Renal Replacement Techniques in Septic Shock
Abstract
:1. Definitions and Epidemiology of Sepsis and Septic Shock
2. Cytokine Storm in Septic Shock
3. Acute Kidney Injury in Sepsis and Septic Shock
4. Renal Replacement Techniques in Sepsis and Septic Shock
5. High Cut-Off Membranes
6. Medium Cut-Off Membranes
6.1. Ultraflux EMIC2
6.2. Oxiris
7. Hemoadsorption
7.1. Polymyxin B Hemoadsorption
7.2. CytoSorb
7.3. HA380
8. Plasma Exchange in the Treatment of Septic AKI
8.1. Plasma Exchange
8.2. Coupled Plasma Filtration and Adsorption
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Moreno, R.; Takala, J.; Willatts, S.; de Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Shankar-Hari, M.; Harrison, D.; Rubenfeld, G.; Rowan, K. Epidemiology of sepsis and septic shock in critical care units: Comparison between sepsis-2 and sepsis-3 populations using a national critical care database. Br. J. Anaesth. 2017, 119, 626–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA 2017, 318, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K.B.; Zygun, D.A.; Doig, C.J.; Bagshaw, S.M.; Svenson, L.; Fick, G.H. One-year mortality of bloodstream infection-associated sepsis and septic shock among patients presenting to a regional critical care system. Intensive Care Med. 2005, 31, 213–219. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.-R.; Payen, D. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Jones, G.; David, S.; Olariu, E.; Cadwell, K.K. Frequency and mortality of septic shock in Europe and North America: A systematic review and meta-analysis. Crit. Care 2019, 23, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fajgenbaum, D.C.; June, C.H. Cytokine storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Callard, R.; George, A.; Stark, J. Cytokines, chaos, and complexity. Immunity 1999, 11, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, T.S.; Christman, J.W. Sepsis and cytokines: Current status. Br. J. Anaesth. 1996, 77, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; DePalo, V.A. Anti-inflammatory cytokines. Chest 2000, 117, 1162–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, Y.; Zhou, Y.; Iribarren, P.; Wang, J. Chemokines and chemokine receptors: Their manifold roles in homeostasis and disease. Cell. Mol. Immunol. 2004, 1, 95–104. [Google Scholar] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Van Horssen, R.; Ten Hagen, T.L.; Eggermont, A.M. TNF-α in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist 2006, 11, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Vadhan-Raj, S.; Nathan, C.F.; Sherwin, S.A.; Oettgen, H.F.; Krown, S.E. Phase I trial of recombinant interferon gamma by 1-hour i.v. infusion. Cancer Treat Rep. 1986, 70, 609–614. [Google Scholar] [PubMed]
- Locatelli, F.; Jordan, M.B.; Allen, C.; Cesaro, S.; Rizzari, C.; Rao, A.; Degar, B.; Garrington, T.P.; Sevilla, J.; Putti, M.-C.; et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med. 2020, 382, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Chousterman, B.G.; Swirski, F.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Arkader, R.; Troster, E.J.; Lopes, M.R.; Junior, R.R.; Carcillo, J.A.; Leone, C.; Okay, T.S. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Arch. Dis. Child. 2005, 91, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Gardner, R.A.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.C.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front. Immunol. 2020, 11, 1708. [Google Scholar] [CrossRef] [PubMed]
- Stegmayr, B.; Abdel-Rahman, E.M.; Balogun, R.A. Septic shock with multiorgan failure: From conventional apheresis to adsorption therapies. Semin. Dial. 2012, 25, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Honore, P.M.; Hoste, E.; Molnár, Z.; Jacobs, R.; Joannes-Boyau, O.; Malbrain, M.L.; Forni, L.G. Cytokine removal in human septic shock: Where are we and where are we going? Ann. Intensive Care 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- KDIGO Clinical Practice Guideline for Acute Kidney Injury. Summary of recommendation statements. Kidney Int. Suppl. 2012, 2, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; George, C.; Bellomo, R. Early acute kidney injury and sepsis: A multicentre evaluation. Crit. Care 2008, 12, R47. [Google Scholar] [CrossRef] [Green Version]
