Virulence Factors of Enteric Pathogenic Escherichia coli: A Review
Abstract
:1. Introduction
2. Enteropathogenic Escherichia coli (EPEC)
3. Enterohaemorrhagic Escherichia coli (EHEC)
4. Enterotoxigenic Escherichia coli (ETEC)
5. Enteroinvasive Escherichia coli (EIEC)
6. Enteroaggregative Escherichia coli (EAEC)
7. Diffusely Adherent Escherichia coli (DAEC)
8. Adherent Invasive Escherichia coli (AIEC)
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escobar-Paramo, P.; Giudicelli, C.; Parsot, C.; Denamur, E. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J. Mol. Evol. 2003, 57, 140–148. [Google Scholar] [CrossRef]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Nash, J.H.; Villegas, A.; Kropinski, A.M.; Aguilar-Valenzuela, R.; Konczy, P.; Mascarenhas, M.; Ziebell, K.; Torres, A.G.; Karmali, M.A.; Coombes, B.K. Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genom. 2010, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Donnenberg, M. Escherichia coli: Pathotypes and Principles of Pathogenesis; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Yang, S.-C.; Lin, C.-H.; Aljuffali, I.A.; Fang, J.-Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.O.; Sant’Ana, A.S. Pathogen subtyping tools for risk assessment and management of produce-borne outbreaks. Curr. Opin. Food Sci. 2020, 32, 83–89. [Google Scholar] [CrossRef]
- Clements, A.; Young, J.C.; Constantinou, N.; Frankel, G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 2012, 3, 71–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakbin, B.; Akhondzadeh Basti, A.; Khanjari, A.; Azimi, L.; Karimi, A. Differentiation of stx1A gene for detection of Escherichia coli serotype O157: H7 and Shigella dysenteriae type 1 in food samples using high resolution melting curve analysis. Food Sci. Nutr. 2020, 8, 3665–3672. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-J.; Wang, A.H.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef]
- Mainil, J. Escherichia coli virulence factors. Vet. Immunol. Immunopathol. 2013, 152, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, T.A.; Elias, W.P.; Scaletsky, I.C.; Guth, B.E.; Rodrigues, J.F.; Piazza, R.M.; Ferreira, L.C.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Ochoa, T.J.; Barletta, F.; Contreras, C.; Mercado, E. New insights into the epidemiology of enteropathogenic Escherichia coli infection. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 852–856. [Google Scholar] [CrossRef] [Green Version]
- Gaytán, M.O.; Martínez-Santos, V.I.; Soto, E.; González-Pedrajo, B. Type three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 2016, 6, 129. [Google Scholar] [CrossRef] [Green Version]
- Songe, M.M.; Hang’ombe, B.M.; Knight-Jones, T.J.; Grace, D. Antimicrobial resistant enteropathogenic Escherichia coli and Salmonella spp. in houseflies infesting fish in food markets in Zambia. Int. J. Environ. Res. Public Health 2017, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- Brück, W.M.; Kelleher, S.L.; Gibson, G.R.; Nielsen, K.E.; Chatterton, D.E.; Lönnerdal, B. rRNA probes used to quantify the effects of glycomacropeptide and α-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Brück, W.M.; Kelleher, S.L.; Gibson, G.R.; Graverholt, G.; Lönnerdal, B.L. The effects of α-lactalbumin and glycomacropeptide on the association of CaCo-2 cells by enteropathogenic Escherichia coli, Salmonella typhimurium and Shigella flexneri. FEMS Microbiol. Lett. 2006, 259, 158–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandes, R.T.; Elias, W.P.; Vieira, M.A.; Gomes, T.A. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 2009, 297, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Serapio-Palacios, A.; Finlay, B.B. Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. Curr. Opin. Microbiol. 2020, 54, 67–76. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, X.; Jin, Y.; Hu, B.; Wang, H.; Sun, H.; Fan, R.; Fu, S.; Xiong, Y. High prevalence of virulence genes in specific genotypes of atypical enteropathogenic Escherichia coli. Front. Cell. Infect. Microbiol. 2017, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Peña, A.; Ilangovan, A.; Clark, J.N.-B.; Frankel, G.; Egelman, E.H.; Costa, T.R. Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament. Proc. Natl. Acad. Sci. USA 2021, 118, e2022826118. [Google Scholar] [CrossRef]
- Platenkamp, A.; Mellies, J.L. Environment controls LEE regulation in enteropathogenic Escherichia coli. Front. Microbiol. 2018, 9, 1694. [Google Scholar] [CrossRef] [Green Version]
- Pollock, G.L. Investigating the Molecular Mechanisms of Enteropathogenic Escherichia coli Pathogenesis. Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 2019. [Google Scholar]
