. 2011, 12, 524–538. [Google Scholar] [CrossRef]
- Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 2005, 25, 11489–11493. [Google Scholar] [CrossRef] [Green Version]
- Labuschagne, I.; Phan, K.L.; Wood, A.; Angstadt, M.; Chua, P.; Heinrichs, M.; Stout, J.C.; Nathan, P.J. Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology 2010, 35, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Gorka, S.M.; Fitzgerald, D.A.; Labuschagne, I.; Hosanagar, A.; Wood, A.G.; Nathan, P.J.; Phan, K.L. Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology 2015, 40, 278–286. [Google Scholar] [CrossRef]
- Koch, S.B.J.; van Zuiden, M.; Nawijn, L.; Frijling, J.L.; Veltman, D.J.; Olff, M. Intranasal Oxytocin Normalizes Amygdala Functional Connectivity in Posttraumatic Stress Disorder. Neuropsychopharmacology 2016, 41, 2041–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labuschagne, I.; Phan, K.L.; Wood, A.; Angstadt, M.; Chua, P.; Heinrichs, M.; Stout, J.C.; Nathan, P.J. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int. J. Neuropsychopharmacol. 2012, 15, 883–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodhia, S.; Hosanagar, A.; Fitzgerald, D.A.; Labuschagne, I.; Wood, A.G.; Nathan, P.J.; Phan, K.L. Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder. Neuropsychopharmacology 2014, 39, 2061–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frijling, J.L.; van Zuiden, M.; Koch, S.B.; Nawijn, L.; Goslings, J.C.; Luitse, J.S.; Biesheuvel, T.H.; Honig, A.; Bakker, F.C.; Denys, D.; et al. Efficacy of oxytocin administration early after psychotrauma in preventing the development of PTSD: Study protocol of a randomized controlled trial. BMC Psychiatry 2014, 14, 92. [Google Scholar] [CrossRef] [Green Version]
- Frijling, J.L. Preventing PTSD with oxytocin: Effects of oxytocin administration on fear neurocircuitry and PTSD symptom development in recently trauma-exposed individuals. Eur. J. Psychotraumatol. 2017, 8, 1302652. [Google Scholar] [CrossRef]
- Eckstein, M.; Becker, B.; Scheele, D.; Scholz, C.; Preckel, K.; Schlaepfer, T.E.; Grinevich, V.; Kendrick, K.M.; Maier, W.; Hurlemann, R. Oxytocin facilitates the extinction of conditioned fear in humans. Biol. Psychiatry 2015, 78, 194–202. [Google Scholar] [CrossRef]
- Bouton, M.E. Context and behavioral processes in extinction. Learn Mem. 2004, 11, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Myers, K.M.; Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 2007, 12, 120–150. [Google Scholar] [CrossRef] [Green Version]
- Quirk, G.J.; Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 2008, 33, 56–72. [Google Scholar] [CrossRef]
- Baldi, E.; Bucherelli, C. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci. Biobehav. Rev. 2015, 53, 160–190. [Google Scholar] [CrossRef] [PubMed]
- Raio, C.M.; Phelps, E.A. The influence of acute stress on the regulation of conditioned fear. Neurobiol. Stress 2015, 1, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Maren, S.; Holmes, A. Stress and Fear Extinction. Neuropsychopharmacology 2016, 41, 58–79. [Google Scholar] [CrossRef] [Green Version]
- Stockhorst, U.; Antov, M.I. Modulation of Fear Extinction by Stress, Stress Hormones and Estradiol: A Review. Front. Behav. Neurosci. 2015, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Long, V.A.; Fanselow, M.S. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction. Stress 2012, 15, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Morinobu, S.; Takei, S.; Fuchikami, M.; Matsuki, A.; Yamawaki, S.; Liberzon, I. Single prolonged stress: Toward an animal model of posttraumatic stress disorder. Depress. Anxiety 2009, 26, 1110–1117. [Google Scholar] [CrossRef]
- Kohda, K.; Harada, K.; Kato, K.; Hoshino, A.; Motohashi, J.; Yamaji, T.; Morinobu, S.; Matsuoka, N.; Kato, N. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: A putative post-traumatic stress disorder model. Neuroscience 2007, 148, 22–33. [Google Scholar] [CrossRef]