- Oppert, M.; Engel, C.; Brunkhorst, F.M.; Bogatsch, H.; Reinhart, K.; Frei, U.; Eckardt, K.-U.; Loeffler, M.; John, S.; German Competence Network Sepsis (Sepnet). Acute renal failure in patients with severe sepsis and septic shock—A significant independent risk factor for mortality: Results from the German Prevalence Study. Nephrol. Dial. Transplant. 2007, 23, 904–909. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Lapinsky, S.; Dial, S.; Arabi, Y.; Dodek, P.; Wood, G.; Ellis, P.; Guzman, J.; Marshall, J.; Parrillo, J.E.; et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009, 35, 871–881. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; et al. Septic acute kidney injury in critically ill patients: Clinical characteristics and outcomes. Clin. J. Am. Soc. Nephrol. 2007, 2, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xie, H.; Ye, Z.; Li, F.; Wang, L. Rates, predictors, and mortality of sepsis-associated acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.; Antonelli, M.; Wittebole, X.; Nanchal, R.; François, B.; Sakr, Y.; Vincent, J.-L.; Pickkers, P. A worldwide multicentre evaluation of the influence of deterioration or improvement of acute kidney injury on clinical outcome in critically ill patients with and without sepsis at ICU admission: Results from the intensive care over nations audit. Crit. Care 2018, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Legrand, M.; Darmon, M.; Joannidis, M.; Payen, D. Management of renal replacement therapy in ICU patients: An international survey. Intensive Care Med. 2013, 39, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fernández, X.; Sabater-Riera, J.; Sileanu, F.; Vázquez-Reverón, J.; Ballús-Noguera, J.; Cárdenas-Campos, P.; Betbesé, A.; Kellum, J.A. Clinical variables associated with poor outcome from sepsis-associated acute kidney injury and the relationship with timing of initiation of renal replacement therapy. J. Crit. Care 2017, 40, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Järvisalo, M.J.; Hellman, T.; Uusalo, P. Mortality and associated risk factors in patients with blood culture positive sepsis and acute kidney injury requiring continuous renal replacement therapy—A retrospective study. PLoS ONE 2021, 16, e0249561. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Hu, B.; Frank, R.D.; Kashani, K.B. Inpatient kidney function recovery among septic shock patients who initiated kidney replacement therapy in the hospital. Nephron 2020, 144, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, M.; Tohme, F.A.; Wang, S.; Murugan, R.; Angus, D.C.; Kellum, J.A. Long-term survival in patients with septic acute kidney injury is strongly influenced by renal recovery. PLoS ONE 2018, 13, e0198269. [Google Scholar] [CrossRef] [PubMed]
- Langenberg, C.; Bellomo, R.; May, C.; Wan, L.; Egi, M.; Morgera, S. Renal blood flow in sepsis. Crit. Care 2005, 9, R363–R374. [Google Scholar] [CrossRef] [Green Version]
- Prowle, J.R.; Molan, M.P.; Hornsey, E.; Bellomo, R. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury. Crit. Care Med. 2012, 40, 1768–1776. [Google Scholar] [CrossRef]
- Lerolle, N.; Guérot, E.; Faisy, C.; Bornstain, C.; Diehl, J.-L.; Fagon, J.-Y. Renal failure in septic shock: Predictive value of doppler-based renal arterial resistive index. Intensive Care Med. 2006, 32, 1553–1559. [Google Scholar] [CrossRef]
- Legrand, M.; Bezemer, R.; Kandil, A.; Demirci, C.; Payen, D.; Ince, C. The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med. 2011, 37, 1534–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerolle, N.; Nochy, D.; Guérot, E.; Bruneval, P.; Fagon, J.-Y.; Diehl, J.-L.; Hill, G. Histopathology of septic shock induced acute kidney injury: Apoptosis and leukocytic infiltration. Intensive Care Med. 2010, 36, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Nash, D.M.; Przech, S.; Wald, R.; O’Reilly, D. Systematic review and meta-analysis of renal replacement therapy modalities for acute kidney injury in the intensive care unit. J. Crit. Care 2017, 41, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Bonnassieux, M.; Duclos, A.; Schneider, A.G.; Schmidt, A.; Bénard, S.; Cancalon, C.; Joannes-Boyau, O.; Ichai, C.; Constantin, J.