Physical Activity Attenuates the Obesity-Induced Dysregulated Expression of Brown Adipokines in Murine Interscapular Brown Adipose Tissue
Abstract
:1. Introduction
2. Results
2.1. Identification of Humoral Factors Secreted from HB2 Brown Adipocytes
2.2. Physical Characteristics of Animals
2.3. Effects of Obesity and Physical Activity on the mRNA Levels of Humoral Factors in the Interscapular BAT of Mice
2.4. Effects of Obesity and Physical Activity on the mRNA Levels of Macrophage Markers and Brown Adipocyte Differentiation-Related Factors in the Interscapular BAT of Mice
2.5. Establishment of Brown Adipocytes Overexpressing Lgals3 and Lgals3bp
2.6. Effects of Lgals3 and Lgals3bp on Brown Adipocyte Differentiation
3. Discussion
4. Methods
4.1. Cell Culture
4.2. Proteomic Analysis for the Identification of Fluid Factors from Brown Adipocytes
4.3. Animal Care
4.4. RNA Isolation and DNA Array Analysis
4.5. Real Time Quantitative PCR
4.6. Lentiviral Vector Construction and Lentivirus Production
4.7. Western Blot Analysis
4.8. Cell Staining
4.9. Measurement of OCR
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Adipsin | complement factor D |
ApoE | apolipoprotein E |
BAT | brown adipose tissue |
C/EBPα | CCAAT/enhancer binding protein α |
Ccl9 | C-C motif chemokine 9 |
Dio2 | type II iodothyronine deiodinase |
Efemp1 | EGF-containing fibulin-like extracellular matrix protein 1 |
Elovl3 | elongation of very long chain fatty acid protein 3 |
Fabp4 | fatty acid binding protein 4 |
FCCP | carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone |
HFD | high-fat diet |
mtDNA | mitochondrial DNA |
Lgals3 | lectin, galactose-binding, soluble 3 |
Lgals3bp | Lgals3 binding protein |
OCR | oxygen consumption rate |
PA | Physical activity |
PGC-1α | peroxisome proliferator-activated receptor γ coactivator-1α |
PSM’s | peptide-spectrum matches |
RAA | rotenone-antimycin A |
UCP1 | uncoupling protein 1 |
WAT | white adipose tissue |
References
- Prentice, A.M. The emerging epidemic of obesity in developing countries. Int. J. Epidemiol. 2006, 35, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rössner, S. Obesity: The disease of the twenty-first century. Int. J. Obes. Relat. Metab. Disord. 2002, 26, S2–S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; IDF: Brussels, Belgium, 2019. [Google Scholar]
- Bassuk, S.S.; Manson, J. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J. Appl. Physiol. 2005, 99, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- LaMonte, M.J.; Blair, S.N.; Church, T.S. Physical activity and diabetes prevention. J. Appl. Physiol. 2005, 99, 1205–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmrich, S.P.; Ragland, D.R.; Leung, R.W.; Paffenbarger, R.S., Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1991, 325, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Nathan, D.M.; Krolewski, A.S.; Stampfer, M.J.; Willett, W.C.; Hennekens, C.H. A prospective study of exercise and incidence of diabetes among US male physicians. JAMA 1992, 268, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006, 6, 772–783. [Google Scholar] [CrossRef]
- Rabe, K.; Lehrke, M.; Parhofer, K.G.; Broedl, U.C. Adipokines and insulin resistance. Mol. Med. 2008, 14, 741–751. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 2010, 121, 2111–2117. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Ogasawara, J.; Shirato, K.; Izawa, T.; Oh-ishi, S.; Ishibashi, Y.; Radák, Z.; Ohno, H.; Kizaki, T. Exercise training attenuates the dysregulated expression of adipokines and oxidative stress in white adipose tissue. Oxid. Med. Cell. Longev. 2017, 2017, 9410954. [Google Scholar] [CrossRef]