- Wang, S.C.; Lin, C.C.; Tzeng, N.S.; Tung, C.S.; Liu, Y.P. Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J. Biomed. Sci. 2019, 26, 26. [Google Scholar] [CrossRef] [Green Version]
- Ledgerwood, L.; Richardson, R.; Cranney, J. Effects of D-cycloserine on extinction of conditioned freezing. Behav. Neurosci. 2003, 117, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, V.; Westbrook, R.F. Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learn Mem. 2008, 15, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra-Mercado, D.; Padilla-Coreano, N.; Quirk, G.J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 2011, 36, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Holmes, N.M.; Parkes, S.L.; Killcross, A.S.; Westbrook, R.F. The basolateral amygdala is critical for learning about neutral stimuli in the presence of danger, and the perirhinal cortex is critical in the absence of danger. J. Neurosci. 2013, 33, 13112–13125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falls, W.A.; Miserendino, M.J.; Davis, M. Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 1992, 12, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Myskiw, J.C.; Izquierdo, I.; Furini, C.R. Modulation of the extinction of fear learning. Brain Res. Bull. 2014, 105, 61–69. [Google Scholar] [CrossRef]
- Morgan, M.A.; Romanski, L.M.; LeDoux, J.E. Extinction of emotional learning: Contribution of medial prefrontal cortex. Neurosci. Lett. 1993, 163, 109–113. [Google Scholar] [CrossRef]
- Kim, J.J.; Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 1992, 256, 675–677. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.G.; LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 1992, 106, 274–285. [Google Scholar] [CrossRef]
- Milad, M.R.; Quirk, G.J. Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol. 2012, 63, 129–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herry, C.; Ciocchi, A.; Senn, V.; Demmou, L.; Müller, C.; Lüthi, A. Switching on and off fear by distinct neuronal circuits. Nature 2008, 454, 600–606. [Google Scholar] [CrossRef]
- Herry, C.; Mons, N. Resistance to extinction is associated with impaired immediate early gene induction in medial prefrontal cortex and amygdala. Eur. J. Neurosci. 2004, 20, 781–790. [Google Scholar] [CrossRef]
- Muigg, P.; Hetzenauer, A.; Hauer, G.; Hauschild, M.; Gaburro, S.; Frank, E.; Landgraf, R.; Singewald, N. Impaired extinction of learned fear in rats selectively bred for high anxiety—Evidence of altered neuronal processing in prefrontal-amygdala pathways. Eur. J. Neurosci. 2008, 28, 2299–2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muigg, P.; Hetzenauer, A.; Hauer, G.; Hauschild, M.; Gaburro, S.; Frank, E.; Landgraf, R.; Singewald, N. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 2014, 81, 428–437. [Google Scholar]
- Chhatwal, J.P.; Myers, K.M.; Ressler, K.J.; Davis, M. Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci. 2005, 25, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Heldt, S.A.; Ressler, K.J. Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur. J. Neurosci. 2007, 26, 3631–3644. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.A.; Prange, A.J. Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc. Natl. Acad. Sci. USA 1979, 76, 6661–6665. [Google Scholar] [CrossRef] [Green Version]
- Mascagni, F.; McDonald, A.J. Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala. Brain Res. 2003, 976, 171–184. [Google Scholar] [CrossRef]
- Duvarci, S.; Pare, D. Amygdala microcircuits controlling learned fear. Neuron 2014, 82, 966–980. [Google Scholar] [CrossRef] [Green Version]
- Duvarci, S.; Popa, D.; Paré, D. Central amygdala activity during fear conditioning. J. Neurosci. 2011, 31, 289–294. [Google Scholar] [CrossRef]
- Harris, J.A.; Westbrook, R.F. Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 1998, 140, 105–115. [Google Scholar] [CrossRef]
