3-Arylaziridine-2-carboxylic Acid Derivatives and (3-Arylaziridin-2-yl)ketones: The Aziridination Approaches
Abstract
:1. Introduction
2. Aziridination of Imines (Path A)
- Aziridination of imines with a diazo carbene source (AZ reaction);
- Variations of aza-Darzen reaction;
- Aziridination with ylides.
2.1. Aziridination of Imines with a Diazo Carbene Source (Wulff’s AZ Reaction)
2.2. Aziridination of Imines with Other Carbene Precursors
- Active methylene compounds;
- Enolates derived from α-bromoesters and bases;
- Lithiated enamines;
- Guanidinium, ammonium or sulfonium ylides.
2.2.1. Variations of aza-Darzen Reaction
2.2.2. Ylides as Carbon Sources
3. Aziridination of Olefins (Path B)
- Evans aziridination with arylsulphonyliminophenyliodinanes;
- Oxidative aziridination with N-aminophtalimide and its analogues;
- Active hydroxylamines as aminating agents.
3.1. Evans Aziridination
3.2. Oxidative Aziridination
3.3. Hydroxylamines as Nitrogen Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tanner, D. Chiral Aziridines—Their Synthesis and Use in Stereoselective Transformations. Angew. Chem. Int. Ed. 1994, 33, 599–619. [Google Scholar] [CrossRef]
- Iynegar, B.S.; Dorr, R.T.; Remers, W.A. Chemical basis for the biological activity of imexon and related cyanoaziridines. J. Med. Chem. 2004, 47, 218–223. [Google Scholar] [CrossRef]
- Kalvinsh, I.Y.; Astapenok, E.B. Pharmaceutical Composition and Method for Treating Tumors Susceptible to 2-Carbamoylaziridine. U.S. Patent 4686215; Application US 06/693,171, 11 August 1987. [Google Scholar]
- Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Reddy, B.V. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell Biochem. 2011, 349, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Kuo, Y.-H.; Yang, N.-C.; Liu, C.-W.; Chang, W.-T.; Hsu, C.-L.J. Cytotoxic and apoptotic effects of caffeate derivatives on A549 human lung carcinoma cells. Chin. Med. Assoc. 2014, 77, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, C.-S.; Jeong, C.-H.; Choi, J.-S.; Kim, K.-J.; Jeong, J.-W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res. 2013, 27, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.; Žalubovskis, R. Derivatives of 2-Aziridinyl Ketones and Aziridinyl-2-Carboxylates. Chem. Heterocycl. Compd. 2016, 52, 535–537. [Google Scholar] [CrossRef]
- Singh, G.S. Advances in synthesis and chemistry of aziridines. Adv. Heterocycl. Chem. 2019, 129, 246–335. [Google Scholar] [CrossRef]
- Degennaro, L.; Trinchera, P.; Luisi, R. Recent Advances in the Stereoselective Synthesis of Aziridines. Chem. Rev. 2014, 114, 7881–7929. [Google Scholar] [CrossRef] [PubMed]
- Antilla, J.C.; Wulff, W.D. Catalytic Asymmetric Aziridination with Arylborate Catalysts Derived from VAPOL and VANOL Ligands. Angew. Chem. Int. Ed. 2000, 39, 4518–4521. [Google Scholar] [CrossRef]
- Loncaric, C.; Wulff, W.D. An Efficient Synthesis of (−)-Chloramphenicol via Asymmetric Catalytic Aziridination: A Comparison of Catalysts Prepared from Triphenylborate and Various Linear and Vaulted Biaryls. Org. Lett. 2001, 3, 3675–3678. [Google Scholar] [CrossRef]
- Wang, Z.; Li, F.; Zhao, L.; He, Q.; Chen, F.; Zheng, C. An efficient enantioselective synthesis of florfenicol via asymmetric aziridination. Tetrahedron 2011, 67, 9199–9203. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Y.; Wulff, W.D.J. Direct Access to N-H-Aziridines from Asymmetric Catalytic Aziridination with Borate Catalysts Derived from Vaulted Binaphthol and Vaulted Biphenanthrol Ligands. Am. Chem. Soc. 2007, 129, 7185–7194. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lee, Y.R.; Newman, C.A.; Wulff, W.D. Aziridinyl Vinyl Ketones from the Asymmetric Catalytic Aziridination Reaction. Eur. J. Org. Chem. 2007, 2068–2071. [Google Scholar] [CrossRef]
- Zhang, Y.; Desai, A.A.; Lu, Z.; Hu, G.; Ding, Z.; Wulff, W.D. Catalytic Asymmetric Aziridination with Borate Catalysts Derived from VANOL and VAPOL Ligands: Scope and Mechanistic Studies. Chem. Eur. J. 2008, 14, 3785–3803. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W.D. Mapping the Active Site in a Chemzyme: Diversity in the N-Substituent in the Catalytic Asymmetric Aziridination of Imines. Org. Lett. 2008, 10, 5429–5432. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Huang, L.; Huang, R.H.; Wulff, W.D. Evidence for a Boroxinate Based Brønsted Acid Derivative of VAPOL as the Active Catalyst in the Catalytic Asymmetric Aziridination Reaction. J. Am. Chem. Soc. 2009, 131, 15615–15617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, A.A.; Wulff, W.D. Controlled Diastereo- and Enantioselection in a Catalytic Asymmetric Aziridination. J. Am. Chem. Soc. 2010, 132, 13100–13103. [Google Scholar] [CrossRef]