-M.; Lefrant, J.-Y.; et al. Renal replacement therapy modality in the ICU and renal recovery at hospital discharge. Crit. Care Med. 2018, 46, e102–e110. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Cass, A.; Norton, R.; Gallagher, M.; Su, S.; Cole, L.; Finfer, S.; McArthur, C.; McGuinness, S.; Myburgh, J.; et al. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 2009, 361, 1627–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joannes-Boyau, O.; Honoré, P.M.; Perez, P.; Bagshaw, S.M.; Grand, H.; Canivet, J.-L.; Dewitte, A.; Flamens, C.; Pujol, W.; Grandoulier, A.-S.; et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): A multicentre randomized controlled trial. Intensive Care Med. 2013, 39, 1535–1546. [Google Scholar] [CrossRef]
- Park, J.T.; Lee, H.; Kee, Y.K.; Park, S.; Oh, H.J.; Han, S.H.; Joo, K.W.; Lim, C.-S.; Kim, Y.S.; Kang, S.-W.; et al. High-dose versus conventional-dose continuous venovenous hemodiafiltration and patient and kidney survival and cytokine removal in sepsis-associated acute kidney injury: A randomized controlled trial. Am. J. Kidney Dis. 2016, 68, 599–608. [Google Scholar] [CrossRef]
- Fayad, A.I.; Buamscha, D.G.; Ciapponi, A. Intensity of continuous renal replacement therapy for acute kidney injury. Cochrane Database Syst. Rev. 2016, 10, CD010613. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef] [Green Version]
- Gaudry, S.; Hajage, D.; Schortgen, F.; Martin-Lefevre, L.; Pons, B.; Boulet, E.; Boyer, A.; Chevrel, G.; Lerolle, N.; Carpentier, D.; et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N. Engl. J. Med. 2016, 375, 122–133. [Google Scholar] [CrossRef]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.-P.; et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- The STARRT-AKI Investigators for the Canadian Critical Care Trials Group; The Australian and New Zealand Intensive Care Society Clinical Trials Group; The United Kingdom Critical Care Research Group; The Canadian Nephrology Trials Network; The Irish Critical Care Trials Group. Timing of initiation of renal-replacement therapy in acute kidney injury. N. Engl. J. Med. 2020, 383, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Villa, G.; Garzotto, F.; Bagshaw, S.; Bellomo, R.; Cerda, J.; Ferrari, F.; Guggia, S.; Joannidis, M.; Kellum, J.; et al. Nomenclature for renal replacement therapy in acute kidney injury: Basic principles. Crit. Care 2016, 20, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgera, S.; Rocktäschel, J.; Haase, M.; Lehmann, C.; von Heymann, C.; Ziemer, S.; Priem, F.; Hocher, B.; Göhl, H.; Kox, W.J.; et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med. 2003, 29, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Morgera, S.; Slowinski, T.; Melzer, C.; Sobottke, V.; Vargas-Hein, O.; Volk, T.; Zuckermann-Becker, H.; Wegner, B.; Müller, J.M.; Baumann, G.; et al. Renal replacement therapy with high-cutoff hemofilters: Impact of convection and diffusion on cytokine clearances and protein status. Am. J. Kidney Dis. 2004, 43, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Morgera, S.; Haase, M.; Kuss, T.; Vargas-Hein, O.; Zuckermann-Becker, H.; Melzer, C.; Krieg, H.; Wegner, B.; Bellomo, R.; Neumayer, H.-H. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit. Care Med. 2006, 34, 2099–2104. [Google Scholar] [CrossRef]
- Chelazzi, C.; Villa, G.; D’Alfonso, M.G.; Mancinelli, P.; Consales, G.; Berardi, M.; de Gaudio, A.R.; Romagnoli, S. Hemodialysis with high cut-off hemodialyzers in patients with multi-drug resistant gram-negative sepsis and acute kidney injury: A retrospective, case-control study. Blood Purif. 2016, 42, 186–193. [Google Scholar] [CrossRef]
- Atan, R.; Peck, L.; Prowle, J.; Licari, E.; Eastwood, G.M.; Storr, M.; Goehl, H.; Bellomo, R. A double-blind randomized controlled trial of high cutoff versus standard hemofiltration in critically ill patients with acute kidney injury. Crit. Care Med. 2018, 46, e988–e994. [Google Scholar] [CrossRef]
- Atari, R.; Peck, L.; Visvanathan, K.; Skinner, N.; Eastwood, G.; Bellomo, R.; Storr, M.; Goehl, H. High Cut-off hemofiltration versus standard hemofiltration: Effect on plasma cytokines. Int. J. Artif. Organs 2016, 39, 479–486. [Google Scholar] [CrossRef]