- Hart, G.; Harris, J.A.; Westbrook, R.F. Systemic or intra-amygdala injection of a benzodiazepine (midazolam) impairs extinction but spares re-extinction of conditioned fear responses. Learn Mem. 2009, 16, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Likhtik, E.; Popa, D.; Apergis-Schoute, J.; Fidacaro, G.A.; Paré, D. Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008, 454, 642–645. [Google Scholar] [CrossRef] [Green Version]
- Knapska, E.; Maren, S. Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn Mem. 2009, 16, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Busti, D.; Geracitano, R.; Whittle, N.; Dalezios, Y.; Mańko, M.; Kaufmann, W.; Sätzler, K.; Singewald, N.; Capogna, M.; Ferraguti, F. Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J. Neurosci. 2011, 31, 5131–5144. [Google Scholar] [CrossRef]
- Amano, T.; Unal, C.T.; Paré, D. Synaptic correlates of fear extinction in the amygdala. Nat. Neurosci. 2010, 13, 489–494. [Google Scholar] [CrossRef]
- Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005, 308, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Cassell, M.D.; Freedman, L.J.; Shi, C. The intrinsic organization of the central extended amygdala. Ann. N. Y. Acad. Sci. 1999, 877, 217–241. [Google Scholar] [CrossRef] [PubMed]
- Ciocchi, S.; Herry, C.; Grenier, F.; Wolff, S.B.; Letzkus, J.J.; Vlachos, I.; Ehrlich, I.; Sprengel, R.; Deisseroth, K.; Stadler, M.B.; et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 2010, 468, 277–282. [Google Scholar] [CrossRef]
- Haubensak, W.; Kunwar, P.S.; Cai, H.; Ciocchi, S.; Wall, N.R.; Ponnusamy, R.; Biag, J.; Dong, H.W.; Deisseroth, K.; Callaway, E.M.; et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010, 468, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Perry, C.J.; Ganella, D.E.; Madsen, H.B. Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol. Learn. Mem. 2017, 138, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Sotres-Bayon, F.; Quirk, G.J. Prefrontal control of fear: More than just extinction. Curr. Opin. Neurobiol. 2010, 20, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, K.A.; Quirk, G.J. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 2007, 27, 840–844. [Google Scholar] [CrossRef] [Green Version]
- Burgos-Robles, A.; Vidal-Gonzalez, I.; Quirk, G.J. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J. Neurosci. 2009, 29, 8474–8482. [Google Scholar] [CrossRef]
- Rodriguez-Romaguera, J.; Sotres-Bayon, F.; Mueller, D.; Quirk, G.J. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction. Biol. Psychiatry 2009, 65, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.I.; Resstel, L.B.; Guimarães, F.S. Involvement of the prelimbic prefrontal cortex on cannabidiol-induced attenuation of contextual conditioned fear in rats. Behav. Brain Res. 2010, 207, 105–111. [Google Scholar] [CrossRef]
- Orsini, C.A.; Yan, C.; Maren, S. Ensemble coding of context-dependent fear memory in the amygdala. Front. Behav. Neurosci. 2013, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004, 51, 32–58. [Google Scholar] [CrossRef]
- Likhtik, E.; Pelletier, J.G.; Paz, R.; Paré, D. Prefrontal control of the amygdala. J. Neurosci. 2005, 25, 7429–7437. [Google Scholar] [CrossRef] [Green Version]
- Courtin, J.; Chaudun, F.; Rozeske, R.R.; Karalis, N.; Gonzalez-Campo, C.; Wurtz, H.; Abdi, A.; Baufreton, J.; Bienvenu, T.C.; Herry, C. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 2014, 505, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Milad, M.R.; Quirk, G.J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002, 420, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Do-Monte, F.H.; Manzano-Nieves, G.; Quiñones-Laracuente, K.; Ramos-Medina, L.; Quirk, G.J. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J. Neurosci. 2015, 35, 3607–3615. [Google Scholar] [CrossRef]
