Are Non-Coding RNAs Useful Biomarkers in Parathyroid Tumorigenesis?
Abstract
:1. Introduction
2. Differentially Expressed miRNAs in Parathyroid Tumors
3. Differentially Expressed lncRNAs in Parathyroid Tumors
4. Differentially Expressed circRNAs in Parathyroid Tumors
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohebati, A.; Shaha, A.R. Anatomy of Thyroid and Parathyroid Glands and Neurovascular Relations. Clin. Anat. 2012, 25, 19–31. [Google Scholar] [CrossRef]
- Taterra, D.; Wong, L.M.; Vikse, J.; Sanna, B.; Pękala, P.; Walocha, J.; Cirocchi, R.; Tomaszewski, K.; Henry, B.M. The Prevalence and Anatomy of Parathyroid Glands: A Meta-Analysis with Implications for Parathyroid Surgery. Langenbecks Arch. Surg. 2019, 404, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.; Neves, H. Two-Step Approach to Explore Early- and Late-Stages of Organ Formation in the Avian Model: The Thymus and Parathyroid Glands Organogenesis Paradigm. J. Vis. Exp. JoVE 2018, e57114. [Google Scholar] [CrossRef]
- Ilahi, A.; Muco, E.; Ilahi, T.B. Anatomy, Head and Neck, Parathyroid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Vasileiadis, I.; Charitoudis, G.; Vasileiadis, D.; Kykalos, S.; Karatzas, T. Clinicopathological Characteristics of Incidental Parathyroidectomy after Total Thyroidectomy: The Effect on Hypocalcemia. A Retrospective Cohort Study. Int. J. Surg. 2018, 55, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P. Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 3993–4004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocchiara, G.; Fazzotta, S.; Palumbo, V.D.; Damiano, G.; Cajozzo, M.; Maione, C.; Buscemi, S.; Spinelli, G.; Ficarella, S.; Maffongelli, A.; et al. The Medical and Surgical Treatment in Secondary and Tertiary Hyperparathyroidism. Review. Clin. Ter. 2017, 168, e158–e167. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.A.; Jiang, T.; Wei, B.B.; Chang, H. Analysis of preoperative predictive factors and clinical characteristics in patients with parathyroid carcinoma. Zhonghua Zhong Liu Za Zhi 2018, 40, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Raruenrom, Y.; Theerakulpisut, D.; Wongsurawat, N.; Somboonporn, C. Diagnostic Accuracy of Planar, SPECT, and SPECT/CT Parathyroid Scintigraphy Protocols in Patients with Hyperparathyroidism. Nucl. Med. Rev. Cent. East. Eur. 2018, 21, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, M.; Damle, N.A. Fluorocholine PET Imaging of Parathyroid Disease. Indian J. Endocrinol. Metab. 2018, 22, 535–541. [Google Scholar] [CrossRef]
- Parikh, A.M.; Suliburk, J.W.; Morón, F.E. Imaging Localization and Surgical Approach in the Management of Ectopic Parathyroid Adenomas. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2018, 24, 589–598. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Wang, T.S.; Ruan, D.T.; Lee, J.A.; Asa, S.L.; Duh, Q.-Y.; Doherty, G.M.; Herrera, M.F.; Pasieka, J.L.; Perrier, N.D.; et al. The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism. JAMA Surg. 2016, 151, 959–968. [Google Scholar] [CrossRef]
- Solorzano, C.C.; Carneiro-Pla, D. Minimizing Cost and Maximizing Success in the Preoperative Localization Strategy for Primary Hyperparathyroidism. Surg. Clin. 2014, 94, 587–605. [Google Scholar] [CrossRef]
- Schulte, K.-M.; Talat, N. Diagnosis and Management of Parathyroid Cancer. Nat. Rev. Endocrinol. 2012, 8, 612–622. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Sharma, S. Parathyroid Adenoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Juhlin, C.C.; Höög, A. Parafibromin as a Diagnostic Instrument for Parathyroid Carcinoma-Lone Ranger or Part of the Posse? Int. J. Endocrinol. 2010, 2010, 324964. [Google Scholar] [CrossRef] [Green Version]
- Erickson, L.A.; Mete, O. Immunohistochemistry in Diagnostic Parathyroid Pathology. Endocr. Pathol. 2018, 29, 113–129. [Google Scholar] [CrossRef]