- Honoré, P.; Jacobs, R.; Boer, W.; Joannes-Boyau, O.; de Regt, J.; de Waele, E.; van Gorp, V.; Collin, V.; Spapen, H. New insights regarding rationale, therapeutic target and dose of hemofiltration and hybrid therapies in septic acute kidney injury. Blood Purif. 2012, 33, 44–51. [Google Scholar] [CrossRef]
- Eichhorn, T.; Hartmann, J.; Harm, S.; Linsberger, I.; König, F.; Valicek, G.; Miestinger, G.; Hörmann, C.; Weber, V. Clearance of selected plasma cytokines with continuous veno-venous hemodialysis using ultraflux EMiC2 versus ultraflux AV1000S. Blood Purif. 2017, 44, 260–266. [Google Scholar] [CrossRef]
- Balgobin, S.; Morena, M.; Brunot, V.; Besnard, N.; Daubin, D.; Platon, L.; Larcher, R.; Amigues, L.; Landreau, L.; Bargnoux, A.-S.; et al. Continuous veno-venous high cut-off hemodialysis compared to continuous veno-venous hemodiafiltration in intensive care unit acute kidney injury patients. Blood Purif. 2018, 46, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Lumlertgul, N.; Hall, A.; Camporota, L.; Crichton, S.; Ostermann, M. Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study). Crit. Care 2021, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Malard, B.; Lambert, C.; Kellum, J.A. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med. Exp. 2018, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broman, M.E.; Hansson, F.; Vincent, J.-L.; Bodelsson, M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PLoS ONE 2019, 14, e0220444. [Google Scholar] [CrossRef] [PubMed]
- Shum, H.; Chan, K.; Kwan, M.; Yan, W. Application of endotoxin and cytokine adsorption haemofilter in septic acute kidney injury due to gram-negative bacterial infection. Hong Kong Med. J. 2013, 19, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Turani, F.; Barchetta, R.; Falco, M.; Busatti, S.; Weltert, L. Continuous renal replacement therapy with the adsorbing filter oXiris in septic patients: A case series. Blood Purif. 2019, 47, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Schwindenhammer, V.; Girardot, T.; Chaulier, K.; Grégoire, A.; Monard, C.; Huriaux, L.; Illinger, J.; Leray, V.; Uberti, T.; Crozon-Clauzel, J.; et al. oXiris® use in septic shock: Experience of two French centres. Blood Purif. 2019, 47, 29–35. [Google Scholar] [CrossRef]
- Shoji, H.; Opal, S. Therapeutic rationale for endotoxin removal with polymyxin B immobilized fiber column (PMX) for septic shock. Int. J. Mol. Sci. 2021, 22, 2228. [Google Scholar] [CrossRef]
- Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Pallavicini, F.M.B.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock. JAMA 2009, 301, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Payen, D.M.; Guilhot, J.; Launey, Y.; Lukaszewicz, A.C.; Kaaki, M.; Veber, B.; Pottecher, J.; Joannes-Boyau, O.; Martin-Lefevre, L.; Jabaudon, M.; et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: A multicenter randomized control trial. Intensive Care Med. 2015, 41, 975–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.; Trzeciak, S.; et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, D.J.; Foster, D.; Walker, P.M.; Bagshaw, S.M.; Mekonnen, H.; Antonelli, M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: A post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018, 44, 2205–2212. [Google Scholar] [CrossRef] [Green Version]
- Putzu, A.; Schorer, R.; Lopez-Delgado, J.C.; Cassina, T.; Landoni, G. Blood purification and mortality in sepsis and septic shock. Anesthesiology 2019, 131, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Harm, S.; Schildböck, C.; Hartmann, J. Cytokine removal in extracorporeal blood purification: An in vitro study. Blood Purif. 2020, 49, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Schädler, D.; Pausch, C.; Heise, D.; Meier-Hellmann, A.; Brederlau, J.; Weiler, N.; Marx, G.; Putensen, C.; Spies, C.; Jörres, A.; et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017, 12, e0187015. [Google Scholar] [CrossRef] [Green Version]