- Sakurai, T.; Ogasawara, J.; Kizaki, T.; Sato, S.; Ishibashi, Y.; Takahashi, M.; Kobayashi, O.; Oh-Ishi, S.; Nagasawa, J.; Takahashi, K.; et al. The effects of exercise training on obesity- induced dysregulated expression of adipokines in white adipose tissue. Int. J. Endocrinol. 2013, 2013, 801743. [Google Scholar] [CrossRef]
- Bahler, L.; Molenaars, R.J.; Verberne, H.J.; Holleman, F. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature. Diabetes Metab. 2015, 41, 437–445. [Google Scholar] [CrossRef]
- Bargut, T.C.L.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 2016, 48, 452–460. [Google Scholar] [CrossRef]
- Van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360, 1500–1508. [Google Scholar] [CrossRef] [Green Version]
- Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.J.; Enerbäck, S.; et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 2009, 360, 1518–1525. [Google Scholar] [CrossRef]
- Yoneshiro, T.; Aita, S.; Matsushita, M.; Kameya, T.; Nakada, K.; Kawai, Y.; Saito, M. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity 2011, 19, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Yoneshiro, T.; Aita, S.; Matsushita, M.; Kayahara, T.; Kameya, T.; Kawai, Y.; Iwanaga, T.; Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 2013, 123, 3404–3408. [Google Scholar]
- Mulya, A.; Kirwan, J.P. Brown and beige adipose tissue: Therapy for obesity and its comorbidities? Endocrinol. Metab. Clin. N. Am. 2016, 45, 605–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, J.; Seale, P. Medicine. Beige can be slimming. Science 2010, 328, 1113–1114. [Google Scholar] [CrossRef]
- Dewal, R.S.; Stanford, K.I. Effects of exercise on brown and beige adipocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, F.; Cereijo, R.; Villarroya, J.; Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 2017, 13, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.X.; Zhao, X.Y.; Lin, J.D. The brown fat secretome: Metabolic functions beyond thermogenesis. Trends Endocrinol. Metab. 2015, 26, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarroya, J.; Cereijo, R.; Gavaldà-Navarro, A.; Peyrou, M.; Giralt, M.; Villarroya, F. New insights into the secretory functions of brown adipose tissue. J. Endocrinol. 2019, 243, R19–R27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, A.S.; Peijs, L.; Beaudry, J.L.; Jespersen, N.Z.; Nielsen, C.H.; Ma, T.; Brunner, A.D.; Larsen, T.J.; Bayarri-Olmos, R.; Prabhakar, B.S.; et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 2019, 30, 963–975. [Google Scholar] [CrossRef]
- Irie, Y.; Asano, A.; Cañas, X.; Nikami, H.; Aizawa, S.; Saito, M. Immortal brown adipocytes from p53-knockout mice: Differentiation and expression of uncoupling proteins. Biochem. Biophys. Res. Commun. 1999, 255, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, J.; Cereijo, R.; Giralt, M.; Villarroya, F. Secretory proteome of brown adipocytes in response to cAMP-mediated thermogenic activation. Front. Physiol. 2019, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Ali Khan, A.; Hansson, J.; Weber, P.; Foehr, S.; Krijgsveld, J.; Herzig, S.; Scheideler, M. Comparative secretome analyses of primary murine white and brown adipocytes reveal novel adipokines. Mol. Cell Proteom. 2018, 17, 2358–2370. [Google Scholar] [CrossRef] [Green Version]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Publ. Health Rep. 1985, 100, 126–131. [Google Scholar]