- Vetticatt, M.J.; Desai, A.A.; Wulff, W.D. How the Binding of Substrates to a Chiral Polyborate Counterion Governs Diastereoselection in an Aziridination Reaction: H-Bonds in Equipoise. J. Am. Chem. Soc. 2010, 132, 13104–13107. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Wulff, W.D. Trimethylsilyldiazomethane as a Versatile Stitching Agent for the Introduction of Aziridines into Functionalized Organic Molecules. Org. Lett. 2010, 12, 4908–4911. [Google Scholar] [CrossRef]
- Mukherjee, M.; Gupta, A.K.; Lu, Z.; Zhang, Y.; Wulff, W.D. Seeking Passe-Partout in the Catalytic Asymmetric Aziridination of Imines: Evolving Toward Substrate Generality for a Single Chemzyme. J. Org. Chem. 2010, 75, 5643–5660. [Google Scholar] [CrossRef]
- Hu, G.; Gupta, A.K.; Huang, R.H.; Mukherjee, M.; Wulff, W.D. Substrate-Induced Covalent Assembly of a Chemzyme and Crystallographic Characterization of a Chemzyme−Substrate Complex. J. Am. Chem. Soc. 2010, 132, 14669–14675. [Google Scholar] [CrossRef]
- Huang, L.; Wulff, W.D. Catalytic Asymmetric Synthesis of Trisubstituted Aziridines. J. Am. Chem. Soc. 2011, 133, 8892–8895. [Google Scholar] [CrossRef]
- Desai, A.A.; Ren, H.; Mukherjee, M.; Wulff, W.D. Practical Gram Scale Asymmetric Catalysis with Boroxinate Brønsted Acids Derived from the VAPOL and VANOL Ligands. Org. Process Res. Dev. 2011, 15, 1108–1115. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Staples, R.J.; Huang, R.H.; Wulff, W.D. Double Stereodifferentiation in the Catalytic Asymmetric Aziridination of Imines Prepared from α-Chiral Amines. Chem. Eur. J. 2012, 18, 5302–5313. [Google Scholar] [CrossRef]
- Gupta, A.K.; Mukherjee, M.; Hu, G.; Wulff, W.D. BOROX Catalysis: Self-assembled amino-BOROX and imino-BOROX Chiral Brønsted Acids in a Five Component Catalyst Assembly/Catalytic Asymmetric Aziridination. J. Org. Chem. 2012, 77, 7932–7944. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Ding, Z.; Wulff, W.D. Vaulted Biaryls in Catalysis: A Structure–Activity Relationship Guided Tour of the Immanent Domain of the VANOL Ligand. Chem. Eur. J. 2013, 19, 15565–15571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.K.; Zhang, X.; Staples, R.J.; Wulff, W.D. The iso-VAPOL ligand: Synthesis, solid-state structure and its evaluation as a BOROX catalyst. Catal. Sci. Tecnol. 2014, 4, 4406–4415. [Google Scholar] [CrossRef]
- Hu, G.; Gupta, A.K.; Huang, L.; Zhao, W.; Yin, X.; Osminski, W.E.G.; Huang, R.H.; Wulff, W.D.; Izzo, J.A.; Vetticatt, M.J. Pyro-Borates, Spiro-Borates, and Boroxinates of BINOL—Assembly, Structures, and Reactivity. J. Am. Chem. Soc. 2017, 139, 10267–10285. [Google Scholar] [CrossRef] [PubMed]
- Bew, S.P.; Liddle, J.; Hughes, D.L.; Pesce, P.; Thurston, S.M. Chiral Brønsted Acid-Catalyzed Asymmetric Synthesis of N-Aryl-cis-aziridine Carboxylate Esters. Angew. Chem. Int. Ed. 2017, 56, 5322–5326. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Mukherjee, M.; Wulff, W.D. Multicomponent catalytic asymmetric aziridination of aldehydes. Org. Lett. 2011, 13, 5866–5869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Gupta, A.K.; Mukherjee, M.; Zheng, L.; Wulff, W.D. Multicomponent Catalytic Asymmetric Aziridination of Aldehydes. J. Org. Chem. 2017, 82, 13121–13140. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Galvez, A.O.; Maruoka, K. In Situ Assembled Boronate Ester Assisted Chiral Carboxylic Acid Catalyzed Asymmetric Trans-Aziridinations. J. Am. Chem. Soc. 2013, 135, 17667–17670. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Nakatsu, H.; Yamamoto, K.; Maruoka, K. Chiral Brønsted Acid-Catalyzed Asymmetric Trisubstituted Aziridine Synthesis Using α-Diazoacyl Oxazolidinones. J. Am. Chem. Soc. 2011, 133, 9730–9733. [Google Scholar] [CrossRef]
- Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. Highly Efficient Asymmetric Trans-Selective Aziridination of Diazoacetamides and N-Boc-imines Catalyzed by Chiral Brønsted Acids. Org. Lett. 2009, 11, 3036–3039. [Google Scholar] [CrossRef]
- Hashimoto, T.; Uchiyama, N.; Maruoka, K. Trans-Selective Asymmetric Aziridination of Diazoacetamides and N-Boc Imines Catalyzed by Axially Chiral Dicarboxylic Acid. J. Am. Chem. Soc. 2008, 130, 14380–14381. [Google Scholar] [CrossRef]
- Ranocchiari, M.; Mezzeti, A. Ru/PNNP-Catalyzed Asymmetric Imine Aziridination by Diazo Ester Activation. Organometallics 2009, 28, 3611–3613. [Google Scholar] [CrossRef]
- Egloff, J.; Ranocchiari, M.; Schira, A.; Schotes, C.; Mezzeti, A. Highly Enantioselective Ruthenium/PNNP-Catalyzed Imine Aziridination: Evidence of Carbene Transfer from a Diazoester Complex. Organometallics 2013, 32, 4690–4701. [Google Scholar] [CrossRef]
- Li, Y.; Chan, W.H.; Zhu, N.-Y.; Che, C.-M.; Kwong, H.-L. Ruthenium(II) Porphyrin Catalyzed Imine Aziridination and Crystal Structures of (meso-Tetrakis(pentafluorophenyl)porphyrinato)ruthenium(II) Complexes Containing PhNCH (p-ClPh), CPh2, and Pyridine Ligands. Organometallics 2004, 23, 54–66. [Google Scholar] [CrossRef]
- Redlich, M.; Hossain, M.M. Synthesis of asymmetric iron–pybox complexes and their application to aziridine forming reactions. Tetrahedron Lett. 2004, 45, 8987–8990. [Google Scholar] [CrossRef]
- Krumper, J.R.; Gerisch, M.; Suh, J.M.; Bergman, R.G.; Tilley, T.D. Monomeric Rhodium(II) Catalysts for the Preparation of Aziridines and Enantioselective Formation of Cyclopropanes from Ethyl Diazoacetate at Room Temperature. J. Org. Chem. 2003, 68, 9705–9710. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Nakatsu, H.; Watanabe, S.; Maruoka, K. Stereoselective Synthesis of Trisubstituted Aziridines with N-α-Diazoacyl Camphorsultam. Org. Lett. 2010, 12, 1668–1671. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Nakatsu, H.; Yamamoto, K.; Watanabe, S.; Maruoka, K. Asymmetric Trisubstituted Aziridination of Aldimines and Ketimines using N-α-Diazoacyl Camphorsultams. Chem. Asian J. 2011, 6, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Yan, M.; Huang, D. Catalyzed addition of diazoacetoacetates to imines: Synthesis of highly functionalized aziridines. Org. Biomol. Chem. 2009, 7, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xia, C.G.; Wang, H.-W. Synthesis of aziridines from imines and ethyl diazoacetate in room temperature ionic liquids. Tetrahedron Lett. 2003, 44, 2409–2411. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Rao, M.S. Bi(OTf)3-[Bmim]PF6: A novel and Reusable Catalytic System for the Synthesis of cis -Aziridine Carboxylates. Synthesis 2003, 9, 1387–1390. [Google Scholar] [CrossRef]
- Mazumdar, A.; Xue, Z.; Mayer, M.F. A Catalytic Synthesis of Aziridines without the Usual Byproducts. Synlett 2007, 13, 2025–2028. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Zhou, S.; Liz, Z.; Meng, X. Diastereoselective formation of aziridines from diazocarbonyl compounds and N-(O-pivaloylated D-galactosyl)benzylideneamines and ring-opening reactions with p-toluenethiol. Org. Biomol. Chem. 2014, 12, 3362–3365. [Google Scholar] [CrossRef] [PubMed]
- Borkin, D.; Carlson, A.; Török, B. K-10-Catalyzed Highly Diastereoselective Synthesis of Aziridines. Synlett 2010, 5, 745–748. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Rao, M.S.; Reddy, P.N. LiClO4-catalyzed highly diastereoselective synthesis of cis-aziridine carboxylates. Tetrahedron Lett. 2003, 44, 5275–5278. [Google Scholar] [CrossRef]
- Doyle, M.P.; Hu, W.; Timmons, J.D. Epoxides and Aziridines from Diazoacetates via Ylide Intermediates. Org. Lett. 2001, 3, 933–935. [Google Scholar] [CrossRef]
- Hue, Z.; Mazumdar, A.; Hope-Weeks, L.J.; Mayer, M.F. Aziridine synthesis in the presence of catalytic amounts of pyridiniums or viologens. Tetrahedron Lett. 2008, 49, 4601–4603. [Google Scholar] [CrossRef]
- Bew, S.P.; Carrington, R.; Hughes, D.L.; Liddle, J.; Pesce, P. An Organocatalytic Synthesis of cis-N-Alkyl- and N-Arylaziridine Carboxylates. Adv. Synth. Catal. 2009, 351, 2579–2588. [Google Scholar] [CrossRef]
- Bew, S.P.; Fairhurst, S.A.; Hughes, D.L.; Legentil, L.; Liddle, J.; Pesce, P.; Nigudkar, S.; Wilson, M.A. Organocatalytic Aziridine Synthesis Using F+ Salts. Org. Lett. 2009, 11, 4552–4555. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Sun, C.; Hu, D.; Jia, X.; Xu, X.; Liu, Z. Cation radical induced cycloaddition reaction between aryl imines and ethyl diazoacetate. Tetrahedron Lett. 2011, 52, 7008–7010. [Google Scholar] [CrossRef]