- Quaglino, F.; Marchese, V.; Lemini, R.; Piovesan, A.; Mazza, E.; Viora, T.; Taraglio, S. Parathyroid Carcinoma. A Single Institution Experience and a Review of the International Literature. Ann. Ital. Chir. 2018, 89, 295–304. [Google Scholar] [PubMed]
- Dandurand, K.; Ali, D.S.; Khan, A.A. Primary Hyperparathyroidism: A Narrative Review of Diagnosis and Medical Management. J. Clin. Med. 2021, 10, 1604. [Google Scholar] [CrossRef] [PubMed]
- Verdelli, C.; Forno, I.; Vaira, V.; Corbetta, S. Epigenetic Alterations in Human Parathyroid Tumors. Endocrine 2015, 49, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Aurilia, C.; Donati, S.; Palmini, G.; Miglietta, F.; Iantomasi, T.; Brandi, M.L. The Involvement of Long Non-Coding RNAs in Bone. Int. J. Mol. Sci. 2021, 22, 3909. [Google Scholar] [CrossRef]
- Huynh, N.P.T.; Anderson, B.A.; Guilak, F.; McAlinden, A. Emerging Roles for Long Noncoding RNAs in Skeletal Biology and Disease. Connect. Tissue Res. 2017, 58, 116–141. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.C.; Hughes, J.; Graham, B.; Kowalczyk, M.S.; Higgs, D.R.; Ponting, C.P. Chromatin Signatures at Transcriptional Start Sites Separate Two Equally Populated yet Distinct Classes of Intergenic Long Noncoding RNAs. Genome Biol. 2013, 14, R131. [Google Scholar] [CrossRef]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Guo, Q.; Xiao, Y.; Li, C.; Huang, Y.; Luo, X. Regulation of Bone Marrow Mesenchymal Stem Cell Fate by Long Non-Coding RNA. Bone 2020, 141, 115617. [Google Scholar] [CrossRef]
- Donati, S.; Ciuffi, S.; Marini, F.; Palmini, G.; Miglietta, F.; Aurilia, C.; Brandi, M.L. Multiple Endocrine Neoplasia Type 1: The Potential Role of MicroRNAs in the Management of the Syndrome. Int. J. Mol. Sci. 2020, 21, 7592. [Google Scholar] [CrossRef]
- Wilusz, J.E. A 360° View of Circular RNAs: From Biogenesis to Functions. Wiley Interdiscip. Rev. RNA 2018, 9, e1478. [Google Scholar] [CrossRef] [Green Version]
- Rahbari, R.; Holloway, A.K.; He, M.; Khanafshar, E.; Clark, O.H.; Kebebew, E. Identification of Differentially Expressed MicroRNA in Parathyroid Tumors. Ann. Surg. Oncol. 2011, 18, 1158–1165. [Google Scholar] [CrossRef]
- Sadowski, S.M.; Pusztaszeri, M.; Brulhart-Meynet, M.-C.; Petrenko, V.; De Vito, C.; Sobel, J.; Delucinge-Vivier, C.; Kebebew, E.; Regazzi, R.; Philippe, J.; et al. Identification of Differential Transcriptional Patterns in Primary and Secondary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 2189–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbetta, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Eller-Vainicher, C.; Ferrero, S.; Vicentini, L.; Chiodini, I.; Bisceglia, M.; Beck-Peccoz, P.; et al. Differential Expression of MicroRNAs in Human Parathyroid Carcinomas Compared with Normal Parathyroid Tissue. Endocr. Relat. Cancer 2010, 17, 135–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaira, V.; Elli, F.; Forno, I.; Guarnieri, V.; Verdelli, C.; Ferrero, S.; Scillitani, A.; Vicentini, L.; Cetani, F.; Mantovani, G.; et al. The MicroRNA Cluster C19MC Is Deregulated in Parathyroid Tumours. J. Mol. Endocrinol. 2012, 49, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdelli, C.; Forno, I.; Morotti, A.; Creo, P.; Guarnieri, V.; Scillitani, A.; Cetani, F.; Vicentini, L.; Balza, G.; Beretta, E.; et al. The Aberrantly Expressed MiR-372 Partly Impairs Sensitivity to Apoptosis in Parathyroid Tumor Cells. Endocr. Relat. Cancer 2018, 25, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhang, X.; Cui, M.; Su, Z.; Wang, M.; Liao, Q.; Zhao, Y. Verification of Candidate MicroRNA Markers for Parathyroid Carcinoma. Endocrine 2018, 60, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Q.; Zhao, T.; Liu, X.; Bai, G.; Xin, Y.; Shen, H.; Wei, B. Expression Profile of Serum-Related Exosomal MiRNAs from Parathyroid Tumor. Endocrine 2020, 72, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Marini, F.; Giusti, F.; Galli, G.; Cavalli, L.; Brandi, M.L. The Negative Feedback-Loop between the Oncomir Mir-24-1 and Menin Modulates the Men1 Tumorigenesis by Mimicking the “Knudson’s Second Hit”. PLoS ONE 2012, 7, e39767. [Google Scholar] [CrossRef]
