Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence
Abstract
:1. Introduction
2. Results
2.1. In Silico Identification of Putative ADH Genes in A. baumannii
2.2. Biochemical Properties of ADH4
2.3. Biological Function of ADH3, ADH4, and ADH6
2.4. Gene Expression Patterns of Wild-Type and Mutant Strains in the Presence of Ethanol
2.5. Adh3 and Adh6 Are Involved in Inorganic and Organic Oxidative Stress Responses
2.6. The Adh3 Stress Resistance Response Does Not Disrupt Homeostasis of Cytosolic NADH/NAD+
2.7. Adh3 and Adh6 Are Associated with Virulence against G. mellonella
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Primers
4.2. Marker-Less Mutation
4.3. Recombinant Alcohol Dehydrogenase Purification and Enzyme Activity Assay
4.4. Stress Resistance Assays
4.5. RNA Extraction and qRT-PCR
4.6. Fluorescence Analysis
4.7. Virulence Assay with G. mellonella
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gaona-López, C.; Julián-Sánchez, A.; Riveros-Rosas, H. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes. PLoS ONE 2016, 11, e0166851. [Google Scholar] [CrossRef] [Green Version]
- Horinouchi, T.; Maeda, T.; Furusawa, C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J. Microbiol. Biotechnol. 2018, 34, 157. [Google Scholar] [CrossRef] [Green Version]
- Jörnvall, H.; Persson, B.; Jeffery, J. Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur. J. Biochem. 1987, 167, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Jörnvall, H. Medium- and short-chain dehydrogenase/reductase gene and protein families: MDR and SDR gene and protein superfamilies. Cell. Mol. Life Sci. 2008, 65, 3873–3878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, B.; Hedlund, J.; Jörnvall, H. Medium- and short-chain dehydrogenase/reductase gene and protein families: The MDR superfamily. Cell. Mol. Life Sci. 2008, 65, 3879–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jörnvall, H.; Persson, B.; Krook, M.; Atrian, S.; Gonzàlez-Duarte, R.; Jeffery, J.; Ghosh, D. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995, 34, 6003–6013. [Google Scholar] [CrossRef]
- Reid, M.F.; Fewson, C.A. Molecular characterization of microbial alcohol dehydrogenases. Crit. Rev. Microbiol. 1994, 20, 13–56. [Google Scholar] [CrossRef]
- Elleuche, S.; Antranikian, G. Bacterial group III alcohol dehydrogenases—Function, evolution and biotechnological applications. OA Alcohol 2013, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Radianingtyas, H.; Wright, P.C. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 2003, 27, 593–616. [Google Scholar] [CrossRef]
- Vidal, R.; López-Maury, L.; Guerrero, M.G.; Florencio, F.J. Characterization of an Alcohol Dehydrogenase from the Cyanobacterium Synechocystis sp. Strain PCC 6803 That Responds to Environmental Stress Conditions via the Hik34-Rre1 Two-Component System. J. Bacteriol. 2009, 191, 4383–4391. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yang, X.; Yang, J.; Qiao, X.; Li, F.; Liu, X.; Wei, J.; Wang, L. Alcohol dehydrogenase modulates quorum sensing in biofilm formations of Acinetobacter baumannii. Microb. Pathog. 2020, 148, 104451. [Google Scholar] [CrossRef]
- Luong, T.T.; Kim, E.-H.; Bak, J.P.; Nguyen, C.T.; Choi, S.; Briles, D.E.; Pyo, S.; Rhee, D.-K. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae. Infect. Immun. 2015, 83, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, L.E.; Young, L.S.; Martinelli, J.; Petrofsky, M. Exposure to ethanol up-regulates the expression of Mycobacterium avium complex proteins associated with bacterial virulence. J. Infect. Dis. 1993, 168, 961–968. [Google Scholar] [CrossRef]