- Thompson, B.M.; Baratta, M.V.; Biedenkapp, J.C.; Rudy, J.W.; Watkins, L.R.; Maier, S.F. Activation of the infralimbic cortex in a fear context enhances extinction learning. Learn Mem. 2010, 17, 591–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.H.; Maren, S. Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learn Mem. 2011, 18, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Santini, E.; Quirk, G.J.; Porter, J.T. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J. Neurosci. 2008, 28, 4028–4036. [Google Scholar] [CrossRef] [Green Version]
- Milad, M.R.; Wright, C.I.; Orr, S.P.; Pitman, R.K.; Quirk, G.J.; Rauch, S.L. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry 2007, 62, 446–454. [Google Scholar] [CrossRef]
- Gottfried, J.A.; Dolan, R.J. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat. Neurosci. 2004, 7, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Kalisch, R.; Korenfeld, E.; Stephan, K.E.; Weiskopf, N.; Seymour, B.; Dolan, R.J. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J. Neurosci. 2006, 26, 9503–9511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.; Armony, J.L. Influence of trait anxiety on brain activity during the acquisition and extinction of aversive conditioning. Psychol Med. 2009, 39, 255–265. [Google Scholar] [CrossRef]
- Phelps, E.A.; Delgado, M.R.; Nearing, K.I.; LeDoux, J.E. Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 2004, 43, 897–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milad, M.R.; Quinn, B.T.; Pitman, R.K.; Orr, S.P.; Fischl, B.; Rauch, S.L. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc. Natl. Acad. Sci. USA 2005, 102, 10706–10711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marek, R.; Xu, L.; Sullivan, R.K.P.; Sah, P. Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat. Neurosci. 2018, 21, 654–658. [Google Scholar] [CrossRef]
- Bukalo, O.; Pinard, C.R.; Silverstein, S.; Brehm, C.; Hartley, N.D.; Whittle, N.; Colacicco, G.; Busch, E.; Patel, S.; Singewald, N.; et al. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci. Adv 2015, 1, 2567. [Google Scholar] [CrossRef] [Green Version]
- Quirk, G.J.; Likhtik, E.; Pelletier, J.G.; Paré, D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J. Neurosci. 2003, 23, 8800–8807. [Google Scholar] [CrossRef]
- An, B.; Kim, J.; Park, K.; Lee, S.; Song, S.; Choi, S. Amount of fear extinction changes its underlying mechanisms. eLife 2017, 6, 2662.e1. [Google Scholar] [CrossRef]
- Berretta, S.; Pantazopoulos, H.; Caldera, M.; Pantazopoulos, P.; Paré, D. Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 2005, 132, 943–953. [Google Scholar] [CrossRef] [Green Version]
- Giustino, T.F.; Maren, S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front. Behav. Neurosci. 2015, 9, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsini, C.A.; Kim, J.H.; Knapska, E.; Maren, S. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J. Neurosci. 2011, 31, 17269–17277. [Google Scholar] [CrossRef] [Green Version]
- Orsini, C.A.; Maren, S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci. Biobehav. Rev. 2012, 36, 1773–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoran, K.A.; Maren, S. Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J. Neurosci. 2005, 25, 8978–8987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Li, Z.D.; Chen, Z.X.; Wang, X.G.; Shi, Y.W.; Zhao, H. Fear response failed to return in AAB extinction paradigm accompanied with increased NR2B and GluR1 per845 in hippocampal CA1. Neuroscience 2014, 260, 1–11. [Google Scholar] [CrossRef]
- Berlau, D.J.; McGaugh, J.L. Enhancement of extinction memory consolidation: The role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol. Learn. Mem. 2006, 86, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, K.A.; Maren, S. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci. 2001, 21, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, K.A.; Maren, S. Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learn Mem. 2004, 11, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Hobin, J.A.; Ji, J.; Maren, S. Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 2006, 16, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Gabbott, P.L.; Warner, T.A.; Jays, P.R.; Bacon, S.J. Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res. 2003, 993, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.R.; Nearing, K.I.; Ledoux, J.E.; Phelps, E.A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 2008, 59, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Mitra, R.; Jadhav, S.; McEwen, B.S.; Vyas, A.; Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA 2005, 102, 9371–9376. [Google Scholar] [CrossRef] [Green Version]