- Bew, S.P.; Coles, S.J.; Pitak, M.B.; Klooster, W.T.; Ashford, P.-A.; Zdorichenko, V. Generating cis-aza-diaryl and triaryl ethers via organoBrønsted acid catalysed aza-Darzens chemistry. Tetrahedron 2019, 75, 130532–130539. [Google Scholar] [CrossRef]
- Lee, K.-D.; Suh, J.-M.; Park, J.H.; Ha, H.-J.; Choi, H.G.; Park, C.S.; Chang, J.W.; Lee, W.K.; Dong, Y.; Yun, H. New synthesis and ring opening of cis-3-alkylaziridine-2-carboxylates. Tetrahedron 2001, 57, 8267–8276. [Google Scholar] [CrossRef]
- Sweeney, J.B.; Cantrill, A.A.; McLaren, A.B.; Thobhani, S. Asymmetric aziridine synthesis by aza-Darzens reaction of N-diphenylphosphinylimines with chiral enolates. Part 1: Formation of cis-aziridines. Tetrahedron 2006, 62, 3681–3693. [Google Scholar] [CrossRef]
- Sweeney, J.B.; Cantrill, A.A.; Drew, M.G.B.; McLaren, A.B.; Thobhani, S. Asymmetric aziridine synthesis by aza-Darzens reaction of N-diphenylphosphinylimines with chiral enolates. Part 2: Inversion of diastereoselectivity. Tetrahedron 2006, 62, 3694–3703. [Google Scholar] [CrossRef]
- Kattuboina, A.; Li, G. Chiral N-phosphonyl imine chemistry: New reagents and their applications for asymmetric reactions. Tetrahedron Lett. 2008, 49, 1573–1577. [Google Scholar] [CrossRef]
- Kattamuri, P.V.; Xiong, Y.; Pan, Y.; Li, G. N,N-Diisopropyl-N-phosphonyl imines lead to efficient asymmetric synthesis of aziridine-2-carboxylic esters. Org. Biomol. Chem. 2013, 11, 3400–3408. [Google Scholar] [CrossRef] [Green Version]
- Moragas Solà, T.; Churcher, I.; Lewis, W.; Stockman, R.A. Stereoselective aza-Darzens reactions of tert-butanesulfinimines: Convenient access to chiral aziridines. Org. Biomol. Chem. 2011, 9, 5034–5035. [Google Scholar] [CrossRef]
- Roe, C.; Moragas Solà, T.; Sasraku-Neequaye, L.; Hobbs, H.; Churcer, I.; MacPherson, D.; Stockman, R.A. On the utility of S-mesitylsulfinimines for the stereoselective synthesis of chiral amines and aziridines. Chem. Commun. 2011, 47, 7491–7493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moragas Solà, T.; Churcher, I.; Lewis, W.; Stockman, R.A. Asymmetric Synthesis of Trisubstituted Aziridines via Aza-Darzens Reaction of Chiral Sulfinimines. Org. Lett. 2014, 16, 6290–6293. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Saget, T.; Hung, C.-I. Efficient Access to Chiral Trisubstituted Aziridines via Catalytic Enantioselective Aza-Darzens Reactions. Angew. Chem. Int. Ed. 2017, 56, 2440–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, S.E.; Li, G.; Rowland, G.B.; Junge, D.; Huang, R.; Lee Woodcock, H.; Antilla, J.C. Catalytic Asymmetric Aza-Darzens Reaction with a Vaulted Biphenanthrol Magnesium Phosphate Salt. Org. Lett. 2011, 13, 2188–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Li, L.; Zhang, J. Direct Aza-Darzens Aziridination of N-Tosylimines with 2-Bromomalonates for the Synthesis of Highly Functionalized Donor-Acceptor Aziridines. Adv. Synth. Catal. 2012, 354, 3485–3489. [Google Scholar] [CrossRef]
- Fan, R.; Ye, Y. Iodobenzene Diacetate/Tetrabutylammonium Iodide-Induced Aziridination of N-Tosylimines with Activated Methylene Compounds under Mild Conditions. Adv. Synth. Catal. 2008, 350, 1526–1530. [Google Scholar] [CrossRef]
- Fan, R.; Wang, L.; Ye, Y.; Zhang, J. Facile iodine(III)-induced oxidative cycloaddition of N-sulfonyl imines with methylene compounds under neutral conditions. Tetrahedron Lett. 2009, 50, 3857–3859. [Google Scholar] [CrossRef]
- Tarui, A.; Kawashima, N.; Sato, K.; Omote, M.; Ando, A. Diastereoselective synthesis of 2-fluoroaziridine-2-carboxylates by Reformatsky-type aza-Darzens reaction. Tetrahedron Lett. 2010, 51, 4246–4249. [Google Scholar] [CrossRef]
- Huang, Z.A.; Liu, H.; Lu, C.D.; Xu, Y.-J. An Approach to 3-(Indol-2-yl)succinimide Derivatives by Manganese-Catalyzed C–H Activation. Org. Lett. 2015, 17, 4042–4045. [Google Scholar] [CrossRef] [PubMed]
- Hada, K.; Watanabe, T.; Isobe, T.; Ishikawa, T.J. Guanidinium Ylides as a New and Recyclable Source for Aziridines and Their Roles as Chiral Auxiliaries. Am. Chem. Soc. 2001, 123, 7705–7706. [Google Scholar] [CrossRef]
