Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases
Funding
Acknowledgments
Conflicts of Interest
References
- Orlov, Y.L.; Baranova, A.V.; Tatarinova, T.V. Bioinformatics Methods in Medical Genetics and Genomics. Int. J. Mol. Sci. 2020, 21, 6224. [Google Scholar] [CrossRef] [PubMed]
- Baranova, A.V.; Orlov, Y.L. The papers presented at 7th Young Scientists School “Systems Biology and Bioinformatics” (SBB’15): Introductory Note. BMC Genet. 2016, 17, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranova, A.V.; Klimontov, V.V.; Letyagin, A.Y.; Orlov, Y.L. Medical genomics research at BGRS-2018. BMC Med. Genom. 2019, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlov, Y.L.; Baranova, A.V.; Markel, A.L. Computational models in genetics at BGRS\SB-2016: Introductory note. BMC Genet. 2016, 17, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlov, Y.L.; Hofestädt, R.; Tatarinova, T.V. Bioinformatics research at BGRS\SB-2018. J. Bioinform. Comput. Biol. 2019, 17, 1902001. [Google Scholar] [CrossRef] [PubMed]
- Tatarinova, T.V.; Baranova, A.V.; Anashkina, A.A.; Orlov, Y.L. Genomics and Systems Biology at the “Century of Human Population Genetics” conference. BMC Genom. 2020, 21 (Suppl. S7), S1. [Google Scholar] [CrossRef] [PubMed]
- Saik, O.; Klimontov, V. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int. J. Mol. Sci. 2020, 21, 8691. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Z.; Zhou, J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc. Diabetol. 2021, 20, 9. [Google Scholar] [CrossRef]
- Ceriello, A. Glucose Variability and Diabetic Complications: Is It Time to Treat? Diabetes Care 2020, 43, 1169–1171. [Google Scholar] [CrossRef]
- Klimontov, V.V.; Saik, O.V.; Korbut, A.I. Glucose variability: How Does It Work? Int. J. Mol. Sci. 2021, 22, 7783. [Google Scholar] [CrossRef]
- Bragin, A.O.; Saik, O.V.; Chadaeva, I.V.; Demenkov, P.S.; Markel, A.L.; Orlov, Y.L.; Rogaev, E.I.; Lavrik, I.N.; Ivanisenko, V.A. Role of apoptosis genes in aggression revealed using combined analysis of ANDSystem gene networks, expression and genomic data in grey rats with aggressive behavior. Vavilovskii Zhurnal Genet. Sel. Vavilov J. Genet. Breed. 2017, 21, 911–919. [Google Scholar] [CrossRef]
- Ivanisenko, V.A.; Demenkov, P.S.; Ivanisenko, T.V.; Mishchenko, E.L.; Saik, O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinform. 2019, 20 (Suppl. S1), 34. [Google Scholar] [CrossRef]
- Ivanisenko, T.V.; Saik, O.V.; Demenkov, P.S.; Ivanisenko, N.V.; Savostianov, A.N.; Ivanisenko, V.A. ANDDigest: A new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinform. 2020, 21 (Suppl. S11), 228. [Google Scholar] [CrossRef] [PubMed]
- Glyakina, A.; Surin, A.; Grishin, S.; Selivanova, O.; Suvorina, M.; Bobyleva, L.; Vikhlyantsev, I.; Galzitskaya, O. New Model for Stacking Monomers in Filamentous Actin from Skeletal Muscles of Oryctolagus cuniculus. Int. J. Mol. Sci. 2020, 21, 8319. [Google Scholar] [CrossRef] [PubMed]
- Karasev, D.; Sobolev, B.; Lagunin, A.; Filimonov, D.; Poroikov, V. Prediction of Protein–ligand Interaction Based on Sequence Similarity and Ligand Structural Features. Int. J. Mol. Sci. 2020, 21, 8152. [Google Scholar] [CrossRef]
- Karasev, D.; Sobolev, B.; Lagunin, A.; Filimonov, D.; Poroikov, V. Prediction of Protein–Ligand Interaction Based on the Positional Similarity Scores Derived from Amino Acid Sequences. Int. J. Mol. Sci. 2020, 21, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvinova, L.; Yurova, K.; Shupletsova, V.; Khaziakhmatova, O.; Malashchenko, V.; Shunkin, E.; Melashchenko, E.; Todosenko, N.; Khlusova, M.; Sharkeev, Y.; et al. Gene Expression Regulation and Secretory Activity of Mesenchymal Stem Cells upon In Vitro Contact with Microarc Calcium Phosphate Coating. Int. J. Mol. Sci. 2020, 21, 7682. [Google Scholar] [CrossRef]
- Ermakov, E.; Parshukova, D.; Nevinsky, G.; Buneva, V. Natural Catalytic IgGs Hydrolyzing Histones in Schizophrenia: Are They the Link between Humoral Immunity and Inflammation? Int. J. Mol. Sci. 2020, 21, 7238. [Google Scholar] [CrossRef]