- Vyas, A.; Jadhav, S.; Chattarji, S. Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 2006, 143, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Padival, M.A.; Blume, S.R.; Rosenkranz, J.A. Repeated restraint stress exerts different impact on structure of neurons in the lateral and basal nuclei of the amygdala. Neuroscience 2013, 246, 230–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillo, C.A.; Risher, M.; Macht, V.A.; Bumgardner, A.L.; Hang, A.; Gabriel, C.; Mocaër, E.; Piroli, G.G.; Fadel, J.R.; Reagan, L.P. Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine. Neuroscience 2015, 284, 430–443. [Google Scholar] [CrossRef]
- Maroun, M.; Ioannides, P.J.; Bergman, K.L.; Kavushansky, A.; Holmes, A.; Wellman, C.L. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons. Eur. J. Neurosci. 2013, 38, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Maroun, M.; Richter-Levin, G. Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J. Neurosci. 2003, 23, 4406–4409. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, J.A.; Venheim, E.R.; Padival, M. Chronic stress causes amygdala hyperexcitability in rodents. Biol. Psychiatry 2010, 67, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Suvrathan, A.; Bennur, S.; Ghosh, S.; Tomar, A.; Anilkumar, S.; Chattarji, S. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130151. [Google Scholar] [CrossRef] [Green Version]
- Leuner, B.; Gould, E. Dendritic growth in medial prefrontal cortex and cognitive flexibility are enhanced during the postpartum period. J. Neurosci. 2010, 30, 13499–13503. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Berke, J.D.; Maren, S. Single-unit activity in the medial prefrontal cortex during immediate and delayed extinction of fear in rats. PLoS ONE 2010, 5, e11971. [Google Scholar] [CrossRef]
- Kim, S.C.; Jo, Y.S.; Kim, I.H.; Kim, H.; Choi, J.S. Lack of medial prefrontal cortex activation underlies the immediate extinction deficit. J. Neurosci. 2010, 30, 832–837. [Google Scholar] [CrossRef]
- Stafford, J.M.; Maughan, D.K.; Ilioi, E.C.; Lattal, K.M. Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits. Learn Mem. 2013, 20, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Judo, C.; Matsumoto, M.; Yamazaki, D.; Hiraide, S.; Yanagawa, Y.; Kimura, S.; Shimamura, K.; Togashi, H. Early stress exposure impairs synaptic potentiation in the rat medial prefrontal cortex underlying contextual fear extinction. Neuroscience 2010, 169, 1705–1714. [Google Scholar] [CrossRef]
- Ishikawa, S.; Saito, Y.; Yanagawa, Y.; Otani, S.; Hiraide, S.; Shimamura, K.; Matsumoto, M.; Togashi, H. Early postnatal stress alters extracellular signal-regulated kinase signaling in the corticolimbic system modulating emotional circuitry in adult rats. Eur. J. Neurosci. 2012, 35, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Spennato, G.; Nilsson-Todd, L.; Moreau, J.L.; Deschaux, O. Hippocampal low-frequency stimulation and chronic mild stress similarly disrupt fear extinction memory in rats. Neurobiol. Learn. Mem. 2008, 89, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Elands, J.; Barberis, C.; Jard, S.; Tribollet, E.; Dreifuss, J.J.; Bankowski, K.; Manning, M.; Sawyer, W.H. 125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2]OVT: A selective oxytocin receptor ligand. Eur. J. Pharmacol. 1988, 147, 197–207. [Google Scholar] [CrossRef]