- Manzanares, G.; Brito-da-Silva, G.; Gandra, P.G. Voluntary wheel running: Patterns and physiological effects in mice. Braz. J. Med. Biol. Res. 2018, 52, e7830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, R.L.; Jeon, J.Y.; Liu, F.F.; Maratos-Flier, E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E586–E594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uldry, M.; Yang, W.; St-Pierre, J.; Lin, J.; Seale, P.; Spiegelman, B.M. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006, 3, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, B.; Li, M.; Speakman, J.R. Switching on the furnace: Regulation of heat production in brown adipose tissue. Mol. Aspects Med. 2019, 68, 60–73. [Google Scholar] [CrossRef]
- Kobayashi, J. Pre-heparin lipoprotein lipase mass. J Atheroscler. Thromb. 2004, 11, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillou, H.; Zadravec, D.; Martin, P.G.; Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010, 49, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Carmona, C.M.; Iglesias, R.; Obregón, M.J.; Darlington, D.J.; Villarroya, F.; Giralt, M. Mitochondrial biogenesis and thyroid status maturation in brown fat require CCAAT/enhancer-binding protein α. J. Biol. Chem. 2002, 277, 21489–21498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seale, P.; Bjork, B.; Yang, W.; Kajimura, S.; Chin, S.; Kuang, S.; Scime, A.; Devarakonda, S.; Conroe, H.M.; Erdjument-Bromage, H.; et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Menini, S.; Iacobini, C.; Blasetti Fantauzzi, C.; Pesce, C.M.; Pugliese, G. Role of galectin-3 in obesity and impaired glucose homeostasis. Oxid. Med. Cell Longev. 2016, 2016, 9618092. [Google Scholar] [CrossRef] [Green Version]
- Krautbauer, S.; Eisinger, K.; Hader, Y.; Buechler, C. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice. Cytokine 2014, 69, 263–271. [Google Scholar] [CrossRef]
- Sato, S.; Hughes, R.C. Regulation of secretion and surface expression of Mac-2, galactoside-binding protein of macrophages. J. Biol. Chem. 1994, 269, 4424–4430. [Google Scholar] [CrossRef]
- Malik, A.N.; Czajka, A.; Cunningham, P. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. Mitochondrion 2016, 29, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, M.; von Stebut, M. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 2004, 36, 1882–1886. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Kawada, T.; Yoo, H.; Kwon, B.S.; Yu, R. Macrophage inflammatory protein-related protein-2, a novel CC chemokine, can regulate preadipocyte migration and adipocyte differentiation. FEBS Lett. 2003, 548, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.H.; Kim, S.J.; Kang, H.G.; Lee, H.W.; Kim, J.H.; Hwang, K.A.; Song, J.; Chun, K.H. Galectin-3 activates PPARγ and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology 2015, 156, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Pejnovic, N.N.; Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Milovanovic, M.Z.; Nikolic, I.G.; Zdravkovic, N.S.; Djukic, A.L.; Arsenijevic, N.N.; Lukic, M.L. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes 2013, 62, 1932–1944. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Rhodes, D.H.; Pini, M.; Akasheh, R.T.; Castellanos, K.J.; Cabay, R.J.; Cooper, D.; Perretti, M.; Fantuzzi, G. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in galectin-3 KO mice. PLoS ONE 2013, 8, e57915. [Google Scholar] [CrossRef] [Green Version]
- Grassadonia, A.; Tinari, N.; Iurisci, I.; Piccolo, E.; Cumashi, A.; Innominato, P.; D’Egidio, M.; Natoli, C.; Piantelli, M.; Iacobelli, S. 90K (Mac-2 BP) and galectins in tumor progression and metastasis. Glycoconj. J. 2002, 19, 551–556. [Google Scholar] [CrossRef]