- Hawchar, F.; László, I.; Öveges, N.; Trásy, D.; Ondrik, Z.; Molnar, Z. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J. Crit. Care 2019, 49, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Kogelmann, K.; Jarczak, D.; Scheller, M.; Drüner, M. Hemoadsorption by CytoSorb in septic patients: A case series. Crit. Care 2017, 21, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogelmann, K.; Scheller, M.; Drüner, M.; Jarczak, D. Use of hemoadsorption in sepsis-associated ECMO-dependent severe ARDS: A case series. J. Intensive Care Soc. 2019, 21, 183–190. [Google Scholar] [CrossRef]
- Paul, R.; Sathe, P.; Kumar, S.; Prasad, S.; Aleem, M.; Sakhalvalkar, P. Multicentered prospective investigator initiated study to evaluate the clinical outcomes with extracorporeal cytokine adsorption device (CytoSorb®) in patients with sepsis and septic shock. World J. Crit. Care Med. 2021, 10, 22–34. [Google Scholar] [CrossRef]
- Mehta, Y.; Mehta, C.; Kumar, A.; George, J.; Gupta, A.; Nanda, S.; Kochhar, G.; Raizada, A. Experience with hemoadsorption (CytoSorb®) in the management of septic shock patients. World J. Crit. Care Med. 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Schittek, G.A.; Zoidl, P.; Eichinger, M.; Orlob, S.; Simonis, H.; Rief, M.; Metnitz, P.; Fellinger, T.; Soukup, J. Adsorption therapy in critically ill with septic shock and acute kidney injury: A retrospective and prospective cohort study. Ann. Intensive Care 2020, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, W.P.; Duran, S.; Kuijper, M.; Ince, C. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: A propensity-score-weighted retrospective study. Crit. Care 2019, 23, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, W.P.; Duran, S.; Ince, C. Improved survival beyond 28 days up to 1 year after CytoSorb treatment for refractory septic shock: A propensity-weighted retrospective survival analysis. Blood Purif. 2020, 50, 1–7. [Google Scholar] [CrossRef]
- Rugg, C.; Klose, R.; Hornung, R.; Innerhofer, N.; Bachler, M.; Schmid, S.; Fries, D.; Ströhle, M. Hemoadsorption with CytoSorb in septic shock reduces catecholamine requirements and in-hospital mortality: A single-center retrospective ‘genetic’ matched analysis. Biomedicines 2020, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Kogelmann, K.; Hübner, T.; Schwameis, F.; Drüner, M.; Scheller, M.; Jarczak, D. First evaluation of a new dynamic scoring system intended to support prescription of adjuvant cytosorb hemoadsorption therapy in patients with septic shock. J. Clin. Med. 2021, 10, 2939. [Google Scholar] [CrossRef] [PubMed]
- Snow, T.A.; Littlewood, S.; Corredor, C.; Singer, M.; Arulkumaran, N. Effect of extracorporeal blood purification on mortality in sepsis: A meta-analysis and trial sequential analysis. Blood Purif. 2020, 50, 1–11. [Google Scholar] [CrossRef]
- Montin, D.P.; Ankawi, G.; Lorenzin, A.; Neri, M.; Caprara, C.; Ronco, C. Biocompatibility and cytotoxic evaluation of new sorbent cartridges for blood hemoperfusion. Blood Purif. 2018, 46, 187–195. [Google Scholar] [CrossRef]
- He, Z.; Lu, H.; Jian, X.; Li, G.; Xiao, D.; Meng, Q.; Chen, J.; Zhou, C. The efficacy of resin hemoperfusion cartridge on inflammatory responses during adult cardiopulmonary bypass. Blood Purif. 2021, 9, 1–7. [Google Scholar] [CrossRef]
- David, S.; Bode, C.; Putensen, C.; Welte, T.; Stahl, K.; Busch, M.; Haller, H.; Hoeper, M.M.; Lehmann, F.; Schmidt, J.J.; et al. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021, 47, 352–354. [Google Scholar] [CrossRef]
- Keith, P.D.; Wells, A.H.; Hodges, J.; Fast, S.H.; Adams, A.; Scott, L.K. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: A single-center experience. Crit. Care 2020, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Busund, R.; Kuklin, V.; Utrobin, U.; Nedashkovsky, E. Plasmapheresis in severe sepsis and septic shock: A prospective, randomised, controlled trial. Intensive Care Med. 2002, 28, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Rimmer, E.; Houston, B.L.; Kumar, A.; Abou-Setta, A.M.; Friesen, C.; Marshall, J.C.; Rock, G.; Turgeon, A.F.; Cook, D.J.; Houston, D.S.; et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: A systematic review and meta-analysis. Crit. Care 2014, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, K.; Okuyama, M.; Irie, Y.; Kitamura, T.; Nakae, H. Continuous plasma exchange with dialysis for severe sepsis: Case series of a novel blood purification method. Cureus 2021, 13, e12495. [Google Scholar] [CrossRef]