- Haga, T.; Ishikawa, T. Mechanistic approaches to asymmetric synthesis of aziridines from guanidinium ylides and aryl aldehydes. Tetrahedron 2005, 61, 2857–2869. [Google Scholar] [CrossRef]
- Kumamoto, T.; Nagayama, S.; Hayashi, Y.; Kojima, H.; David, L.; Nakanishi, W.; Ishikawa, T. Epimerization of trans-3-Arylaziridine-2-carboxylates at the C3 Position. Heterocycles 2008, 76, 1155–1170. [Google Scholar] [CrossRef]
- Takahashi, M.; Suzuki, N.; Ishikawa, T. Enantioselective Formal Synthesis of (−)-Podophyllotoxin from (2S,3R)-3-Arylaziridine-2-carboxylate. J. Org. Chem. 2013, 78, 3250–3261. [Google Scholar] [CrossRef] [PubMed]
- Khantikaew, I.; Takahashi, M.; Kumamoto, T.; Suzuki, N.; Ishikawa, T. Synthesis of (−)-benzolactam-V8 by application of asymmetric aziridination. Tetrahedron 2012, 68, 278–882. [Google Scholar] [CrossRef]
- Oda, Y.; Hada, K.; Miyata, M.; Takahata, C.; Hayashi, Y.; Takahashi, M.; Yajima, N.; Fujinami, M.; Ishikawa, T. Guanidinium Ylide Mediated Aziridination from Arylaldehydes: Scope and Limitations in the Formation of Unactivated 3-Arylaziridine-2-carboxylates. Synthesis 2014, 46, 2201–2219. [Google Scholar] [CrossRef]
- Yadav, L.D.S.; Garima, R.K. Organocatalytic Stereoselective Aziridination of Imines via Ammonium Ylides. Synlett 2009, 19, 3123–3126. [Google Scholar] [CrossRef]
- Aichhorn, S.; Gururaja, G.N.; Reisinger, M.; Waser, M. Scope and limitations of diastereoselective aziridination reactions using stabilised ammonium ylides or α-bromo carbonyl nucleophiles. RSC Adv. 2013, 3, 4552–4557. [Google Scholar] [CrossRef]
- Pichler, M.; Novacek, J.; Robiette, R.; Poscher, V.; Himmelsbach, M.; Monkowius, U.; Müller, N.; Waser, M. Asymmetric syntheses of three-membered heterocycles using chiral amide-based ammonium ylides. Org. Biomol. Chem. 2015, 13, 2092–2099. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, V.K.; Ferara, M.; O’Brien, C.J.; Thompson, A.; Jones, R.V.H.; Fieldhouse, R. Scope and limitations in sulfur ylide mediated catalytic asymmetric aziridination of imines: Use of phenyldiazomethane, diazoesters and diazoacetamides. J. Chem. Soc. Perkin Trans. 2001, 14, 1635–1643. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Charmant, J.P.H.; Ciampi, C.; Hornby, J.M.; O’Brien, C.J.; Hynd, G.; Parsons, R. Additions of stabilised and semi-stabilised sulfur ylides to tosyl protected imines: Are they under kinetic or thermodynamic control? J. Chem. Soc. Perkin Trans. 2001, 23, 3159–3166. [Google Scholar] [CrossRef]
- Yang, X.-F.; Zhang, M.-J.; Hou, X.-L.; Dai, L.-X. Stereocontrolled Aziridination of Imines via a Sulfonium Ylide Route and a Mechanistic Study. J. Org. Chem. 2002, 67, 8097–8103. [Google Scholar] [CrossRef] [PubMed]
- Hajra, S.; Aziz, S.M.; Jana, B.; Mahish, P.; Das, D. Synthesis of Chiral Spiro-Aziridine Oxindoles via Aza-Corey–Chaykovsky Reaction of Isatin Derived N-tert-Butanesulfinyl Ketimines. Org. Lett. 2016, 18, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-N.; Tian, S.K. Facile construction of three-membered rings via benzyne-promoted Darzens-type reaction of tertiary amines. Tetrahedron 2019, 75, 1632–1638. [Google Scholar] [CrossRef]
- Evans, D.A.; Faul, M.M.; Bilodeau, M.T. Copper-catalyzed aziridination of olefins by (N-(p-toluenesulfonyl)imino)phenyliodinane. J. Org. Chem. 1991, 56, 6744–6746. [Google Scholar] [CrossRef]
- Evans, D.A.; Faul, M.M.; Bilodeau, M.T. Development of the Copper-Catalyzed Olefin Aziridination Reaction. J. Am. Chem. Soc. 1994, 116, 2742–2753. [Google Scholar] [CrossRef]
- Södergren, M.J.; Alonso, D.A.; Andersson, P.G. Readily available nitrene precursors increase the scope of Evans’ asymmetric aziridination of olefins. Tetrahedron Assymetry 1997, 8, 3563–3565. [Google Scholar] [CrossRef]
- Dauban, P.; Sanière, L.; Tarrade, A.; Dod, R.H. Copper-Catalyzed Nitrogen Transfer Mediated by Iodosylbenzene PhI=O. J. Am. Chem. Soc. 2001, 123, 7707–7708. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Wang, C.-J. Axially dissymmetric (R)-(+)-5,5′,6,6′,7,7′,8,8′ octahydro-[1,1′]binaphthyldiimine chiral salen type-ligands for copper-catalyzed asymmetric aziridination. Chirality 2002, 14, 412–416. [Google Scholar] [CrossRef]