- Luzi, E.; Ciuffi, S.; Marini, F.; Mavilia, C.; Galli, G.; Brandi, M.L. Analysis of Differentially Expressed MicroRNAs in MEN1 Parathyroid Adenomas. Am. J. Transl. Res. 2017, 9, 1743–1753. [Google Scholar]
- Hwang, S.; Jeong, J.J.; Kim, S.H.; Chung, Y.J.; Song, S.Y.; Lee, Y.J.; Rhee, Y. Differential Expression of MiRNA199b-5p as a Novel Biomarker for Sporadic and Hereditary Parathyroid Tumors. Sci. Rep. 2018, 8, 12016. [Google Scholar] [CrossRef]
- Yavropoulou, M.P.; Pazaitou-Panayiotou, K.; Yovos, J.G.; Poulios, C.; Anastasilakis, A.D.; Vlachodimitropoulos, D.; Vambakidis, K.; Tsave, O.; Chrisafi, S.; Daskalaki, E.; et al. Circulating and Tissue Expression Profile of MicroRNAs in Primary Hyperparathyroidism Caused by Sporadic Parathyroid Adenomas. JBMR Plus 2021, 5, e10431. [Google Scholar] [CrossRef]
- Shi, X.; Sun, M.; Liu, H.; Yao, Y.; Song, Y. Long Non-Coding RNAs: A New Frontier in the Study of Human Diseases. Cancer Lett. 2013, 339, 159–166. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, D.; Wang, J.; Yu, W.; Yang, J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019, 8, 1015. [Google Scholar] [CrossRef] [Green Version]
- Chandra Gupta, S.; Nandan Tripathi, Y. Potential of Long Non-Coding RNAs in Cancer Patients: From Biomarkers to Therapeutic Targets. Int. J. Cancer 2017, 140, 1955–1967. [Google Scholar] [CrossRef]
- Jiang, T.; Wei, B.J.; Zhang, D.X.; Li, L.; Qiao, G.L.; Yao, X.A.; Chen, Z.W.; Liu, X.; Du, X.Y. Genome-Wide Analysis of Differentially Expressed LncRNA in Sporadic Parathyroid Tumors. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2019, 30, 1511–1519. [Google Scholar] [CrossRef]
- Yu, Q.; Hardin, H.; Chu, Y.-H.; Rehrauer, W.; Lloyd, R.V. Parathyroid Neoplasms: Immunohistochemical Characterization and Long Noncoding RNA (LncRNA) Expression. Endocr. Pathol. 2019, 30, 96–105. [Google Scholar] [CrossRef]
- Morotti, A.; Forno, I.; Verdelli, C.; Guarnieri, V.; Cetani, F.; Terrasi, A.; Silipigni, R.; Guerneri, S.; Andrè, V.; Scillitani, A.; et al. The Oncosuppressors MEN1 and CDC73 Are Involved in LncRNA Deregulation in Human Parathyroid Tumors. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2020, 35, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, Y.; Wang, M.; Zhang, R.; Wang, P.; Cui, M.; Su, Z.; Gao, X.; Liao, Q.; Zhao, Y. Profiling Analysis of Long Non-Coding RNA and MRNA in Parathyroid Carcinoma. Endocr. Relat. Cancer 2019, 26, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, K.-Y.; Sun, H.S.; Tsai, S.-J. Circular RNA-New Member of Noncoding RNA with Novel Functions. Exp. Biol. Med. 2017, 242, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Huang, S. Circular RNA: An Emerging Non-Coding RNA as a Regulator and Biomarker in Cancer. Cancer Lett. 2018, 418, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Yavropoulou, M.P.; Poulios, C.; Michalopoulos, N.; Gatzou, A.; Chrisafi, S.; Mantalovas, S.; Papavramidis, T.; Daskalaki, E.; Sofou, E.; Kotsa, K.; et al. A Role for Circular Non-Coding RNAs in the Pathogenesis of Sporadic Parathyroid Adenomas and the Impact of Gender-Specific Epigenetic Regulation. Cells 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, X.; Cui, M.; Wang, M.; Su, Z.; Liao, Q.; Zhao, Y. Circular RNA Profile of Parathyroid Neoplasms: Analysis of Co-Expression Networks of Circular RNAs and MRNAs. RNA Biol. 2019, 16, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Mingione, A.; Verdelli, C.; Terranegra, A.; Soldati, L.; Corbetta, S. Molecular and Clinical Aspects of the Target Therapy with the Calcimimetic Cinacalcet in the Treatment of Parathyroid Tumors. Curr. Cancer Drug Targets 2015, 15, 563–574. [Google Scholar] [CrossRef]