- Pinaud, L.; Sansonetti, P.J.; Phalipon, A. Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends Microbiol. 2018, 26, 266–283. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, A.R.; Furniss, R.C.D.; Goddard, P.J.; Clements, A. Modulation of host cell processes by T3SS effectors. In Escherichia coli, a Versatile Pathogen; Springer: Cham, Switzerland, 2018; pp. 73–115. [Google Scholar]
- Slater, S.L.; Sågfors, A.M.; Pollard, D.J.; Ruano-Gallego, D.; Frankel, G. The type III secretion system of pathogenic Escherichia coli. In Escherichia coli, a Versatile Pathogen; Current Topics in Microbiology and Immunology; Springer: Cham, Switzerland, 2018; Volume 416, pp. 51–72. [Google Scholar]
- Ruano-Gallego, D.; Sanchez-Garrido, J.; Kozik, Z.; Núñez-Berrueco, E.; Cepeda-Molero, M.; Mullineaux-Sanders, C.; Clark, J.N.-B.; Slater, S.L.; Wagner, N.; Glegola-Madejska, I. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021, 371, 6534. [Google Scholar] [CrossRef]
- Deborah Chen, H.; Frankel, G. Enteropathogenic Escherichia coli: Unravelling pathogenesis. FEMS Microbiol. Rev. 2005, 29, 83–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnenberg, M.S.; Finlay, B.B. Combating enteropathogenic Escherichia coli (EPEC) infections: The way forward. Trends Microbiol. 2013, 21, 317–319. [Google Scholar] [CrossRef] [Green Version]
- Hartland, E.L.; Leong, J. Enteropathogenic and enterohemorrhagic E. coli: Ecology, pathogenesis, and evolution. Front. Cell. Infect. Microbiol. 2013, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Welinder-Olsson, C.; Kaijser, B. Enterohemorrhagic Escherichia coli (EHEC). Scand. J. Infect. Dis. 2005, 37, 405–416. [Google Scholar] [CrossRef]
- van Hoek, A.H.; van Veldhuizen, J.N.; Friesema, I.; Coipan, C.; Rossen, J.W.; Bergval, I.L.; Franz, E. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx 2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genom. 2019, 20, 271. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; LeJeune, J.T.; Zhao, T.; Doyle, M.P. Enterohemorrhagic Escherichia coli. In Food Microbiology: Fundamentals and Frontiers; ASM Press: Washington, DC, USA, 2012; pp. 287–309. [Google Scholar]
- Prado-Silva, L.; Cadavez, V.; Gonzales-Barron, U.; Rezende, A.C.B.; Sant’Ana, A.S. Meta-analysis of the effects of sanitizing treatments on Salmonella, Escherichia coli O157: H7, and Listeria monocytogenes inactivation in fresh produce. Appl. Environ. Microbiol. 2015, 81, 8008–8021. [Google Scholar] [CrossRef] [Green Version]
- Posada-Izquierdo, G.; Del Rosal, S.; Valero, A.; Zurera, G.; Sant’Ana, A.; Alvarenga, V.; Pérez-Rodríguez, F. Assessing the growth of Escherichia coli O157: H7 and Salmonella in spinach, lettuce, parsley and chard extracts at different storage temperatures. J. Appl. Microbiol. 2016, 120, 1701–1710. [Google Scholar] [CrossRef]
- Kampmeier, S.; Berger, M.; Mellmann, A.; Karch, H.; Berger, P. The 2011 German enterohemorrhagic Escherichia coli O104: H4 outbreak—The danger is still out there. In Escherichia colia a Versatile Pathog; Current Topics in Microbiology and Immunology; Springer: Cham, Switzerland, 2018; Volume 416, pp. 117–148. [Google Scholar]
- Zhou, K.; Ferdous, M.; de Boer, R.F.; Kooistra-Smid, A.M.; Grundmann, H.; Friedrich, A.W.; Rossen, J.W. The mosaic genome structure and phylogeny of Shiga toxin-producing Escherichia coli O104: H4 is driven by short-term adaptation. Clin. Microbiol. Infect. 2015, 21, 468.e7–468.e18. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Cointe, A.; Mariani Kurkdjian, P.; Rafat, C.; Hertig, A. Shiga toxin-associated hemolytic uremic syndrome: A narrative review. Toxins 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyles, C. Shiga toxin-producing Escherichia coli: An overview. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, M.; Friedrich, A.W.; Grundmann, H.; de Boer, R.F.; Croughs, P.D.; Islam, M.A.; Kluytmans-van den Bergh, M.F.; Kooistra-Smid, A.M.; Rossen, J.W. Molecular characterization and phylogeny of Shiga toxin–producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing. Clin. Microbiol. Infect. 2016, 22, 642.e1–642.e9. [Google Scholar] [CrossRef] [Green Version]
- Melton-Celsa, A.R. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauro, S.A.; Koudelka, G.B. Shiga toxin: Expression, distribution, and its role in the environment. Toxins 2011, 3, 608–625. [Google Scholar] [CrossRef]
- Smith, J.L.; Fratamico, P.M.; Gunther IV, N.W. Shiga toxin-producing Escherichia coli. Adv. Appl. Microbiol. 2014, 86, 145–197. [Google Scholar]
- Melton-Celsa, A.; Mohawk, K.; Teel, L.; O’Brien, A. Pathogenesis of Shiga-toxin producing Escherichia coli. In Ricin and Shiga Toxins; Springer: Berlin/Heidelberg, Germany, 2011; pp. 67–103. [Google Scholar]