- Camarena, L.; Bruno, V.; Euskirchen, G.; Poggio, S.; Snyder, M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010, 6, e1000834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwugo, C.C.; Arivett, B.A.; Zimbler, D.L.; Gaddy, J.A.; Richards, A.M.; Actis, L.A. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii. PLoS ONE 2012, 7, e51936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, R. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Appl. Microbiol. Biotechnol. 2017, 101, 3473–3482. [Google Scholar] [CrossRef]
- McConnell, M.J.; Actis, L.; Pachón, J. Acinetobacter baumannii: Human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 2013, 37, 130–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wand, M.E.; Bock, L.J.; Turton, J.F.; Nugent, P.G.; Sutton, J.M. Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J. Med. Microbiol. 2012, 61, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insua, J.L.; Llobet, E.; Moranta, D.; Pérez-Gutiérrez, C.; Tomás, A.; Garmendia, J.; Bengoechea, J.A. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect. Immun. 2013, 81, 3552–3565. [Google Scholar] [CrossRef] [Green Version]
- Conway, T.; Sewell, G.W.; Osman, Y.A.; Ingram, L.O. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J. Bacteriol. 1987, 169, 2591–2597. [Google Scholar] [CrossRef] [Green Version]
- Goodlove, P.E.; Cunningham, P.R.; Parker, J.; Clark, D.P. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene 1989, 85, 209–214. [Google Scholar] [CrossRef]
- Li, D.; Stevenson, K.J. Purification and sequence analysis of a novel NADP(H)-dependent type III alcohol dehydrogenase from Thermococcus strain AN1. J. Bacteriol. 1997, 179, 4433–4437. [Google Scholar] [CrossRef] [Green Version]
- Sulzenbacher, G.; Alvarez, K.; Van Den Heuvel, R.H.; Versluis, C.; Spinelli, S.; Campanacci, V.; Valencia, C.; Cambillau, C.; Eklund, H.; Tegoni, M. Crystal structure of E. coli alcohol dehydrogenase YqhD: Evidence of a covalently modified NADP coenzyme. J. Mol. Biol. 2004, 342, 489–502. [Google Scholar] [CrossRef]
- González-Segura, L.; Riveros-Rosas, H.; Julián-Sánchez, A.; Muñoz-Clares, R.A. Residues that influence coenzyme preference in the aldehyde dehydrogenases. Chem. Biol. Interact. 2015, 234, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Williamson, V.M.; Paquin, C.E. Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol. Gen. Genet. 1987, 209, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Wills, C.; Kratofil, P.; Londo, D.; Martin, T. Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. Arch. Biochem. Biophys. 1981, 210, 775–785. [Google Scholar] [CrossRef]
- Ying, X.; Wang, Y.; Badiei, H.R.; Karanassios, V.; Ma, K. Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea. Arch. Microbiol. 2007, 187, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, Y.; Yoshikawa, H.; Tamura, H. Isolation and characterization of an alcohol dehydrogenase gene from the octylphenol polyethoxylate degrader Pseudomonas putida S-5. Biosci. Biotechnol. Biochem. 2006, 70, 1855–1863. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Scopes, R.K.; Rodriguez, M.; Keshav, K.F.; Ingram, L.O. Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: Identification of alcohol dehydrogenase II as a stress protein. J. Bacteriol. 1991, 173, 5975–5982. [Google Scholar] [CrossRef] [Green Version]
