Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid
Abstract
:1. Introduction
2. Results
2.1. Fluorescence Spectroscopic Analysis of Tumor Necrosis in Clinical Samples
2.2. Fluorescence Spectroscopic Evaluation of Tumor Necrosis in a Murine Model
2.3. HPLC Profiles of Porphyrins in Tissues and Fluorescence Spectra of Pure Chemicals
3. Discussion
4. Materials and Methods
4.1. Chemical Agents
4.2. Clinical Study
4.3. Cell Culture and Tumor-Bearing Mouse Model
4.4. 5-ALA Treatment of Mice
4.5. Fluorescence and Histological Analysis
4.6. HPLC Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Murayama, Y.; Ichikawa, D.; Koizumi, N.; Komatsu, S.; Shiozaki, A.; Kuriu, Y.; Ikoma, H.; Kubota, T.; Nakanishi, M.; Harada, Y.; et al. Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid. Anticancer Res. 2012, 32, 5421–5427. [Google Scholar]
- Koizumi, N.; Harada, Y.; Minamikawa, T.; Tanaka, H.; Otsuji, E.; Takamatsu, T. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid. World J. Gastroenterol. 2016, 22, 1289–1296. [Google Scholar] [CrossRef]
- Boschi, A.; Della Puppa, A. 5-ALA fluorescence on tumors different from malignant gliomas. Review of the literature and our experience. J. Neurosurg. Sci. 2019, 63, 661–669. [Google Scholar] [CrossRef]
- Yamamoto, S.; Fukuhara, H.; Karashima, T.; Inoue, K. Real-world experience with 5-aminolevulinic acid for the photodynamic diagnosis of bladder cancer: Diagnostic accuracy and safety. Photodiagnosis Photodyn. Ther. 2020, 32, 101999. [Google Scholar] [CrossRef] [PubMed]
- Monnier, P.; Savary, M.; Fontolliet, C.; Wagnieres, G.; Chatelain, A.; Cornaz, P.; Depeursinge, C.; Van den Bergh, H. Photodetection and photodynamic therapy of ’early’ squamous cell carcinomas of the pharynx, oesophagus and tracheo-bronchial tree. Lasers Med. Sci. 1990, 5, 149–169. [Google Scholar] [CrossRef]
- Matsumoto, T.; Murayama, Y.; Matsuo, H.; Okochi, K.; Koshiishi, N.; Harada, Y.; Tanaka, H.; Takamatsu, T.; Otsuji, E. 5-ALA-assistant automated detection of lymph node metastasis in gastric cancer patients. Gastric Cancer 2020, 23, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishihara, R.; Katayama, Y.; Watanabe, T.; Yoshino, A.; Fukushima, T.; Sakatani, K. Quantitative spectroscopic analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas. Neurol. Med. Chir. 2007, 47, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Harada, Y.; Beika, M.; Koizumi, N.; Inoue, K.; Murayama, Y.; Kuriu, Y.; Nakanishi, M.; Minamikawa, T.; Yamaoka, Y.; et al. Detection of lymph node metastases in human colorectal cancer by using 5-aminolevulinic acid-induced protoporphyrin IX fluorescence with spectral unmixing. Int. J. Mol. Sci. 2013, 14, 23140–23152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizuka, M.; Abe, F.; Sano, Y.; Takahashi, K.; Inoue, K.; Nakajima, M.; Kohda, T.; Komatsu, N.; Ogura, S.; Tanaka, T. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 2011, 11, 358–365. [Google Scholar] [CrossRef]
- McNicholas, K.; MacGregor, M.N.; Gleadle, J.M. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br. J. Cancer 2019, 121, 631–639. [Google Scholar] [CrossRef]
- Van Hillegersberg, R.; Van den Berg, J.W.; Kort, W.J.; Terpstra, O.T.; Wilson, J.H. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology 1992, 103, 647–651. [Google Scholar] [CrossRef]
- Schoenfeld, N.; Epstein, O.; Lahav, M.; Mamet, R.; Shaklai, M.; Atsmon, A. The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer Lett. 1988, 43, 43–48. [Google Scholar] [CrossRef]
- Lax, S.F.; Kurman, R.J.; Pizer, E.S.; Wu, L.; Ronnett, B.M. A binary architectural grading system for uterine endometrial endometrioid carcinoma has superior reproducibility compared with FIGO grading and identifies subsets of advance-stage tumors with favorable and unfavorable prognosis. Am. J. Surg. Pathol. 2000, 24, 1201–1208. [Google Scholar] [CrossRef]
- Ling, Y.-H.; Chen, J.-W.; Wen, S.-H.; Huang, C.-Y.; Li, P.; Lu, L.-H.; Mei, J.; Li, S.-H.; Wei, W.; Cai, M.-Y.; et al. Tumor necrosis as a poor prognostic predictor on postoperative survival of patients with solitary small hepatocellular carcinoma. BMC Cancer 2020, 20, 607. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.; Kuroiwa, T.; Kajimoto, Y.; Miyashita, M.; Tanaka, H.; Tsuji, M. Fluorescence of non-neoplastic, magnetic resonance imaging-enhancing tissue by 5-aminolevulinic acid: Case report. Neurosurgery 2007, 61, E1101–E1103. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Harada, Y.; Beika, M.; Minamikawa, T.; Yamaoka, Y.; Dai, P.; Murayama, Y.; Yanagisawa, A.; Otsuji, E.; Tanaka, H.; et al. Highly sensitive fluorescence detection of metastatic lymph nodes of gastric cancer with photo-oxidation of protoporphyrin IX. Eur. J. Surg. Oncol. 2016, 42, 1236–1246. [Google Scholar] [CrossRef]
- Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weil, P.A. Harper’s Illustrated Biochemistry; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Minamikawa, T.; Matsuo, H.; Kato, Y.; Harada, Y.; Otsuji, E.; Yanagisawa, A.; Tanaka, H.; Takamatsu, T. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions. Sci. Rep. 2016, 6, 25530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pierro, E.; Brancaleoni, V.; Granata, F. Advances in understanding the pathogenesis of congenital erythropoietic porphyria. Br. J. Haematol. 2016, 173, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Thunell, S. Porphyrins, porphyrin metabolism and porphyrias. I. Update. Scand. J. Clin. Lab. Invest. 2000, 60, 509–540. [Google Scholar] [CrossRef]
- Urakawa, S.; Makino, T.; Yamasaki, M.; Tanaka, K.; Miyazaki, Y.; Takahashi, T.; Kurokawa, Y.; Motoori, M.; Kimura, Y.; Nakajima, K. Lymph node response to neoadjuvant chemotherapy as an independent prognostic factor in metastatic esophageal cancer. Ann. Surg. 2021, 273, 1141–1149. [Google Scholar] [CrossRef]
- Uchida, D.; Onoue, T.; Kuribayashi, N.; Tomizuka, Y.; Tamatani, T.; Nagai, H.; Miyamoto, Y. Blockade of CXCR4 in oral squamous cell carcinoma inhibits lymph node metastases. Eur. J. Cancer 2011, 47, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Uchida, D.; Begum, N.M.; Almofti, A.; Nakashiro, K.; Kawamata, H.; Tateishi, Y.; Hamakawa, H.; Yoshida, H.; Sato, M. Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp. Cell Res. 2003, 290, 289–302. [Google Scholar] [CrossRef]
- Supriatno; Harada, K.; Hoque, M.O.; Bando, T.; Yoshida, H.; Sato, M. Overexpression of p27(Kip1) induces growth arrest and apoptosis in an oral cancer cell line. Oral Oncol. 2002, 38, 730–736. [Google Scholar] [CrossRef]
- Murayama, Y.; Harada, Y.; Imaizumi, K.; Dai, P.; Nakano, K.; Okamoto, K.; Otsuji, E.; Takamatsu, T. Precise detection of lymph node metastases in mouse rectal cancer by using 5-aminolevulinic acid. Int. J. Cancer 2009, 125, 2256–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, J.; Ogura, S.; Shimajiri, S.; Nakano, Y.; Akiba, D.; Kitagawa, T.; Ueta, K.; Tanaka, T.; Nishizawa, S. 5-aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Mol. Med. Rep. 2015, 11, 1813–1819. [Google Scholar] [CrossRef]
Case Number | Age (Years) | Sex | Histology | Tumor Location | Tumor Depth (T) | Nodal Status (N) | Stage | Pre-Operative Chemotherapy |
---|---|---|---|---|---|---|---|---|
1 | 74 | Male | SCC | C15.4 | T3 | N1 | III | 5-FU/CDDP |
2 | 57 | Male | SCC | C15.0 | T3 | N1 | III | 5-FU/CDDP |
3 | 76 | Male | SCC | C15.3 | T3 | N3 | IVA | S-1 |
4 | 79 | Female | SCC | C15.0 | T3 | N1 | III | (-) |
5 | 64 | Male | SCC | C15.4 | T3 | N1 | III | 5-FU/CDDP |
6 | 67 | Male | SCC | C15.5 | T3 | N3 | IVA | 5-FU/CDDP |
7 | 72 | Male | SCC | C15.4 | T2 | N3 | IVA | 5-FU/CDDP |
8 | 56 | Male | SCC | C15.5 | T3 | N1 | III | 5-FU/CDDP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beika, M.; Harada, Y.; Minamikawa, T.; Yamaoka, Y.; Koizumi, N.; Murayama, Y.; Konishi, H.; Shiozaki, A.; Fujiwara, H.; Otsuji, E.; et al. Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid. Int. J. Mol. Sci. 2021, 22, 10121. https://doi.org/10.3390/ijms221810121
Beika M, Harada Y, Minamikawa T, Yamaoka Y, Koizumi N, Murayama Y, Konishi H, Shiozaki A, Fujiwara H, Otsuji E, et al. Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid. International Journal of Molecular Sciences. 2021; 22(18):10121. https://doi.org/10.3390/ijms221810121
Chicago/Turabian StyleBeika, Masatomo, Yoshinori Harada, Takeo Minamikawa, Yoshihisa Yamaoka, Noriaki Koizumi, Yasutoshi Murayama, Hirotaka Konishi, Atsushi Shiozaki, Hitoshi Fujiwara, Eigo Otsuji, and et al. 2021. "Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid" International Journal of Molecular Sciences 22, no. 18: 10121. https://doi.org/10.3390/ijms221810121
APA StyleBeika, M., Harada, Y., Minamikawa, T., Yamaoka, Y., Koizumi, N., Murayama, Y., Konishi, H., Shiozaki, A., Fujiwara, H., Otsuji, E., Takamatsu, T., & Tanaka, H. (2021). Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid. International Journal of Molecular Sciences, 22(18), 10121. https://doi.org/10.3390/ijms221810121