- Schwidder, M.; Heinisch, L.; Schmidt, H. Genetics, toxicity, and distribution of enterohemorrhagic Escherichia coli hemolysin. Toxins 2019, 11, 502. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-R.; Kuo, C.-J.; Huang, C.-W.; Chen, Y.-T.; Liu, B.-Y.; Lee, C.-T.; Chen, P.-L.; Chang, W.-T.; Chen, Y.-W.; Lee, T.-M. Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli. Nat. Commun. 2021, 12, 1–19. [Google Scholar]
- Barnett Foster, D. Modulation of the enterohemorrhagic E. coli virulence program through the human gastrointestinal tract. Virulence 2013, 4, 315–323. [Google Scholar] [CrossRef] [Green Version]
- García-Heredia, A.; García, S.; Merino-Mascorro, J.Á.; Feng, P.; Heredia, N. Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli. Food Microbiol. 2016, 59, 124–132. [Google Scholar] [CrossRef]
- Karpman, D.; Ståhl, A.L. Enterohemorrhagic Escherichia coli pathogenesis and the host response. Microbiol. Spectr. 2014, 2, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, C.S.; Sofos, J.N. Diarrheagenic Escherichia coli. In Pathogens and Toxins in Foods: Challenges and Interventions; ASM Press: Washington, DC, USA, 2009; pp. 71–94. [Google Scholar]
- Warr, A.R.; Kuehl, C.J.; Waldor, M.K. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog. 2021, 17, e1009290. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.; Lucchesi, P.; Sanso, A.M.; Etcheverría, A.I.; Bustamante, A.V.; Burgán, J.; Fernández, L.; Fernández, D.; Leotta, G.; Friedrich, A.W. Genetic characterization of Shiga toxin-producing Escherichia coli O26: H11 strains isolated from animal, food, and clinical samples. Front. Cell. Infect. Microbiol. 2015, 5, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buuck, S.; Smith, K.; Fowler, R.; Cebelinski, E.; Lappi, V.; Boxrud, D.; Medus, C. Epidemiology of Enterotoxigenic Escherichia coli infection in Minnesota, 2016–2017. Epidemiol. Infect. 2020, 148, e206. [Google Scholar] [CrossRef]
- Fleckenstein, J.M.; Kuhlmann, F.M. Enterotoxigenic Escherichia coli infections. Curr. Infect. Dis. Rep. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Bin, P.; Tang, Z.; Liu, S.; Chen, S.; Xia, Y.; Liu, J.; Wu, H.; Zhu, G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet. Res. 2018, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crofts, A.A.; Giovanetti, S.M.; Rubin, E.J.; Poly, F.M.; Gutiérrez, R.L.; Talaat, K.R.; Porter, C.K.; Riddle, M.S.; DeNearing, B.; Brubaker, J. Enterotoxigenic E. coli virulence gene regulation in human infections. Proc. Natl. Acad. Sci. USA 2018, 115, E8968–E8976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhakat, D.; Mondal, I.; Chatterjee, N. EatA, a non-classical virulence factor, of Enterotoxigenic Escherichia coli (ETEC) is modulated by the host factors during pathogenesis. Int. J. Infect. Dis. 2020, 101, 3–4. [Google Scholar] [CrossRef]
- Hazen, T.H.; Michalski, J.; Luo, Q.; Shetty, A.C.; Daugherty, S.C.; Fleckenstein, J.M.; Rasko, D.A. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli. Sci. Rep. 2017, 7, 1–17. [Google Scholar]
- Rasko, D.A.; Del Canto, F.; Luo, Q.; Fleckenstein, J.M.; Vidal, R.; Hazen, T.H. Comparative genomic analysis and molecular examination of the diversity of enterotoxigenic Escherichia coli isolates from Chile. PLoS Negl. Trop. Dis. 2019, 13, e0007828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Kuhlmann, F.M.; Chakraborty, S.; Bourgeois, A.L.; Foulke-Abel, J.; Tumala, B.; Vickers, T.J.; Sack, D.A.; DeNearing, B.; Harro, C.D. Enterotoxigenic Escherichia coli–blood group A interactions intensify diarrheal severity. J. Clin. Investig. 2018, 128, 3298–3311. [Google Scholar] [CrossRef] [Green Version]
- Mirhoseini, A.; Amani, J.; Nazarian, S. Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microb. Pathog. 2018, 117, 162–169. [Google Scholar] [CrossRef]
- Turunen, K.; Antikainen, J.; Lääveri, T.; Kirveskari, J.; Svennerholm, A.-M.; Kantele, A. Clinical aspects of heat-labile and heat-stable toxin-producing enterotoxigenic Escherichia coli: A prospective study among Finnish travellers. Travel Med. Infect. Dis. 2020, 38, 101855. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Z.; Luo, Y.; Cox, E.; Devriendt, B. Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity. Toxins 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Vidal, R.M.; Muhsen, K.; Tennant, S.M.; Svennerholm, A.-M.; Sow, S.O.; Sur, D.; Zaidi, A.K.; Faruque, A.S.; Saha, D.; Adegbola, R. Colonization factors among enterotoxigenic Escherichia coli isolates from children with moderate-to-severe diarrhea and from matched controls in the Global Enteric Multicenter Study (GEMS). PLoS Negl. Trop. Dis. 2019, 13, e0007037. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Xia, P.; Nandre, R.; Zhang, W.; Zhu, G. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front. Cell. Infect. Microbiol. 2019, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.F.; Lourenço, R.F.; Maeda, D.L.N.F.; de Jesus Cintra, M.; Nakao, N.; Mathias-Santos, C.; Luiz, W.B.; de Souza Ferreira, L.C. Strain-specific transcriptional and posttranscriptional regulation of heat-labile toxin expression by enterotoxigenic Escherichia coli. Braz. J. Microbiol. 2020, 51, 455–465. [Google Scholar] [CrossRef]