- Shi, M.; Wang, C.J.; Chan, A.S.C. Axially dissymmetric binaphthyldiimine chiral salen-type ligands for copper-catalyzed asymmetric aziridination. Tetrahedron Assymetry 2001, 12, 3105–3111. [Google Scholar] [CrossRef]
- Suga, H.; Kakehi, A.; Ito, S.; Ibata, T.; Fudo, T.; Watanebe, Y.; Kinoshita, Y. Asymmetric Cyclopropanation and Aziridination Reactions of Olefins Catalyzed by Cu(I)-Binaphthyldiimine Complexes. Bull. Soc. Chem. Jpn. 2003, 76, 189–199. [Google Scholar] [CrossRef]
- Gillespie, K.M.; Sanders, C.J.; O’Shaughnessy, P.; Westmoreland, I.; Thickitt, C.P.; Scott, P. Enantioselective Aziridination Using Copper Complexes of Biaryl Schiff Bases. J. Org. Chem. 2002, 67, 3450–3458. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, K.M.; Crust, E.J.; Deeth, R.J.; Scott, P. Mechanism of alkene aziridination in the [(biaryldiimine)CuI] catalyst system; precise substrate orientation via two-centre binding. Chem. Commun. 2001, 8, 785–786. [Google Scholar] [CrossRef]
- Wang, X.; Ding, K. One-Pot Enantioselective Aziridination of Olefins Catalyzed by a Copper(I) Complex of a Novel Diimine Ligand by Using PhI(OAc)2 and Sulfonamide as Nitrene Precursors. Chem. Eur. J. 2006, 12, 4568–4575. [Google Scholar] [CrossRef]
- Xu, J.; Ma, L.; Jiao, P. Asymmetric aziridination of chalcones catalyzed by a novel backbone 1,8-bisoxazolinylanthracene (AnBOX)-copper complex. Chem. Commun. 2004, 1616–1617. [Google Scholar] [CrossRef]
- Ma, L.; Jiao, P.; Zhang, Q.; Xu, J. Rigid backbone 1,8-anthracene-linked bis-oxazolines (AnBOXes): Design, synthesis, application and characteristics in catalytic asymmetric aziridination. Tetrahedron Assymetry 2005, 16, 3718–3734. [Google Scholar] [CrossRef]
- Ma, L.; Du, D.M.; Xu, J. Rational Tuning Chelate Size of Bis-Oxazoline Ligands to Improve Enantioselectivity in the Asymmetric Aziridination of Chalcones. J. Org. Chem. 2005, 70, 10155–10158. [Google Scholar] [CrossRef]
- Ma, L.; Jiao, P.; Zhang, Q.; Du, D.-M.; Xu, J. Ligand and substrate π-stacking interaction controlled enantioselectivity in the asymmetric aziridination. Tetrahedron Assymetry 2007, 18, 878–884. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Khankhoje, V.; Herdtweck, E.; Köhler, K.; Storcheva, O.; Cokoja, M.; Kühn, F.E. Copper(ii) complexes incorporating poly/perfluorinated alkoxyaluminate-type weakly coordinating anions: Syntheses, characterization and catalytic application in stereoselective olefin aziridination. Dalton Trans. 2011, 40, 5746–5754. [Google Scholar] [CrossRef]
- Kantam, M.L.; Jaya, V.S.; Lakshmi, M.J.; Reddy, B.R.; Choudary, B.M.; Bhargava, S.K. Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions. Catal. Commun. 2007, 8, 1963–1968. [Google Scholar] [CrossRef]
- Khodadadi, M.R.; Pourceau, G.; Becuve, M.; Wadouachi, A.; Toumieux, S. First Sustainable Aziridination of Olefins Using Recyclable Copper-Immobilized Magnetic Nanoparticles. Synlett 2019, 30, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ding, X.; He, C. Nitrene Transfer Reactions Catalyzed by Gold Complexes. J. Org. Chem. 2006, 71, 5876–5880. [Google Scholar] [CrossRef]
- Yang, K.-S.; Chen, K. A Facile and Highly Diastereoselective Aziridination of Chiral Camphor N-Enoylpyrazolidinones with N-Aminophthalimide. J. Org. Chem. 2001, 66, 1676–1679. [Google Scholar] [CrossRef]
- Duan, P.V.; Chiu, C.-C.; Lee, W.-D.; Pan, L.S.; Venkatesham, U.; Tzeng, Z.-H.; Chen, K. On the scope of diastereoselective aziridination of various chiral auxiliaries derived N- and O-enones with N-aminophthalimide in the presence of lead tetraacetate. Tetrahedron Assymetry 2008, 19, 682–690. [Google Scholar] [CrossRef]
- Yang, K.-S.; Chen, K. Enantioselective Aziridination of Alkenes with N-Aminophthalimide in the Presence of Lead Tetraacetate-Mediated Chiral Ligand. Org. Lett. 2002, 4, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Beletskii, E.V.; Kuznetsov, M.A. Synthesis of oxazoles from α,β-unsaturated carbonyl compounds through 2-acylaziridines. Russian J. Org. Chem. 2009, 45, 1229–1240. [Google Scholar] [CrossRef]
- Pankova, A.S.; Stukalov, A.Y.; Kuznetsov, M.A. Synthesis of 2-(Hetero)aryl-5-(trimethylsilylethynyl)oxazoles from (Hetero)arylacrylic Acids. Org. Lett. 2015, 17, 1826–1829. [Google Scholar] [CrossRef]
- Pankova, A.S.; Kuznetsov, M.A. Synthesis and thermal transformations of spiro-fused N-phthalimidoaziridines. Tetrahedron Lett. 2014, 55, 2499–2503. [Google Scholar] [CrossRef]