- Vaira, V.; Verdelli, C.; Forno, I.; Corbetta, S. MicroRNAs in Parathyroid Physiopathology. Mol. Cell. Endocrinol. 2017, 456, 9–15. [Google Scholar] [CrossRef]
- Hackl, M.; Heilmeier, U.; Weilner, S.; Grillari, J. Circulating MicroRNAs as Novel Biomarkers for Bone Diseases-Complex Signatures for Multifactorial Diseases? Mol. Cell. Endocrinol. 2016, 432, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Cianferotti, L.; Brandi, M.L. Epigenetic Mechanisms in Bone Biology and Osteoporosis: Can They Drive Therapeutic Choices? Int. J. Mol. Sci. 2016, 17, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wang, Z.; Zhang, J.; Zhao, X.; Xu, P.; Liu, X.; Li, M.; Lv, C.; Song, X. Crosstalk of MRNA, MiRNA, LncRNA, and CircRNA and Their Regulatory Pattern in Pulmonary Fibrosis. Mol. Ther. Nucleic Acids 2019, 18, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, N.; Tang, Q.; Sheng, H.; Long, S.; Wu, W. MicroRNA-24 in Cancer: A Double Side Medal With Opposite Properties. Front. Oncol. 2020, 10, 2071. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, F.; Gopalan, V.; Smith, R.A.; Lam, A.K.-Y. MiR-126 in Human Cancers: Clinical Roles and Current Perspectives. Exp. Mol. Pathol. 2014, 96, 98–107. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, L.; Sun, D.; Li, J.; Tang, J. MiR-139-5p: Promising Biomarker for Cancer. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2015, 36, 1355–1365. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Zheng, H.; Chan, M.T.V.; Wu, W.K.K. NEAT1: A Novel Cancer-Related Long Non-Coding RNA. Cell Prolif. 2017, 50, e12329. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yang, J.; Fang, H.; Li, L.; Sun, J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front. Cell Dev. Biol. 2020, 8, 696. [Google Scholar] [CrossRef]
- Bajan, S.; Hutvagner, G. RNA-Based Therapeutics: From Antisense Oligonucleotides to MiRNAs. Cells 2020, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and Other Non-Coding RNAs as Targets for Anticancer Drug Development. Nat. Rev. Drug Discov. 2013, 12, 847–865. [Google Scholar] [CrossRef] [Green Version]
- Rupaimoole, R.; Slack, F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Van Rooij, E.; Olson, E.N. MicroRNA Therapeutics for Cardiovascular Disease: Opportunities and Obstacles. Nat. Rev. Drug Discov. 2012, 11, 860–872. [Google Scholar] [CrossRef]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA Therapeutics-Challenges and Potential Solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef]
- Panda, A.C. Circular RNAs Act as MiRNA Sponges. Adv. Exp. Med. Biol. 2018, 1087, 67–79. [Google Scholar] [CrossRef]
- Beermann, J.; Piccoli, M.-T.; Viereck, J.; Thum, T. Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 2016, 96, 1297–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating MicroRNAs: Biomarkers of Disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef] [PubMed]
- De Gonzalo-Calvo, D.; Vea, A.; Bär, C.; Fiedler, J.; Couch, L.S.; Brotons, C.; Llorente-Cortes, V.; Thum, T. Circulating Non-Coding RNAs in Biomarker-Guided Cardiovascular Therapy: A Novel Tool for Personalized Medicine? Eur. Heart J. 2019, 40, 1643–1650. [Google Scholar] [CrossRef]
- Kumarswamy, R.; Bauters, C.; Volkmann, I.; Maury, F.; Fetisch, J.; Holzmann, A.; Lemesle, G.; de Groote, P.; Pinet, F.; Thum, T. Circulating Long Noncoding RNA, LIPCAR, Predicts Survival in Patients With Heart Failure. Circ. Res. 2014, 114, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Donati, S.; Ciuffi, S.; Brandi, M.L. Human Circulating MiRNAs Real-Time QRT-PCR-Based Analysis: An Overview of Endogenous Reference Genes Used for Data Normalization. Int. J. Mol. Sci. 2019, 20, 4353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Candidate miRNAs | Expression Levels | miRNA Expression Profiling Platform | AUC Value | Study |