- Beckham, K.S.H.; Connolly, J.P.R.; Ritchie, J.M.; Wang, D.; Gawthorne, J.A.; Tahoun, A.; Gally, D.L.; Burgess, K.; Burchmore, R.J.; Smith, B.O.; et al. The metabolic enzyme AdhE controls the virulence of Escherichia coli O157:H7. Mol. Microbiol. 2014, 93, 199–211. [Google Scholar] [CrossRef]
- Chen, S.J.; Shu, H.Y.; Lin, G.H. Regulation of tert-Butyl Hydroperoxide Resistance by Chromosomal OhrR in A. baumannii ATCC 19606. Microorganisms 2021, 9, 629. [Google Scholar] [CrossRef] [PubMed]
- Aranda, J.; Poza, M.; Pardo, B.G.; Rumbo, S.; Rumbo, C.; Parreira, J.R.; Rodríguez-Velo, P.; Bou, G. A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiol. 2010, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.P.; Albeck, J.G.; Tantama, M.; Yellen, G. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 2011, 14, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.P.; Yellen, G. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor. Methods Mol. Biol. 2014, 1071, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elleuche, S.; Fodor, K.; von der Heyde, A.; Klippel, B.; Wilmanns, M.; Antranikian, G. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: Insights into enzymatic activity and organization of the metal ion-containing region. Appl. Microbiol. Biotechnol. 2014, 98, 4041–4051. [Google Scholar] [CrossRef]
- Uthoff, S.; Steinbüchel, A. Purification and characterization of an NAD+-dependent XylB-like aryl alcohol dehydrogenase identified in Acinetobacter baylyi ADP1. Appl. Environ. Microbiol. 2012, 78, 8743–8752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
- Tsai, C.J.; Loh, J.M.; Proft, T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016, 7, 214–229. [Google Scholar] [CrossRef] [Green Version]
Carbonate-Bicarbonate (CB) Buffer, pH = 10.1 | |||
---|---|---|---|
Ethanol | 1-Propanol | 1-Butanol | |
Vmax (mmole min−1) | 0.0064 ± 0.0002 | 0.027 ± 0.0028 | 0.005 ± 0.001 |
KM (mM) | 5.11 ± 0.71 | 206.8 ± 79.61 | 196.5 ± 91.21 |
kcat (s−1) | 0.2118 | 0.9003 | 0.1683 |
kcat/KM (s−1M−1) | 41.4481 | 4.3535 | 0.8565 |
Name | Sequences (5′–3′) | Function |
---|---|---|
pK18_Adh3upF | CGAGCTCGGTACCCGGGACGCCCTTTAACATGACCAG | Construction of Adh3 mutant |
pK18_Adh3downR | AACGACGGCCAGTGCCACAGATGCGCTAAGGGAAAAC | Construction of Adh3 mutant |
pK18_Adh4upF | CGAGCTCGGTACCCGGGTGCCCTTCATTATCAATTTCG | Construction of Adh4 mutant |
pK18_Adh4downR | AACGACGGCCAGTGCCAGACATCGCTTTGAGTTGCAT | Construction of Adh4 mutant |
pK18_Adh6upF | CGAGCTCGGTACCCGGGACGCACATTGGTCAGTTTTG | Construction of Adh6 mutant |
pK18_Adh6downR | AACGACGGCCAGTGCCATTGCTGCAACCATAACAGGT | Construction of Adh6 mutant |
Adh1_rF | TGTGATTGCCTGTGGTGAAT | qRT-PCR |
Adh1_rR | ACACCGCCGTAAAGATGACT | qRT-PCR |
Adh2_rF | GGTCGATTCATGCCGTACTT | qRT-PCR |
Adh2_rR | TGTGGTAATACCCGCACAAA | qRT-PCR |
Adh3_rF | TCAGTTACACCTGCCTATTCTTCA | qRT-PCR |
Adh3_rR | CCCAAAGCCGACAATAACAT | qRT-PCR |
Adh4_rF | TGCAAGATGAAGGGCTATTT | qRT-PCR |
Adh4_rR | CACCGCCTAACGACACAATA | qRT-PCR |
Adh5_rF | GCCAGCAGATAAAGCGGATT | qRT-PCR |
Adh5_rR | TGTTGCCCCATATACATTACCA | qRT-PCR |
Adh6_rF | TCTGGTGCACACAACCTACC | qRT-PCR |
Adh6_rR | TCTAAAATCGCAGCATGTGG | qRT-PCR |
Adh7_rF | GGCGAAAATATCGCAACAAT | qRT-PCR |
Adh7_rR | ACCCAAACCACCAATACCAA | qRT-PCR |
pRsetB-His7-Peredox-mCherry_F | GCCCTTTCGTCTTCAAGTAATACGACTCACTATAGGG | Construction of peredox plasmid |