- Tribollet, E.; Charpak, S.; Schmidt, A.; Dubois-Dauphin, M.; Dreifuss, J.J. Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J. Neurosci. 1989, 9, 1764–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insel, T.R.; Young, L.J. The neurobiology of attachment. Nat. Rev. Neurosci. 2001, 2, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Görlich, A.; Heintz, N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 2014, 159, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, M.; Takayanagi, Y.; Inoue, K.; Kimura, T.; Young, L.J.; Onaka, T.; Nishimori, K. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 2009, 29, 2259–2271. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev 2001, 81, 629–683. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.W.; Poehlmann, M.L.; Li, S.; Ratnaseelan, A.M.; Bredewold, R.; Veenema, A.H. Age and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat brain: Focus on the social decision-making network. Brain Struct. Funct. 2017, 222, 981–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccia, M.L.; Petrusz, P.; Suzuki, K.; Marson, L.; Pedersen, C.A. Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 2013, 253, 155–164. [Google Scholar] [CrossRef]
- Bale, T.L.; Davis, A.M.; Auger, A.P.; Dorsa, D.M.; McCarthy, M.M. CNS region-specific oxytocin receptor expression: Importance in regulation of anxiety and sex behavior. J. Neurosci. 2001, 21, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Missig, G.; Ayers, L.W.; Schulkin, J.; Rosen, J.B. Oxytocin reduces background anxiety in a fear-potentiated startle paradigm. Neuropsychopharmacology 2010, 35, 2607–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, I.D.; Slattery, D.A. Oxytocin in General Anxiety and Social Fear: A Translational Approach. Biol. Psychiatry 2016, 79, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, K.; Feifel, D. Oxytocin’s role in anxiety: A critical appraisal. Brain Res. 2014, 1580, 22–56. [Google Scholar] [CrossRef]
- Janeček, M.; Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res. 2019, 375, 143–172. [Google Scholar] [CrossRef]
- Toth, I.; Neumann, I.D.; Slattery, D.A. Central administration of oxytocin receptor ligands affects cued fear extinction in rats and mice in a timepoint-dependent manner. Psychopharmacology 2012, 223, 149–158. [Google Scholar] [CrossRef]
- Borland, J.M.; Aiani, L.M.; Norvelle, A.; Grantham, K.N.; O’Laughlin, K.; Terranova, J.I.; Frantz, K.J.; Albers, H.E. Sex-dependent regulation of social reward by oxytocin receptors in the ventral tegmental area. Neuropsychopharmacology 2019, 44, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Eskandarian, S.; Vafaei, A.A.; Vaezi, G.H.; Taherian, F.; Kashefi, A.; Rashidy-Pour, A. Effects of systemic administration of oxytocin on contextual fear extinction in a rat model of post-traumatic stress disorder. Basic Clin. Neurosci. 2013, 4, 315–322. [Google Scholar]
- Wang, S.C.; Lin, C.C.; Chen, C.C.; Tzeng, N.S.; Liu, Y.P. Effects of Oxytocin on Fear Memory and Neuroinflammation in a Rodent Model of Posttraumatic Stress Disorder. Int. J. Mol Sci. 2018, 19, 3848. [Google Scholar] [CrossRef] [Green Version]
- Acheson, D.; Feifel, D.; de Wilde, S.; McKinney, R.; Lohr, J.; Risbrough, V. The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology 2013, 229, 199–208. [Google Scholar] [CrossRef]
- de Oliveira, L.F.; Camboim, C.; Diehl, F.; Consiglio, A.R.; Quillfeldt, J.A. Glucocorticoid-mediated effects of systemic oxytocin upon memory retrieval. Neurobiol. Learn. Mem. 2007, 87, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.; Gonzalez-Lima, F. Behavioral effects of metyrapone on Pavlovian extinction. Neurosci. Lett. 2004, 371, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Young, W.S.; Li, J.; Wersinger, S.R.; Palkovits, M. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 2006, 143, 1031–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahoud, N.; Maroun, M. Oxytocinergic manipulations in corticolimbic circuit differentially affect fear acquisition and extinction. Psychoneuroendocrinology 2013, 38, 2184–2195. [Google Scholar] [CrossRef]