- Subramenium, G.A.; Sabui, S.; Marchant, J.S.; Said, H.M.; Subramanian, V.S. Enterotoxigenic Escherichia coli heat labile enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G55–G63. [Google Scholar] [CrossRef] [Green Version]
- von Mentzer, A.; Blackwell, G.A.; Pickard, D.; Boinett, C.J.; Joffré, E.; Page, A.J.; Svennerholm, A.-M.; Dougan, G.; Sjöling, Å. Long-read-sequenced reference genomes of the seven major lineages of enterotoxigenic Escherichia coli (ETEC) circulating in modern time. Sci. Rep. 2021, 11, 1–16. [Google Scholar]
- Van den Beld, M.; Reubsaet, F. Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 899–904. [Google Scholar] [CrossRef]
- Lagerqvist, N.; Löf, E.; Enkirch, T.; Nilsson, P.; Roth, A.; Jernberg, C. Outbreak of gastroenteritis highlighting the diagnostic and epidemiological challenges of enteroinvasive Escherichia coli, County of Halland, Sweden, November 2017. Eurosurveillance 2020, 25, 1900466. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Didban, A.; Monfared, Y.K.; Mahmoudi, R.; Peymani, A.; Modabber, M.R. Antibiotic susceptibility and genetic relatedness of Shigella species isolated from food and human stool samples in Qazvin, Iran. BMC Res. Notes 2021, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- van den Beld, M.J.; Warmelink, E.; Friedrich, A.W.; Reubsaet, F.A.; Schipper, M.; de Boer, R.F.; Notermans, D.W.; Petrignani, M.W.; van Zanten, E.; Rossen, J.W. Incidence, clinical implications and impact on public health of infections with Shigella spp. and entero-invasive Escherichia coli (EIEC): Results of a multicenter cross-sectional study in the Netherlands during 2016–2017. BMC Infect. Dis. 2019, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnupf, P.; Sansonetti, P.J. Shigella pathogenesis: New insights through advanced methodologies. Microbiol. Spectr. 2019, 7, 7-2. [Google Scholar] [CrossRef]
- van den Beld, M.J.; Reubsaet, F.A.; Pijnacker, R.; Harpal, A.; Kuiling, S.; Heerkens, E.M.; Hoeve-Bakker, B.; Noomen, R.C.; Hendriks, A.C.; Borst, D. A multifactorial approach for surveillance of Shigella spp. and entero-invasive Escherichia coli is important for detecting (inter) national clusters. Front. Microbiol. 2020, 11, 2535. [Google Scholar] [CrossRef]
- Parsot, C. Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors. FEMS Microbiol. Lett. 2005, 252, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.G. Current aspects of Shigella pathogenesis. Rev. Latinoam. Microbiol. 2004, 46, 89–97. [Google Scholar]
- Hendriks, A.C.; Reubsaet, F.A.; Kooistra-Smid, A.M.; Rossen, J.W.; Dutilh, B.E.; Zomer, A.L.; van den Beld, M.J. Genome-wide association studies of Shigella spp. and Enteroinvasive Escherichia coli isolates demonstrate an absence of genetic markers for prediction of disease severity. BMC Genom. 2020, 21, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqua, M.; Michelacci, V.; Di Martino, M.L.; Tozzoli, R.; Grossi, M.; Colonna, B.; Morabito, S.; Prosseda, G. The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity. Front. Microbiol. 2017, 8, 2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowley, L.A.; Oresegun, D.R.; Chattaway, M.A.; Dallman, T.J.; Jenkins, C. Phylogenetic comparison of enteroinvasive Escherichia coli isolated from cases of diarrhoeal disease in England, 2005–2016. J. Med. Microbiol. 2018, 67, 884–888. [Google Scholar] [CrossRef]
- Belotserkovsky, I.; Sansonetti, P.J. Shigella and enteroinvasive Escherichia coli. In Escherichia coli, a Versatile Pathogen; Springer: Cham, Switzerland, 2018; pp. 1–26. [Google Scholar]
- Farajzadeh-Sheikh, A.; Savari, M.; Ahmadi, K.; Nave, H.H.; Shahin, M.; Afzali, M. Distribution of Genes Encoding Virulence Factors and the Genetic Diversity of Enteroinvasive Escherichia coli (EIEC) Isolates from Patients with Diarrhea in Ahvaz, Iran. Infect. Drug Resist. 2020, 13, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bona, M.; Medeiros, P.H.; Santos, A.K.; Freitas, T.; Prata, M.; Veras, H.; Amaral, M.; Oliveira, D.; Havt, A.; Lima, A.Â. Virulence-related genes are associated with clinical and nutritional outcomes of Shigella/Enteroinvasive Escherichia coli pathotype infection in children from Brazilian semiarid region: A community case-control study. Int. J. Med. Microbiol. 2019, 309, 151–158. [Google Scholar] [CrossRef]