pRsetB-His7-Peredox-mCherry_R | AGCTGTCAAACATGAGTCACTTGTACAGTTCGTCCA | Construction of peredox plasmid |
Plasmid | Description | Antibiotic Resistance (µg/mL) | Reference/Source |
---|---|---|---|
pK18mobsacB | Suicide vector for homologous recombination | Kan50 | [31] |
pK18ΔAdh1 | pK18mobsacB contains the upstream and downstream regions of Adh1 | Kan50 | This study |
pK18ΔAdh2 | pK18mobsacB contains the upstream and downstream regions of Adh2 | Kan50 | This study |
pK18ΔAdh3 | pK18mobsacB contains the upstream and downstream regions of Adh3 | Kan50 | This study |
pK18ΔAdh4 | pK18mobsacB contains the upstream and downstream regions of Adh4 | Kan50 | This study |
pK18ΔAdh5 | pK18mobsacB contains the upstream and downstream regions of Adh5 | Kan50 | This study |
pK18ΔAdh6 | pK18mobsacB contains the upstream and downstream regions of Adh6 | Kan50 | This study |
pK18ΔAdh7 | pK18mobsacB contains the upstream and downstream regions of Adh7 | Kan50 | This study |
pQE80L | Expression vector with colE1 origin for His-tag fusion protein purification | Amp50 | Qiagen |
pAdh3 | Apr; Adh3 cloned into BamHI-HindIII sites of pQE80L | Amp50 | This study |
pAdh4 | Apr; Adh4 cloned into BamHI-HindIII sites of pQE80L | Amp50 | This study |
pAdh6 | Apr; Adh6 cloned into BamHI-SmaI sites of pQE80L | Amp50 | This study |
pWH1266 | Apr; Tcr; shuttle vector for E. coli and A. baumannii | Amp50, Tc12.5 | [32] |
pRsetB-His7tag- Peredox-mCherry | Apr; fluorescent biosensor of the cytosolic NADH/NAD+ redox state by combining a circularly permuted GFP T-Sapphire with a bacterial NADH-binding protein, Rex, and the red fluorescence of a tandemly attached mCherry. | Amp50 | [33,34] |
pWH1266_peredox-mCherry | Apr; Tcr; permuted GFP T-Sapphire with a bacterial NADH-binding protein, Rex, and the red fluorescence of a tandemly attached mCherry from pRsetB-His7tag- Peredox-mCherry was cloned into EcoRI sites of pWH1266 | Amp50, Tc12.5 | This study |
Strain | Description | Reference/Source | |
E. coli DH5α | F−, supE44, hsdR17, recA1, gyrA96, endA1, thi-1, relA1, deoR, λ− | ATCC53868 | |
Acinetobacter baumannii ATCC 19606 | Primary strain used in this study | [31] | |
∆Adh3(∆3) | Marker-less Adh3 deletion mutant | This study | |
∆Adh4(∆4) | Marker-less Adh4 deletion mutant | This study | |
∆Adh6(∆6) | Marker-less Adh6 deletion mutant | This study | |
∆Adh34(∆34) | Marker-less Adh34 double deletion mutant | This study | |
∆Adh36(∆36) | Marker-less Adh36 double deletion mutant | This study | |
∆Adh46(∆46) | Marker-less Adh46 double deletion mutant | This study | |
∆Adh346(∆346) | Marker-less Adh346 triple deletion mutant | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.-H.; Hsieh, M.-C.; Shu, H.-Y. Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence. Int. J. Mol. Sci. 2021, 22, 9921. https://doi.org/10.3390/ijms22189921
Lin G-H, Hsieh M-C, Shu H-Y. Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence. International Journal of Molecular Sciences. 2021; 22(18):9921. https://doi.org/10.3390/ijms22189921
Chicago/Turabian StyleLin, Guang-Huey, Ming-Chuan Hsieh, and Hung-Yu Shu. 2021. "Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence" International Journal of Molecular Sciences 22, no. 18: 9921. https://doi.org/10.3390/ijms22189921
APA StyleLin, G. -H., Hsieh, M. -C., & Shu, H. -Y. (2021). Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence. International Journal of Molecular Sciences, 22(18), 9921. https://doi.org/10.3390/ijms22189921