- Rhodes, A.A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Tetta, C.; Cavaillon, J.M.; Schulze, M.; Ronco, C.; Ghezzi, P.M.; Camussi, G.; Serra, A.M.; Curti, F.; Lonnemann, G. Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol. Dial. Transplant. 1998, 13, 1458–1464. [Google Scholar] [CrossRef] [Green Version]
- Mariano, F.; Tetta, C.; Stella, M.; Biolino, P.; Miletto, A.; Triolo, G. Regional citrate anticoagulation in critically ill patients treated with plasma filtration and adsorption. Blood Purif. 2004, 22, 313–319. [Google Scholar] [CrossRef]
- Mariano, F.; Morselli, M.; Hollo, Z.; Agostini, F.; Stella, M.; Biancone, L. Citrate pharmacokinetics at high levels of circuit citratemia during coupled plasma filtration adsorption. Nephrol. Dial. Transplant. 2015, 30, 1911–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C.; Brendolan, A.; Lonnemann, G.; Bellomo, R.; Piccinni, P.; Digito, A.; Dan, M.; Irone, M.; La Greca, G.; Inguaggiato, P.; et al. A pilot study of coupled plasma filtration with adsorption in septic shock. Crit. Care Med. 2002, 30, 1250–1255. [Google Scholar] [CrossRef]
- Formica, M.; Olivieri, C.; Livigni, S.; Cesano, G.; Vallero, A.; Maio, M.; Tetta, C. Hemodynamic response to coupled plasmafiltration-adsorption in human septic shock. Intensive Care Med. 2003, 29, 703–708. [Google Scholar] [CrossRef]
- Hu, D.; Sun, S.; Zhu, B.; Mei, Z.; Wang, L.; Zhu, S.; Zhao, W. Effects of coupled plasma filtration adsorption on septic patients with multiple organ dysfunction syndrome. Ren. Fail. 2012, 34, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Sykora, R.; Chvojka, J.; Krouzecky, A.; Radej, J.; Kuncova, J.; Varnerova, V.; Karvunidis, T.; Novak, I.; Matejovic, M. Coupled plasma filtration adsorption in experimental peritonitis-induced septic shock. Shock 2009, 31, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Livigni, S.; Bertolini, G.; Rossi, C.; Ferrari, F.; Giardino, M.; Pozzato, M.; Remuzzi, G. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: A multicenter randomised controlled clinical trial. BMJ Open 2014, 4, e003536. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Esparza, C.; Portillo-Requena, C.; Colomina-Climent, F.; Allegue-Gallego, J.M.; Galindo-Martínez, M.; Mollà-Jiménez, C.; Antón-Pascual, J.L.; Mármol-Peis, E.; Dólera-Moreno, C.; Rodríguez-Serra, M.; et al. The premature closure of ROMPA clinical trial: Mortality reduction in septic shock by plasma adsorption. BMJ Open 2019, 9, e030139. [Google Scholar] [CrossRef]
- Hazzard, I.; Jones, S.; Quinn, T. Coupled plasma haemofiltration filtration in severe sepsis: Systematic review and meta-analysis. J. R. Army Med. Corps 2015, 161, i17–i22. [Google Scholar] [CrossRef]
- Mariano, F.; Hollo’, Z.; Depetris, N.; Malvasio, V.; Mella, A.; Bergamo, D.; Pensa, A.; Berardino, M.; Stella, M.; Biancone, L. Coupled-plasma filtration and adsorption for severe burn patients with septic shock and acute kidney injury treated with renal replacement therapy. Burns 2020, 46, 190–198. [Google Scholar] [CrossRef]
- Yaroustovsky, M.; Abramyan, M.; Krotenko, N.; Popov, D.; Plyushch, M.; Rogalskaya, E. A pilot study of selective lipopolysaccharide adsorption and coupled plasma filtration and adsorption in adult patients with severe sepsis. Blood Purif. 2015, 39, 210–217. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellman, T.; Uusalo, P.; Järvisalo, M.J. Renal Replacement Techniques in Septic Shock. Int. J. Mol. Sci. 2021, 22, 10238. https://doi.org/10.3390/ijms221910238
Hellman T, Uusalo P, Järvisalo MJ. Renal Replacement Techniques in Septic Shock. International Journal of Molecular Sciences. 2021; 22(19):10238. https://doi.org/10.3390/ijms221910238
Chicago/Turabian StyleHellman, Tapio, Panu Uusalo, and Mikko J. Järvisalo. 2021. "Renal Replacement Techniques in Septic Shock" International Journal of Molecular Sciences 22, no. 19: 10238. https://doi.org/10.3390/ijms221910238
APA StyleHellman, T., Uusalo, P., & Järvisalo, M. J. (2021). Renal Replacement Techniques in Septic Shock. International Journal of Molecular Sciences, 22(19), 10238. https://doi.org/10.3390/ijms221910238