- Campbell-Smith, E.J.; Holmes, N.M.; Lingawi, N.W.; Panayi, M.C.; Westbrook, R.F. Oxytocin signaling in basolateral and central amygdala nuclei differentially regulates the acquisition, expression, and extinction of context-conditioned fear in rats. Learn Mem. 2015, 22, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viviani, D.; Charlet, A.; van den Burg, E.; Robinet, C.; Hurni, N.; Abatis, M.; Magara, F.; Stoop, R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 2011, 333, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunduz-Cinar, O.; Brockway, E.T.; Castillo, L.I.; Pollack, G.A.; Erguven, T.; Holmes, A. Selective sub-nucleus effects of intra-amygdala oxytocin on fear extinction. Behav. Brain Res. 2020, 393, 112798. [Google Scholar] [CrossRef]
- Stamatakis, A.; Manatos, V.; Kalpachidou, T.; Stylianopoulou, F. Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat. Brain Struct. Funct. 2016, 221, 4141–4157. [Google Scholar] [CrossRef]
- Burkett, J.P.; Andari, E.; Johnson, Z.V.; Curry, D.C.; de Waal, F.B.; Young, L.J. Oxytocin-dependent consolation behavior in rodents. Science 2016, 351, 375–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, C.; Jorgensen, W.; Brown, C.; Fardell, J.; Koehbach, J.; Gruber, C.W.; Kassiou, M.; Hunt, G.E.; McGregor, I.S. The nonpeptide oxytocin receptor agonist WAY 267,464: Receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J. Neuroendocrinol. 2012, 24, 1012–1029. [Google Scholar] [CrossRef] [PubMed]
- Jurek, B.; Neumann, I.D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol. Rev. 2018, 98, 1805–1908. [Google Scholar] [CrossRef]
- Amir, A.; Amano, T.; Pare, D. Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. J. Neurophysiol. 2011, 105, 3054–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittle, N.; Hauschild, M.; Lubec, G.; Holmes, A.; Singewald, N. Rescue of impaired fear extinction and normalization of cortico-amygdala circuit dysfunction in a genetic mouse model by dietary zinc restriction. J. Neurosci. 2010, 30, 13586–13596. [Google Scholar] [CrossRef] [PubMed]
- Camp, M.C.; Macpherson, K.P.; Lederle, L.; Graybeal, C.; Gaburro, S.; Debrouse, L.M.; Ihne, J.L.; Bravo, J.A.; O’Connor, R.M.; Ciocchi, S.; et al. Genetic strain differences in learned fear inhibition associated with variation in neuroendocrine, autonomic, and amygdala dendritic phenotypes. Neuropsychopharmacology 2012, 37, 1534–1547. [Google Scholar] [CrossRef]
- Singewald, N.; Holmes, A. Rodent models of impaired fear extinction. Psychopharmacology 2019, 236, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brill-Maoz, N.; Maroun, M. Extinction of fear is facilitated by social presence: Synergism with prefrontal oxytocin. Psychoneuroendocrinology 2016, 66, 75–81. [Google Scholar] [CrossRef]
- Kritman, M.; Lahoud, N.; Maroun, M. Oxytocin in the amygdala and not the prefrontal cortex enhances fear and impairs extinction in the juvenile rat. Neurobiol. Learn. Mem. 2017, 141, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Herry, C.; Ferraguti, F.; Singewald, N.; Letzkus, J.J.; Ehrlich, I.; Lüthi, A. Neuronal circuits of fear extinction. Eur. J. Neurosci. 2010, 31, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Robles, A.; Vidal-Gonzalez, I.; Santini, E.; Quirk, G.J. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 2007, 53, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Herry, C.; Garcia, R. Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J. Neurosci. 2002, 22, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Vouimba, R.M.; Maroun, M. Learning-induced changes in mPFC-BLA connections after fear conditioning, extinction, and reinstatement of fear. Neuropsychopharmacology 2011, 36, 2276–2285. [Google Scholar] [CrossRef] [PubMed]
- Maroun, M.; Kavushansky, A.; Holmes, A.; Wellman, C.; Motanis, H. Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex. PLoS ONE 2012, 7, e35853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninan, I. Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex. J. Neurochem. 2011, 119, 324–331. [Google Scholar] [CrossRef]