- Penzel, A.; Schützler, K.; Dröge, J.; Mellmann, A.; Ehricht, R.; Engelmann, I.; Braun, S.D.; Schleenvoigt, B.T.; Löffler, B.; Rödel, J. Rapid culture-based identification of Shiga toxin-producing Escherichia coli and Shigella spp./Enteroinvasive E. coli using the eazyplex® EHEC complete assay. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 151–158. [Google Scholar] [CrossRef]
- Moosavian, M.; Ghaderiyan, G.H.; Shahin, M.; Navidifar, T. First investigation of the presence of SPATE genes in Shigella species isolated from children with diarrhea infection in Ahvaz, southwest Iran. Infect. Drug Resist. 2019, 12, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, S.; Guin, S.; Ghosh, S.; Pazhani, G.P.; Rajendran, K.; Bhattacharya, M.K.; Takeda, Y.; Nair, G.B.; Ramamurthy, T. Trends in the prevalence of diarrheagenic Escherichia coli among hospitalized diarrheal patients in Kolkata, India. PLoS ONE 2013, 8, e56068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [Green Version]
- Rogawski, E.T.; Guerrant, R.L.; Havt, A.; Lima, I.F.; Medeiros, P.H.; Seidman, J.C.; McCormick, B.J.; Babji, S.; Hariraju, D.; Bodhidatta, L. Epidemiology of enteroaggregative Escherichia coli infections and associated outcomes in the MAL-ED birth cohort. PLoS Negl. Trop. Dis. 2017, 11, e0005798. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, C. Enteroaggregative Escherichia coli. In Escherichia coli, a Versatile Pathogen; Springer: Cham, Switzerland, 2018; pp. 27–50. [Google Scholar]
- Boisen, N.; Østerlund, M.T.; Joensen, K.G.; Santiago, A.E.; Mandomando, I.; Cravioto, A.; Chattaway, M.A.; Gonyar, L.A.; Overballe-Petersen, S.; Stine, O.C. Redefining enteroaggregative Escherichia coli (EAEC): Genomic characterization of epidemiological EAEC strains. PLoS Negl. Trop. Dis. 2020, 14, e0008613. [Google Scholar] [CrossRef]
- Nataro, J.P. Enteroaggregative Escherichia coli pathogenesis. Curr. Opin. Gastroenterol. 2005, 21, 4–8. [Google Scholar]
- Guerrieri, C.G.; Pereira, M.F.; Galdino, A.C.M.; Santos, A.L.S.D.; Elias, W.P.; Schuenck, R.P.; Spano, L.C. Typical and atypical enteroaggregative Escherichia coli are both virulent in the Galleria mellonella model. Front. Microbiol. 2019, 10, 1791. [Google Scholar] [CrossRef] [Green Version]
- Bamidele, O.; Jiang, Z.-D.; Dupont, H. Occurrence of putative virulence-related genes, aatA, aggR and aaiC, of Enteroaggregative Escherichia coli (EAEC) among adults with travelers’ diarrhea acquired in Guatemala and Mexico. Microb. Pathog. 2019, 128, 97–99. [Google Scholar] [CrossRef]
- Yasir, M.; Icke, C.; Abdelwahab, R.; Haycocks, J.R.; Godfrey, R.E.; Sazinas, P.; Pallen, M.J.; Henderson, I.R.; Busby, S.J.; Browning, D.F. Organization and architecture of AggR-dependent promoters from Enteroaggregative Escherichia coli. Mol. Microbiol. 2019, 111, 534–551. [Google Scholar] [CrossRef] [Green Version]
- Mandomando, I.; Vubil, D.; Boisen, N.; Quintó, L.; Ruiz, J.; Sigaúque, B.; Nhampossa, T.; Garrine, M.; Massora, S.; Aide, P. Escherichia coli ST131 clones harbouring AggR and AAF/V fimbriae causing bacteremia in Mozambican children: Emergence of new variant of fimH27 subclone. PLoS Negl. Trop. Dis. 2020, 14, e0008274. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.C.; Tanabe, R.H.; Vieira, M.A.; Cergole-Novella, M.C.; Dos Santos, L.F.; Gomes, T.A.; Elias, W.P.; Hernandes, R.T. Analysis of the virulence profile and phenotypic features of typical and atypical enteroaggregative Escherichia coli (EAEC) isolated from diarrheal patients in Brazil. Front. Cell. Infect. Microbiol. 2020, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvestegui, A.; Olivares-Morales, M.; Muñoz, E.; Smith, R.; Nataro, J.P.; Ruiz-Perez, F.; Farfan, M.J. TLR4 participates in the inflammatory response induced by the AAF/II fimbriae from enteroaggregative Escherichia coli on intestinal epithelial cells. Front. Cell. Infect. Microbiol. 2019, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, C.T.; Longo, J.; Silva, L.B.; Pimenta, D.C.; Carvalho, E.; Morone, M.S.; da Rós, N.; Serrano, S.M.; Santos, A.C.M.; Piazza, R.M. Surface protein dispersin of enteroaggregative Escherichia coli binds plasminogen that Is converted Into active plasmin. Front. Microbiol. 2020, 11, 1222. [Google Scholar] [CrossRef]