- Challa, T.D.; Straub, L.G.; Balaz, M.; Kiehlmann, E.; Donze, O.; Rudofsky, G.; Ukropec, J.; Ukropcova, B.; Wolfrum, C. Regulation of De Novo Adipocyte Differentiation Through Cross Talk Between Adipocytes and Preadipocytes. Diabetes 2015, 64, 4075–4087. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy. Int. J. Mol. Med. 2018, 41, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Li, L.H.; Li, J.; Gao, J. Functions of galectin-3 and its role in fibrotic diseases. J. Pharmacol. Exp. Ther. 2014, 351, 336–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaked, I.; Hanna, D.B.; Gleißner, C.; Marsh, B.; Plants, J.; Tracy, D.; Anastos, K.; Cohen, M.; Golub, E.T.; Karim, R.; et al. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1085–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoffolete, M.A.; Linardi, C.C.; de Jesus, L.; Ebina, K.N.; Carvalho, S.D.; Ribeiro, M.O.; Rabelo, R.; Curcio, C.; Martins, L.; Kimura, E.T.; et al. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes 2004, 53, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.V.; Bikopoulos, G.; Hung, S.; Ceddia, R.B. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats. J. Biol. Chem. 2014, 289, 34129–34140. [Google Scholar] [CrossRef] [Green Version]
- Oh-Ishi, S.; Kizaki, T.; Toshinai, K.; Haga, S.; Fukuda, K.; Nagata, N.; Ohno, H. Swimming training improves brown-adipose-tissue activity in young and old mice. Mech. Ageing Dev. 1996, 89, 67–78. [Google Scholar] [CrossRef]
- Lehnig, A.C.; Stanford, K.I. Exercise-induced adaptations to white and brown adipose tissue. J. Exp. Biol. 2018, 221 (Suppl. S1), jeb161570. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Fukutomi, T.; Kimura, T.; Sakurai, H.; Hatano, R.; Yamamoto, H.; Mukaisho, K.; Hattori, T.; Sugihara, H.; Asano, S. Comprehensive proteome analysis of brush border membrane fraction of ileum of ezrin knockdown mice. Biomed. Res. 2016, 37, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wu, W.W.; Zhang, Z.; Masilamani, S.; Shen, R.F. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Anal Chem. 2009, 81, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Kall, L.; Canterbury, J.D.; Weston, J.; Noble, W.S.; MacCoss, M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 2007, 4, 923–925. [Google Scholar] [CrossRef]
- Van Dam, A.D.; Nahon, K.J.; Kooijman, S.; van den Berg, S.M.; Kanhai, A.A.; Kikuchi, T.; Heemskerk, M.M.; van Harmelen, V.; Lombès, M.; van den Hoek, A.M.; et al. Salsalate activates brown adipose tissue in mice. Diabetes 2015, 64, 1544–1554. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Xia, Z.; Deng, F.; Liu, L.; Wang, Q.; Yu, Y.; Wang, F.; Zhu, C.; Liu, W.; Ceng, Z.; et al. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog. 2019, 15, e1008002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accession | Protein | PSMs |
---|---|---|
P01027 | Complement C3 | 629 |
P04117 | Fatty acid-binding protein, Adipocyte (Fabp4) | 337 |
Q61646 | Haptoglobin | 194 |
Q921I1 | Serotransferrin | 130 |
P11152 | Lipoprotein lipase | 107 |
P16045 | Galectin-1 | 72 |
Q61207 | Sulfated glycoprotein 1 | 62 |
Q99P87 | Resistin | 62 |
P08226 | Apolipoprotein E | 56 |
Q05816 | Fatty acid-binding protein, epidermal | 55 |
P10605 | Cathepsin B | 38 |
P03953 | Complement factor D | 37 |
P97298 | Pigment epithelium-derivedf actor | 35 |
Q8BPB5 | EGF-containing fibulin-likeextracellular matrix protein 1 | 25 |
Q07797 | Galectin-3-binding protein | 23 |
Q62356 | Follistatin-related protein 1 | 22 |
P10148 | C-C motif chemokine 2 | 11 |
P16110 | Galectin-3 | 9 |
P51670 | C-C motif chemokine 9 | 6 |
Q02788 | Collagen alpha-2(VI) chain | 144 |
Q04857 | Collagen alpha-1(VI) chain | 134 |
P11276 | Fibronectin | 120 |
Q01149 | Collagen alpha-2(I) chain | 103 |
P02469 | Laminin subunit beta-1 | 85 |
P02468 | Laminin subunit gamma-1 | 71 |
P97927 | Laminin subunit alpha-4 | 64 |
P08121 | Collagen alpha-1(III) chain | 62 |
P11087 | Collagen alpha-1(I) chain | 44 |
Control Mice | HFD Mice | HFD + PA Mice | |
---|---|---|---|