- Nuss, P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr. Dis. Treat. 2015, 11, 165–175. [Google Scholar]
- Smith, A.S.; Tabbaa, M.; Lei, K.; Eastham, P.; Butler, M.J.; Linton, L.; Altshuler, R.; Liu, Y.; Wang, Z. Local oxytocin tempers anxiety by activating GABAA receptors in the hypothalamic paraventricular nucleus. Psychoneuroendocrinology 2016, 63, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Mody, I.; Pearce, R.A. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci. 2004, 27, 569–575. [Google Scholar] [CrossRef]
- Farrant, M.; Nusser, Z. Variations on an inhibitory theme: Phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 2005, 6, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Bowery, N.G. Historical perspective and emergence of the GABAB receptor. Adv. Pharmacol. 2010, 58, 1–18. [Google Scholar] [PubMed]
- Bowen, M.T.; Peters, S.T.; Absalom, N.; Chebib, M.; Neumann, I.D.; McGregor, I.S. Oxytocin prevents ethanol actions at δ subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats. Proc. Natl. Acad. Sci. USA 2015, 112, 3104–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Han, W.Y.; Yang, J.Y.; Wang, L.H.; Dong, Y.X.; Wang, F.; Song, M.; Wu, C.F. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain. Addict. Biol. 2012, 17, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Sabihi, S.; Dong, S.M.; Maurer, S.D.; Post, C.; Leuner, B. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology 2017, 125, 1–12. [Google Scholar] [CrossRef]
- Farb, D.H.; Ratner, M.H. Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacol. Rev. 2014, 66, 1002–1032. [Google Scholar] [CrossRef] [Green Version]
- Viviani, D.; Terrettaz, T.; Magara, F.; Stoop, R. Oxytocin enhances the inhibitory effects of diazepam. in the rat central medial amygdala. Neuropharmacology 2010, 58, 62–68. [Google Scholar] [CrossRef]
- Kreuder, A.K.; Scheele, D.; Schultz, J.; Hennig, J.; Marsh, N.; Dellert, T.; Ettinger, U.; Philipsen, A.; Babasiz, M.; Herscheid, A.; et al. Common and dissociable effects of oxytocin and lorazepam. on the neurocircuitry of fear. Proc. Natl. Acad. Sci. USA 2020, 117, 11781–11787. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Feng, X.; Long, C.; Schiller, D. Post-retrieval oxytocin facilitates next day extinction of threat memory in humans. Psychopharmacology 2019, 236, 293–301. [Google Scholar] [CrossRef]
- Guastella, A.J.; Howard, A.L.; Dadds, M.R.; Mitchell, P.; Carson, D.S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 2009, 34, 917–923. [Google Scholar] [CrossRef]
- Guastella, A.J.; Graustella, A.J.; MacLeod, C. A critical review of the influence of oxytocin nasal spray on social cognition in humans: Evidence and future directions. Horm Behav. 2012, 61, 410–418. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, E.; Costa, A.; Rani, B.; Passani, M.B.; Blandina, P.; Romano, A.; Provensi, G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? Int. J. Mol. Sci. 2021, 22, 10000. https://doi.org/10.3390/ijms221810000
Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A, Provensi G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? International Journal of Molecular Sciences. 2021; 22(18):10000. https://doi.org/10.3390/ijms221810000
Chicago/Turabian StyleBaldi, Elisabetta, Alessia Costa, Barbara Rani, Maria Beatrice Passani, Patrizio Blandina, Adele Romano, and Gustavo Provensi. 2021. "Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders?" International Journal of Molecular Sciences 22, no. 18: 10000. https://doi.org/10.3390/ijms221810000
APA StyleBaldi, E., Costa, A., Rani, B., Passani, M. B., Blandina, P., Romano, A., & Provensi, G. (2021). Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? International Journal of Molecular Sciences, 22(18), 10000. https://doi.org/10.3390/ijms221810000