- Nunes, K.O.; Santos, A.C.; Bando, S.Y.; Silva, R.M.; Gomes, T.A.; Elias, W.P. Enteroaggregative Escherichia coli with uropathogenic characteristics are present in feces of diarrheic and healthy children. Pathog. Dis. 2017, 75, ftx106. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Cimdins, A.; Lüthje, P.; Brauner, A.; Sjöling, Å.; Landini, P.; Römling, U. “It’sa gut feeling”—Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit. Rev. Microbiol. 2018, 44, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Hebbelstrup Jensen, B.; Adler Sørensen, C.; Hebbelstrup Rye Rasmussen, S.; Rejkjær Holm, D.; Friis-Møller, A.; Engberg, J.; Mirsepasi-Lauridsen, H.C.; Struve, C.; Hammerum, A.M.; Porsbo, L.J. Characterization of diarrheagenic enteroaggregative Escherichia coli in danish adults—antibiotic treatment does not reduce duration of diarrhea. Front. Cell. Infect. Microbiol. 2018, 8, 306. [Google Scholar] [CrossRef]
- Paletta, A.C.; Castro, V.S.; Conte-Junior, C.A. Shiga toxin-producing and enteroaggregative Escherichia coli in animal, foods, and humans: Pathogenicity mechanisms, detection methods, and epidemiology. Curr. Microbiol. 2020, 77, 612–620. [Google Scholar] [CrossRef]
- Ellis, S.J.; Yasir, M.; Browning, D.F.; Busby, S.J.; Schüller, S. Oxygen and contact with human intestinal epithelium independently stimulate virulence gene expression in enteroaggregative Escherichia coli. Cell. Microbiol. 2019, 21, e13012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, P.C.; Espinoza-Culupú, A.O.; Nepomuceno, R.; Alves, M.R.; Lebrun, I.; Elias, W.P.; Ruiz, R.C. Secreted autotransporter toxin (Sat) induces cell damage during enteroaggregative Escherichia coli infection. PLoS ONE 2020, 15, e0228959. [Google Scholar] [CrossRef]
- Le Bouguénec, C.; Servin, A.L. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): Hitherto unrecognized pathogens. FEMS Microbiol. Lett. 2006, 256, 185–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansan-Almeida, R.; Pereira, A.L.; Giugliano, L.G. Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol. 2013, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.; Das, S.; Ramachandran, V.; Dar, S.A.; Snehaa, K.; Saha, R.; Shah, D. Spectrum of diarrhoeagenic Escherichia coli in paediatric population suffering from diarrhoea and as commensals in healthy children. Indian J. Med. Microbiol. 2017, 35, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Sosa, L.; Ochoa, T.J. Escherichia coli diarrhea. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–485. [Google Scholar]
- Walczuk, U.; Sobieszczańska, B.; Turniak, M.; Rzeszutko, M.; Duda-Madej, A.; Iwańczak, B. The prevalence of mucosa-associated diffusely adherent Escherichia coli in children with inflammatory bowel disease. Adv. Clin. Exp. Med. 2019, 28, 899–905. [Google Scholar]
- Chellapandi, K.; Ralte, L.; De Mandal, S.; Kumar, N.S.; Dutta, T.K.; Sharma, I. Diffusely Adherent E. coli Burden in Low Socio-Economic Pediatric Population. J. Med. Bacteriol. 2019, 8, 44–55. [Google Scholar]
- Javadi, K.; Mohebi, S.; Motamedifar, M.; Hadi, N. Characterization and antibiotic resistance pattern of diffusely adherent Escherichia coli (DAEC), isolated from paediatric diarrhoea in Shiraz, southern Iran. New Microbes New Infect. 2020, 38, 100780. [Google Scholar] [CrossRef]
- Ageorges, V.; Monteiro, R.; Leroy, S.; Burgess, C.M.; Pizza, M.; Chaucheyras-Durand, F.; Desvaux, M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): From bacterial adhesion to biofilm formation. FEMS Microbiol. Rev. 2020, 44, 314–350. [Google Scholar] [CrossRef]
- Barrios-Villa, E.; de la Peña, C.F.M.; Lozano-Zaraín, P.; Cevallos, M.A.; Torres, C.; Torres, A.G.; del Carmen Rocha-Gracia, R. Comparative genomics of a subset of adherent/invasive Escherichia coli strains isolated from individuals without inflammatory bowel disease. Genomics 2020, 112, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Meza-Segura, M.; Estrada-Garcia, T. Diffusely adherent Escherichia coli. In Escherichia coli in the Americas; Springer: Berlin/Heidelberg, Germany, 2016; pp. 125–147. [Google Scholar]
- Garrine, M.; Matambisso, G.; Nobela, N.; Vubil, D.; Massora, S.; Acácio, S.; Nhampossa, T.; Alonso, P.; Mandomando, I. Low frequency of enterohemorrhagic, enteroinvasive and diffusely adherent Escherichia coli in children under 5 years in rural Mozambique: A case-control study. BMC Infect. Dis. 2020, 20, 1–6. [Google Scholar] [CrossRef]
- Martinez-Medina, M. Pathogenic Escherichia coli: Infections and Therapies; MDPI: Basel, Switzerland, 2021. [Google Scholar]
- Palmela, C.; Chevarin, C.; Xu, Z.; Torres, J.; Sevrin, G.; Hirten, R.; Barnich, N.; Ng, S.C.; Colombel, J.-F. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018, 67, 574–587. [Google Scholar] [CrossRef] [PubMed]
- Shaler, C.R.; Elhenawy, W.; Coombes, B.K. The unique lifestyle of Crohn’s disease-associated adherent-invasive Escherichia coli. J. Mol. Biol. 2019, 431, 2970–2981. [Google Scholar] [CrossRef]
- Graham, D.B.; Xavier, R.J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020, 578, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Caruso, R.; Lo, B.C.; Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020, 20, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, W.; Lan, P.; Mou, X. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy. Protein Cell 2020, 12, 331–345. [Google Scholar] [CrossRef]