---|---|---|---|---|
miR-26b, miR-30b, and miR-126* | ↓ | miRNA arrays, qPCR | 0.766 (miR-126*) for discriminating parathyroid adenoma from carcinoma | [29] |
/ | / | qPCR | / | [30] |
miR-222, miR-503, miR-139, and miR-296 | ↑ and ↓ | Microarray, qPCR | / | [31] |
C19MC miRNAs and miR-372 | ↑ | qPCR | / | [32] |
miR-372 | ↑ | qPCR | / | [33] |
miR-222, miR-30b, miR-126*, miR-139, and miR-517c | ↑ and ↓ | qPCR | 0.864 (miR-30b), 0.747 (miR-139), 0.888 (miR-30b + miR-139) for discriminating between PC patients and adenoma patients | [34] |
Serum exosomal miR-27a-5p | ↑ | NGS, qPCR | 0.8594 for discriminating PCs from adenoma | [35] |
miR-24-1 | ↑ | qPCR | / | [36] |
miR-1301, miR-664, and miR-4258 | ↑ and ↓ | Microarray, qPCR | 0.65 (miR-4258), 0.84 (miR-1301), 0.92 (miR-664), 0.84 (miR-4258) for discriminating MEN1-LOH from MEN1-no-LOH PAs and control pool | [37] |
miR-199b-5p | ↓ | Microarray, qPCR | 0.863 for distinguishing between sporadic and hereditary parathyroid tumors | [38] |
miR-17-5p, miR-135b-5p, miR-31-5p, miR-186-5p, miR-330-3p, miR-24-3p, and miR-29b-3p | ↑ and ↓ | Microarray, qPCR | / | [39] |
Candidate lncRNAs | Expression Levels | lncRNA Expression Profiling Platform | AUC Value | Study |
---|---|---|---|---|
LINC00959, lnc-FLT3-2:2, lnc-FEZF2-9:2, and lnc-RP11-1035H13.3.1-2:1 | ↓ and ↑ | Microarray, qPCR | 0.88 (global lncRNA score) for discriminating PCs from adenoma | [43] |
ROR | In situ hybridization assay, qPCR | / | [44] | |
BC200, HAR1B, HOXA3as, NEAT1, SNHG6, and ZFAS1 | ↑ | In situ hybridization assay, qPCR | 0.74 (BC200) for discriminating PCs from adenoma and atypical adenomas, and for discriminating PCs with CDC73 mutation from wild-type carcinomas | [45] |
PVT1 and GLIS2-AS1 | ↑ and ↓ | Microarray, qPCR | 0.871 (PVT1), 0.860 (GLIS2-AS1), for discriminating between PC patients and adenoma patients 0.950 (PVT1), 0.933 (GLIS2-AS1), for discriminating PCs with CDC73 mutation from wild-type carcinomas | [46] |
Candidate circRNAs | Expression Levels | circRNAs Expression Profiling Platform | AUC Value | Study |
---|---|---|---|---|
cirRNA_051778, cirRNA_406174, cirRNA_0008267, circRNA_032603, circRNA_058097 | ↑ and ↓ | Microarray, qPCR | / | [49] |
circRNA_0017545, circRNA_0035563, circRNA_0075005, circRNA_0001687 | ↑ | qPCR | 0.770 (circRNA_0075005) for discriminating between PC patients and adenoma patients | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aurilia, C.; Donati, S.; Palmini, G.; Miglietta, F.; Falsetti, I.; Iantomasi, T.; Brandi, M.L. Are Non-Coding RNAs Useful Biomarkers in Parathyroid Tumorigenesis? Int. J. Mol. Sci. 2021, 22, 10465. https://doi.org/10.3390/ijms221910465
Aurilia C, Donati S, Palmini G, Miglietta F, Falsetti I, Iantomasi T, Brandi ML. Are Non-Coding RNAs Useful Biomarkers in Parathyroid Tumorigenesis? International Journal of Molecular Sciences. 2021; 22(19):10465. https://doi.org/10.3390/ijms221910465
Chicago/Turabian StyleAurilia, Cinzia, Simone Donati, Gaia Palmini, Francesca Miglietta, Irene Falsetti, Teresa Iantomasi, and Maria Luisa Brandi. 2021. "Are Non-Coding RNAs Useful Biomarkers in Parathyroid Tumorigenesis?" International Journal of Molecular Sciences 22, no. 19: 10465. https://doi.org/10.3390/ijms221910465
APA StyleAurilia, C., Donati, S., Palmini, G., Miglietta, F., Falsetti, I., Iantomasi, T., & Brandi, M. L. (2021). Are Non-Coding RNAs Useful Biomarkers in Parathyroid Tumorigenesis? International Journal of Molecular Sciences, 22(19), 10465. https://doi.org/10.3390/ijms221910465