- Kuznetsov, M.A.; Pankova, A.S.; Voronin, V.V.; Vlasenko, N.A. Intramolecular thermal transformations of N-phthalimidoaziridines: 1,3-dipolar cyclo-addition and rearrangements. Chem. Heterocycl. Compd. 2012, 47, 1353–1369. [Google Scholar] [CrossRef]
- Li, J.; Liand, J.-L.; Chan, P.V.H.; Che, C.-M. Aziridination of alkenes with N-substituted hydrazines mediated by iodobenzene diacetate. Tetrahedron Lett. 2004, 45, 2685–2688. [Google Scholar] [CrossRef]
- Li, J.; Chan, P.V.H.; Che, C.M. Aryl Iodide Mediated Aziridination of Alkenes. Org. Lett. 2005, 7, 5801–5804. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, L.B.; Yudin, A.K. Highly Regioselective Transformation of Alkenyl Bromides into α-Bromoaziridines and α-Bromohydrazones. Org. Lett. 2006, 8, 2011–2014. [Google Scholar] [CrossRef]
- Du, X.; Yang, S.; Yang, Y.; Liu, Y. Regio- and Stereoselective Construction of Highly Functionalized 3-Benzazepine Skeletons through Ring-Opening Cycloamination Reactions Catalyzed by Gold. Chem. Eur. J. 2011, 17, 4981–4985. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer-Chaput, B.; Keita, M.; Milcent, T.; Ongeri, S.; Crousse, B. Synthesis of fluorinated N-aminoaziridines: Access to new CF3-peptidomimetics. Tetrahedron 2012, 68, 7028–7034. [Google Scholar] [CrossRef]
- Yu, S.; Li, X. Mild Synthesis of Chalcones via Rhodium(III)-Catalyzed C–C Coupling of Arenes and Cyclopropenones. Org. Lett. 2014, 16, 1220–1223. [Google Scholar] [CrossRef] [PubMed]
- Bakthavachalam, A.; Chuand, H.-C.; Yan, T.-H. Sodium-iodoxybenzoate mediated highly chemoselective aziridination of olefins. Tetrahedron 2014, 70, 5884–5894. [Google Scholar] [CrossRef]
- Ulukanli, S.; Karabuga, S.; Celik, A.; Kazaz, C. Substrate-controlled diastereoselective aziridination of alkenes using 3-acetoxyaminoquinazolinone in the presence of hexamethyldisilazane. Tetrahedron Lett. 2005, 46, 197–199. [Google Scholar] [CrossRef]
- Atkinson, R.S.; Draycott, R.D.; Hirst, D.J.; Parratt, M.J.; Raynham, T.M. Completely diastereoselective aziridination of α,β-unsaturated acids via intramolecular reaction of 3-acetoxyaminoquinazolin-4(3H)-ones. Tetrahedron Lett. 2002, 43, 2083–2085. [Google Scholar] [CrossRef]
- Zibinsky, M.; Butkevich, A.N.; Kuznetsov, M.A. N-Amino-endo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboximide in reaction of oxidative aminoaziridination. Tetrahedron Lett. 2008, 49, 5505–5507. [Google Scholar] [CrossRef]
- Samimi, H.A.; Momeni, A.R.J. Aminopyridinium iodide as a NH transferring agent for the synthesis of 2-aroyl-3-aryl aziridines. Iran. Chem. Soc. 2015, 12, 2221–2225. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Upadhyay, S.; Sahu, V.; Singh, J. Synthesis and QSAR modeling of 2-acetyl-2-ethoxycarbonyl-1-[4(4′-arylazo)-phenyl]-N,N-dimethylaminophenyl aziridines as potential antibacterial agents. Eur. J. Med. Chem. 2009, 44, 251–259. [Google Scholar] [CrossRef]
- Siu, T.; Yudin, K. Practical Olefin Aziridination with a Broad Substrate Scope. J. Am. Chem. Soc. 2002, 124, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chavla, V.; Banerjee, P. An Assessment of Electrophilic N-Transfer of Oxaziridine with Different 2-, 3-, and 4-Carbon Donor–Acceptor Substrates to Furnish Diverse N-Containing Heterocycles in a Single Step. Eur. J. Org. Chem. 2019, 23, 3806–3814. [Google Scholar] [CrossRef]
- Nadir, U.K.; Singh, A. Synthesis of Functionalized N-Arylsulfonyl Aziridines from α,β-Unsaturated Esters, Amides, Ketones, and Nitriles Using N,N-Dichloroarylsulfonamides as Nitrogen Source. Synth. Commun. 2004, 34, 1337–1347. [Google Scholar] [CrossRef]
- Chen, D.; Timmons, C.; Guo, L.; Xu, X.; Li, G. One-Pot Stereoselective Synthesis of anti 3-Alkyl and 3-Aryl-N-p-tosyl-aziridine-2-ketones and 3-Aryl-N-p-tosyl-aziridine-2-carboxylates. Synthesis 2004, 15, 2479–2484. [Google Scholar] [CrossRef]
- Saikia, I.; Kasyap, B.; Phukan, P. A facile noncatalytic pathway for the nitrene transfer process: Expeditious access to aziridines. Chem. Commun. 2011, 47, 2967–2969. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhou, P.; Liu, X.; Zhao, J.; Lin, L.; Feng, X. Diastereoselectively Switchable Asymmetric Haloaminocyclization for the Synthesis of Cyclic Sulfamates. Chem. Eur. J. 2015, 21, 6386–6389. [Google Scholar] [CrossRef]