- Chervy, M.; Barnich, N.; Denizot, J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn’s Disease. Int. J. Mol. Sci. 2020, 21, 3734. [Google Scholar] [CrossRef]
- Lee, J.G.; Han, D.S.; Jo, S.V.; Lee, A.R.; Park, C.H.; Eun, C.S.; Lee, Y. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes. PLoS ONE 2019, 14, e0216165. [Google Scholar]
- Mazzarella, G.; Perna, A.; Marano, A.; Lucariello, A.; Rotondi Aufiero, V.; Sorrentino, A.; Melina, R.; Guerra, G.; Taccone, F.S.; Iaquinto, G. Pathogenic role of associated adherent-invasive Escherichia coli in Crohn’s disease. J. Cell. Physiol. 2017, 232, 2860–2868. [Google Scholar] [CrossRef] [PubMed]
- Shawki, A.; McCole, D.F. Mechanisms of intestinal epithelial barrier dysfunction by adherent-invasive Escherichia coli. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Perna, A.; Hay, E.; Contieri, M.; De Luca, A.; Guerra, G.; Lucariello, A. Adherent-invasive Escherichia coli (AIEC): Cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J. Cell. Physiol. 2020, 235, 5041–5049. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liao, Y.; Ma, Y.; Gong, W.; Zhu, G. The role of major virulence factors of AIEC involved in inflammatory bowl disease—A mini-review. Appl. Microbiol. Biotechnol. 2017, 101, 7781–7787. [Google Scholar] [CrossRef] [PubMed]
- Cogger-Ward, R. Characterisation of Putative Virulence Factors in Adherent-Invasive Escherichia coli. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2020. [Google Scholar]
- Abdelhalim, K.A.; Uzel, A.; Ünal, N.G. Virulence determinants and genetic diversity of adherent-invasive Escherichia coli (AIEC) strains isolated from patients with Crohn’s disease. Microb. Pathog. 2020, 145, 104233. [Google Scholar] [CrossRef] [PubMed]
- Astley, D.; Masters, N.; Kuballa, A.; Katouli, M. Commonality of adherent-invasive Escherichia coli isolated from patients with extraintestinal infections, healthy individuals and the environment. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Beata, S.; Michał, T.; Mateusz, O.; Urszula, W.; Choroszy, M.; Andrzej, T.; Piotr, D. Norepinephrine affects the interaction of adherent-invasive Escherichia coli with intestinal epithelial cells. Virulence 2021, 12, 630–637. [Google Scholar] [CrossRef]
- Singh, P.; Metgud, S.C.; Roy, S.; Purwar, S. Evolution of diarrheagenic Escherichia coli pathotypes in India. J. Lab. Phys. 2019, 11, 346. [Google Scholar] [CrossRef]
- Bogaerts, B.; Nouws, S.; Verhaegen, B.; Denayer, S.; Van Braekel, J.; Winand, R.; Fu, Q.; Crombé, F.; Piérard, D.; Marchal, K. Validation strategy of a bioinformatics whole genome sequencing workflow for Shiga toxin-producing Escherichia coli using a reference collection extensively characterized with conventional methods. Microb. Genom. 2021, 7, 000531. [Google Scholar]
- Deurenberg, R.H.; Bathoorn, E.; Chlebowicz, M.A.; Couto, N.; Ferdous, M.; García-Cobos, S.; Kooistra-Smid, A.M.; Raangs, E.C.; Rosema, S.; Veloo, A.C. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 2017, 243, 16–24. [Google Scholar] [CrossRef] [PubMed]
Class | Virulence Factor | Activity/Function | Pathotype |
---|---|---|---|
Colonization | bfp | adherence, | EPEC |
eae | attaching and effacing of enterocyte, | EPEC, EHEC | |
tir | translocated intimin receptor, | EPEC, EHEC | |
lifA | initial attachment to the enterocytes, | EPEC | |
csgA | curli fimbriae, | EPEC, EHEC | |
fimA | type I fimbriae, | EPEC, EHEC, DAEC | |
fimH | type I fimbriae, | ETEC, AIEC | |
bcsA | cellulose structure, | EPEC | |
eha | biofilm formation, | EHEC | |
saa | biofilm formation, | EHEC | |
sab | biofilm formation, | EHEC | |
toxB | biofilm and adhesion establishment, | EHEC | |
nleB | biofilm formation, | EHEC | |
nleE | biofilm formation, | EHEC | |
nleH | biofilm formation, | EHEC | |
bleG | biofilm formation, | EHEC | |
lfp | long polar fimbriae, initial attachment, | EHEC | |
CFA/I | colonization factor, | ETEC | |
CFA/II | colonization factor, | ETEC | |
CFA/IV | colonization factor, | ETEC | |
CS1-6 | colonization (coli surface antigen), | ETEC | |
etpA | initial attachment, | ETEC | |
aggR | attachment and adherence, | EAEC | |
aggA | aggregative adhesion fimbria, | EAEC | |
aafA | aggregative adhesion fimbria, | EAEC | |
agg3A | aggregative adhesion fimbria, | EAEC | |
agg4A | aggregative adhesion fimbria, | EAEC | |
agg5A | aggregative adhesion fimbria, | EAEC | |
aap | dispersin, dispersion of EAEC, | EAEC | |
afaA-E | Afa/Dr adhesins, IL-8 secretion, | DAEC | |