Body mass (g) | 26.90 ± 0.84 | 37.62 ± 1.62 | 33.78 ± 0.80 |
Epididymal WAT mass per body mass (%) | 1.20± 0.10 | 5.59 ± 0.26 a | 4.40 ± 0.07 a,b |
Interscapular BAT mass per body mass (%) | 0.24 ± 0.01 | 0.29 ± 0.05 | 0.23 ± 0.02 |
Gene Symbol | Gene Expression Level by DNA Array (log2) | ||
---|---|---|---|
Fluid factors found to be secreted by HB2 brown adipocytes | Control mice | HFD mice | HFD + PA mice |
C3 | 14.53 ± 0.09 | 13.12 ± 0.18 a | 13.07 ± 0.26 a |
Fabp4 | 19.86 ± 0.08 | 19.86 ± 0.07 | 19.86 ± 0.08 |
Lgals3 | 4.31 ± 0.27 | 11.54 ± 1.44 a | 7.72 ± 1.04 b |
Lgals3bp | 9.05 ± 0.21 | 12.00 ± 0.68 a | 10.35 ± 0.24 b |
Cfd | 18.24 ± 0.58 | 13.97 ± 0.65 a | 11.78 ± 0.40 a,b |
Ccl2 | 5.82 ± 0.50 | 8.13 ± 0.45 a | 6.45 ± 0.30 b |
Ccl9 | 8.09 ± 0.41 | 12.71 ± 1.43 a | 10.10 ± 0.85 |
Trf | 12.67 ± 0.27 | 11.35 ± 0.50 a | 10.50 ± 0.64 a |
ApoE | 18.42 ± 0.18 | 17.78 ± 0.25 a | 16.62 ± 0.60 a,b |
Efemp1 | 10.29 ± 0.37 | 10.29 ± 0.26 | 9.19 ± 0.22 a |
Retn | 16.40 ± 2.35 | 9.06 ± 0.27 a | 8.60 ± 0.42 a |
Hp | 16.69 ± 0.21 | 17.63 ± 0.30 | 17.47 ± 0.33 |
Lgals1 | 15.15 ± 0.44 | 15.69± 0.62 | 15.69 ± 0.50 |
Fabp5 | 9.08 ± 0.38 | 11.01 ± 0.96 | 10.16 ± 0.72 |
Ctsb | 18.45 ± 0.39 | 19.01 ± 0.25 | 18.82 ± 0.39 |
Psap | 17.51 ± 0.25 | 17.95 ± 0.12 | 17.79 ± 0.39 |
Serpinf1 | 7.84 ± 0.81 | 8.24 ± 0.83 | 8.06 ± 0.76 |
Fstl1 | 8.02 ± 0.07 | 7.85 ± 0.25 | 7.64 ± 0.69 |
Col1a1 | 7.39 ± 0.70 | 8.69 ± 0.67 | 8.06 ± 0.76 |
Col1a2 | 7.49 ± 0.74 | 9.94 ± 0.95 | 8.58 ± 0.23 |
Col3a1 | 9.22 ± 0.28 | 12.50 ± 0.58 a | 11.04 ± 0.59 |
Col6a1 | 6.91 ± 0.13 | 8.01 ± 0.31 a | 6.92 ± 0.27b |
Col6a2 | 8.09 ± 0.29 | 8.77 ± 0.31 | 8.43 ± 0.28 |
FN1 | 6.53 ± 0.30 | 8.70 ± 0.54 a | 7.48 ± 0.21 |
Lama4 | 11.82 ± 0.29 | 11.83 ± 0.26 | 11.60 ± 0.22 |
Lamb1 | 10.82 ± 0.29 | 9.21 ± 0.25 a | 9.44 ± 0.34 a |
Lamc1 | 7.76 ± 0.30 | 8.56 ± 0.31 | 8.49 ± 0.25 |
MMP12 | 4.37 ± 0.70 | 12.73 ± 0.75 a | 10.34 ± 0.28 a,b |
Gene Symbol | Gene Expression Level by DNA Array (log2) | ||
---|---|---|---|
Macrophage markers | Control Mice | HFD mice | HFD + PA mice |
Adgre1 (F4/80) | 6.66 ± 0.20 | 9.29 ± 0.96 a | 7.96 ± 0.50 |
Mpeg1 | 5.81 ± 0.14 | 11.72 ± 0.54 a | 9.38 ± 0.78 a,b |
Itgam (CD11b) | 5.51 ± 0.37 | 8.9 ± 0.77 a | 6.51 ± 0.49 a,b |
CD53 | 6.67 ± 0.20 | 11.04 ± 0.83 a | 8.74 ± 0.47 |
CD68 | 8.09 ± 0.29 | 13.55 ± 1.24 a | 11.11 ± 0.59 |
Brown adipocyte differentiation-related factors | Control mice | HFD mice | HFD + PA mice |
UCP1 | 19.85 ± 0.09 | 19.76 ± 0.06 | 19.74 ± 0.06 |
PGC1-α | 14.50 ± 0.56 | 13.25 ± 0.20 a | 13.75 ± 0.31 |
Dio2 | 12.98 ± 0.37 | 10.37 ± 0.08 a | 10.02 ± 0.60 a |
Elovl3 | 14.10 ± 0.29 | 13.27 ± 0.46 a | 14.17 ± 0.52 |
LPL | 18.07 ± 0.28 | 17.05 ± 0.09 a | 16.95 ± 0.12 a |
Cebpα | 13.94 ± 0.22 | 13.35 ± 0.09 | 13.62 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurai, T.; Fukutomi, T.; Yamamoto, S.; Nozaki, E.; Kizaki, T. Physical Activity Attenuates the Obesity-Induced Dysregulated Expression of Brown Adipokines in Murine Interscapular Brown Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 10391. https://doi.org/10.3390/ijms221910391
Sakurai T, Fukutomi T, Yamamoto S, Nozaki E, Kizaki T. Physical Activity Attenuates the Obesity-Induced Dysregulated Expression of Brown Adipokines in Murine Interscapular Brown Adipose Tissue. International Journal of Molecular Sciences. 2021; 22(19):10391. https://doi.org/10.3390/ijms221910391
Chicago/Turabian StyleSakurai, Takuya, Toshiyuki Fukutomi, Sachiko Yamamoto, Eriko Nozaki, and Takako Kizaki. 2021. "Physical Activity Attenuates the Obesity-Induced Dysregulated Expression of Brown Adipokines in Murine Interscapular Brown Adipose Tissue" International Journal of Molecular Sciences 22, no. 19: 10391. https://doi.org/10.3390/ijms221910391