- Yoshimura, T.; Fujie, T.; Fujii, T. Moderate generation of sulfenylnitrenes from novel N-sulfenylsulfodiimides. Tetrahedron Lett. 2007, 48, 427–430. [Google Scholar] [CrossRef]
- Chanda, B.M.; Vyas, R.; Bedekar, A.V. Investigations in the Transition Metal Catalyzed Aziridination of Olefins, Amination, and Other Insertion Reactions with Bromamine-T as the Source of Nitrene. J. Org. Chem. 2001, 66, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, H.; Daikai, K.; Jin, X.L.; Furuno, H.; Inanaga, J. Catalytic conversion of conjugated enones into optically active α-keto aziridines using chiral rare earth metal complexes. Tetrahedron 2002, 43, 2735–2739. [Google Scholar] [CrossRef]
- Gasperi, T.; Loreto, M.A.; Tardella, P.A.; Gambacorta, A. Amination of α,β-unsaturated (2-trimethylsilanylmethyl) carboxylic esters. Tetrahedron Lett. 2002, 43, 3017–3020. [Google Scholar] [CrossRef]
- Gasperi, T.; Loreto, M.A.; Tardella, P.A.; Veri, E. Synthesis of α-amino γ-butyrolactone derivatives by aziridination of α-ylidene γ-butyrolactones. Tetrahedron Lett. 2003, 44, 4953–4956. [Google Scholar] [CrossRef]
- Pesciaioli, F.; De Vincentiis, F.; Galzerano, P.; Bencivenni, G.; Bartoli, G.; Mazzanti, A.; Melchiore, P. Organocatalytic asymmetric aziridination of enones. Angew. Chem. Int. Ed. 2008, 57, 8703–8706. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Sugaya, N.; Sasaki, N.; Makino, K.; Lectard, S.; Hamada, Y. Enantioselective aziridination reaction of α,β-unsaturated aldehydes using an organocatalyst and tert-butyl N-arenesulfonyloxycarbamates. Tetrahedron Lett. 2009, 50, 3329–3332. [Google Scholar] [CrossRef]
- Nemoto, T.; Hayashi, M.; Xu, D.; Hamajima, A.; Hamada, Y. Enantioselective synthesis of (R)-Sumanirole using organocatalytic asymmetric aziridination of an α,β-unsaturated aldehyde. Tetrahedron Assymetry 2014, 25, 1133–1137. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Duan, S.-W.; Zhang, R.; Liu, Y.-H.; Chen, J.-R.; Xiao, W.-J. Base-catalyzed controllable reaction of 3-ylideneoxindoles with O-Boc hydroxycarbamates for the synthesis of amidoacrylates and spiroaziridine oxindoles. Org. Biomol. Chem. 2016, 14, 5224–5228. [Google Scholar] [CrossRef]
- Sabir, S.; Pandey, C.B.; Yadav, A.K.; Tiwari, B.; Jat, J.L. Direct N-H/N-Me Aziridination of Unactivated Olefins Using O-(Sulfonyl)hydroxylamines as Aminating Agents. J. Org. Chem. 2018, 83, 12255–12260. [Google Scholar] [CrossRef]
- Armstrong, A.; Baxter, C.; Lamont, S.G.; Pape, A.R.; Wincewicz, R. Amine-Promoted, Organocatalytic Aziridination of Enones. Org. Lett. 2007, 9, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Pullin, R.D.C.; Jenner, C.R.; Foo, K.; White, A.J.P.; Scutt, J.N. Tertiary amine-promoted enone aziridination: Investigations into factors influencing enantioselective induction. Tetrahedron Assymetry 2014, 25, 74–86. [Google Scholar] [CrossRef]
- Armstrong, A.; Pullin, R.D.C.; Scutt, J.N. Tertiary Amine Promoted Aziridination: Preparation of NH-Aziridines from Aliphatic α,β-Unsaturated Ketones. Synlett 2016, 27, 151–155. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strumfs, B.; Uljanovs, R.; Velikijs, K.; Trapencieris, P.; Strumfa, I. 3-Arylaziridine-2-carboxylic Acid Derivatives and (3-Arylaziridin-2-yl)ketones: The Aziridination Approaches. Int. J. Mol. Sci. 2021, 22, 9861. https://doi.org/10.3390/ijms22189861
Strumfs B, Uljanovs R, Velikijs K, Trapencieris P, Strumfa I. 3-Arylaziridine-2-carboxylic Acid Derivatives and (3-Arylaziridin-2-yl)ketones: The Aziridination Approaches. International Journal of Molecular Sciences. 2021; 22(18):9861. https://doi.org/10.3390/ijms22189861
Chicago/Turabian StyleStrumfs, Boriss, Romans Uljanovs, Kirils Velikijs, Peteris Trapencieris, and Ilze Strumfa. 2021. "3-Arylaziridine-2-carboxylic Acid Derivatives and (3-Arylaziridin-2-yl)ketones: The Aziridination Approaches" International Journal of Molecular Sciences 22, no. 18: 9861. https://doi.org/10.3390/ijms22189861
APA StyleStrumfs, B., Uljanovs, R., Velikijs, K., Trapencieris, P., & Strumfa, I. (2021). 3-Arylaziridine-2-carboxylic Acid Derivatives and (3-Arylaziridin-2-yl)ketones: The Aziridination Approaches. International Journal of Molecular Sciences, 22(18), 9861. https://doi.org/10.3390/ijms22189861