DraA-E | cytoskeleton rearrangement, destroying microvilli, Afa/Dr adhesins, IL-8 secretion, expression of MICA | DAEC | |
daaA-E | cytoskeleton rearrangement, destroying microvilli, Afa/Dr adhesins, IL-8 secretion, expression of MICA | DAEC | |
pop | type I pili, adhesin, | DAEC | |
Fitness | sdiA | quorum sensing signaling, | EPEC |
iutA | aerobactin synthesis, | EIEC | |
iucB | complex siderophore iron receptor, | EIEC | |
yjaA | polypeptide stress response protein, | AIEC | |
fyuA | ferric yersiniabactin uptake, | AIEC | |
kpsMT II | capsule synthesis, | AIEC | |
Toxins | stx1 | shiga toxin, surface localization of nucleolin and cytotoxic effect, | EHEC |
stx2 | shiga toxin, surface localization of nucleolin and cytotoxic effect, | EHEC | |
estA | ST I toxin, watery and secretory diarrhea, secretion of chemokines and cytokines, | ETEC | |
estB | ST II toxin, watery and secretory diarrhea, secretion of chemokines and cytokines, | ETEC | |
LT I | watery diarrhea, | ETEC | |
LT II | watery diarrhea, | ETEC | |
eatA | SPATE, | ETEC, EIEC | |
astA | enteroaggregative heat-stable toxin, secretory diarrhea, | ETEC, EAEC, DAEC | |
ShET1 | shigella enterotoxin 1, secretary intestinal activity, | ETEC | |
ShET2 | shigella enterotoxin 2, secretary intestinal activity, | ETEC | |
pet | SPATE, plasmid encoded toxin, inducing epithelial cell extrusion, host cell entering, | EAEC, DAEC | |
pic | SPATE, ShET1 expression, inducing epithelial cell extrusion, mucolytic activity, | EIEC, EAEC | |
sigA | SPATE, cytotoxin, accumulation of intestinal fluid, | EIEC, EAEC, DAEC | |
sat | SPATE, secreted autotransporter toxin, impairing tight junction, mediating autophagy, | EAEC, DAEC | |
sepA | shigella extracellular enterotoxin, cytotoxin, IgA protease like homologue, | EAEC | |
hlyE | alpha hemolysin toxin, | EAEC | |
Effectors | espA | translocator structures of T3SS, E. coli common pili, | EPEC, ETEC |
espB | translocator structures of T3SS, phagocytosis inhibition, | EPEC | |
espC | cleavage of T3SS translocator structures, | EPEC | |
espD | translocator structures of T3SS, | EPEC | |
espF | mitochondrial death, tight junction disruption, immune evasion, host cell death, | EPEC, EHEC | |
espH | phagocytosis inhibition, | EPEC | |
espJ | phagocytosis inhibition, biofilm formation, | EPEC, EHEC | |
espP | cleavage of T3SS translocator structures, | EPEC, DAEC | |
espT | host cell death, | EHEC | |
MAP | disrupt mitochondrial membrane functionality, host cell death, | EPEC | |
nleA | inflammasome activation, tight junction disruption, cytokines secretion inhibition, | EPEC | |
etp | Autotransporter protein, | ETEC | |
tolC | secretion of ST toxins, | ETEC | |
nleF | host cell death, inflammasome activation, | EPEC, EHEC | |
cif | cell cycle disruption, delays apoptosis, | EPEC | |
ipaA | Type III effector, cytoskeleton reorganization, cell death blockage, | EIEC | |
ipaB | Type III effector, adhesion, phagosome escape, cell turnover, | EIEC | |
ipaC | Type III effector, adhesion, actin polymerization, phagosome escape, | EIEC | |
ipaD | Type III effector, adhesion, phagosome escape, cell death blockage, | EIEC | |
ipaH | dampen the inflammatory responses, invasion, | EIEC, AIEC | |
ipaJ | inhibition of host cell trafficking membrane, inhibition of inflammasomes, | EIEC | |
ipgB1 | cytoskeleton reorganization, ruffle formation, | EIEC | |
ipgD | cytoskeleton reorganization, | EIEC | |
virA | cytoskeleton reorganization, cell death blockage, autophagy inhibition, | EIEC | |
virB | virulence factor gene synthesis, | EIEC | |
virF | virulence factor gene expression, | EIEC | |
virG | Actin nucleation, | EIEC | |
ospB | dampen the inflammatory responses, | EIEC | |
ospE | cell detachment, | EIEC | |
ospF | dampen the inflammatory responses, | EIEC | |
ospG | dampen the inflammatory responses, | EIEC | |
ospI | dampen the inflammatory responses, | EIEC | |
ospZ | dampen the inflammatory responses, | EIEC | |
icsB | autophagy inhibition, | ETEC | |
aaiA-Y | type VI secretion system (T6SS), | EAEC | |
ibeA | invasion protein ibeA, | AIEC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. https://doi.org/10.3390/ijms22189922
Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. International Journal of Molecular Sciences. 2021; 22(18):9922. https://doi.org/10.3390/ijms22189922
Chicago/Turabian StylePakbin, Babak, Wolfram M. Brück, and John W. A. Rossen. 2021. "Virulence Factors of Enteric Pathogenic Escherichia coli: A Review" International Journal of Molecular Sciences 22, no. 18: 9922. https://doi.org/10.3390/ijms22189922
APA StylePakbin, B., Brück, W. M., & Rossen, J. W. A. (2021). Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. International Journal of Molecular Sciences, 22(18), 9922. https://doi.org/10.3390/ijms22189922