- Snezhkina, A.; Kalinin, D.; Pavlov, V.; Lukyanova, E.; Golovyuk, A.; Fedorova, M.; Pudova, E.; Savvateeva, M.; Stepanov, O.; Poloznikov, A.; et al. Immunohistochemistry and Mutation Analysis of SDHx Genes in Carotid Paragangliomas. Int. J. Mol. Sci. 2020, 21, 6950. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Fedorova, M.S.; Pavlov, V.S.; Kalinin, D.V.; Golovyuk, A.L.; Pudova, E.A.; Guvatova, Z.G.; Melnikova, N.V.; Dmitriev, A.A.; Razmakhaev, G.S.; et al. Mutation Frequency in Main Susceptibility Genes Among Patients With Head and Neck Paragangliomas. Front. Genet. 2020, 11, 614908. [Google Scholar] [CrossRef]
- Orlov, Y.L.; Baranova, A.V. Editorial: Bioinformatics of Genome Regulation and Systems Biology. Front. Genet. 2020, 11, 625. [Google Scholar] [CrossRef]
- Redina, O.; Babenko, V.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Efimov, V.; Kudryavtseva, N. Gene Expression Changes in the Ventral Tegmental Area of Male Mice with Alternative Social Behavior Experience in Chronic Agonistic Interactions. Int. J. Mol. Sci. 2020, 21, 6599. [Google Scholar] [CrossRef]
- Ragusa, M.; Santagati, M.; Mirabella, F.; Lauretta, G.; Cirnigliaro, M.; Brex, D.; Barbagallo, C.; Domini, C.; Gulisano, M.; Barone, R.; et al. Potential Associations Among Alteration of Salivary miRNAs, Saliva Microbiome Structure, and Cognitive Impairments in Autistic Children. Int. J. Mol. Sci. 2020, 21, 6203. [Google Scholar] [CrossRef]
- Trifonova, E.; Klimenko, A.; Mustafin, Z.; Lashin, S.; Kochetov, A. The mTOR signaling pathway activity and vitamin D availability control the expression of most autism predisposition genes. Int. J. Mol. Sci. 2019, 20, 6332. [Google Scholar] [CrossRef] [Green Version]
- Shematorova, E.; Shpakovski, G. Current Insights in Elucidation of Possible Molecular Mechanisms of the Juvenile Form of Batten Disease. Int. J. Mol. Sci. 2020, 21, 8055. [Google Scholar] [CrossRef] [PubMed]
- Shematorova, E.K.; Shpakovski, D.G.; Chernysheva, A.D.; Shpakovski, G.V. Molecular mechanisms of the juvenile form of Batten disease: Important role of MAPK signaling pathways (ERK1/ERK2, JNK and p38) in pathogenesis of the malady. Biol. Direct. 2018, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Donati, S.; Ciuffi, S.; Marini, F.; Palmini, G.; Miglietta, F.; Aurilia, C.; Brandi, M. Multiple Endocrine Neoplasia Type 1: The Potential Role of microRNAs in the Management of the Syndrome. Int. J. Mol. Sci. 2020, 21, 7592. [Google Scholar] [CrossRef]
- Moldogazieva, N.; Ostroverkhova, D.; Kuzmich, N.; Kadochnikov, V.; Terentiev, A.; Porozov, Y. Elucidating binding sites and affinities of ERα agonists and antagonists to human alpha-fetoprotein by in silico modeling and point mutagenesis. Int. J. Mol. Sci. 2020, 21, 893. [Google Scholar] [CrossRef] [Green Version]
- Orlov, Y.L.; Galieva, A.G.; Orlova, N.G.; Ivanova, E.N.; Mozyleva, Y.A.; Anashkina, A.A. Rekonstruktsiia gennoĭ seti bolezni Parkinsona dlia poiska genov-misheneĭ [Reconstruction of gene network associated with Parkinson disease for gene targets search]. Biomed. Khim. 2021, 67, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Voropaeva, E.N.; Orlov, Y.L.; Pospelova, T.I.; Gurageva, A.A.; Voevoda, M.I.; Maksimov, V.N.; Seregina, O.B.; Churkina, M.I. The rs78378222 prevalence and the copy loss of the protective allele A in the tumor tissue of diffuse large B-cell lymphoma. PeerJ 2020, 8, e10335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlov, Y.L.; Anashkina, A.A.; Klimontov, V.V.; Baranova, A.V. Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases. Int. J. Mol. Sci. 2021, 22, 9962. https://doi.org/10.3390/ijms22189962
Orlov YL, Anashkina AA, Klimontov VV, Baranova AV. Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases. International Journal of Molecular Sciences. 2021; 22(18):9962. https://doi.org/10.3390/ijms22189962
Chicago/Turabian StyleOrlov, Yuriy L., Anastasia A. Anashkina, Vadim V. Klimontov, and Ancha V. Baranova. 2021. "Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases" International Journal of Molecular Sciences 22, no. 18: 9962. https://doi.org/10.3390/ijms22189962
APA StyleOrlov, Y. L., Anashkina, A. A., Klimontov, V. V., & Baranova, A. V. (2021). Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases. International Journal of Molecular Sciences, 22(18), 9962. https://doi.org/10.3390/ijms22189962