Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis
Abstract
:1. Introduction
2. Results
2.1. Preliminary Investigation of Ceftazidime-Vancomycin Incompatibility
2.2. Antibiotics Inclusion Characterization in Hpcds
2.2.1. Nuclear Magnetic Resonance (NMR) Analyses
1H NMR-Spectroscopy Chemical Shifts Measurements
1H NMR-Diffusion Measurements (1H-DOSY)
2.2.2. Influence of HPβCD/Vancomycin Molar Ratio on Vancomycin Inclusion and Precipitation
2.3. Determination of the Optimum Preparation Method Using Design of Experiments
2.4. Validation of the Preparation Method
2.5. Verification of the Efficiency Mixture of the Optimized Formula
3. Discussion
4. Materials and Methods
4.1. Reactive and Reagents
4.2. Study Design
4.2.1. Preparation of Solutions
Antibiotics Solutions
Phosphate Buffer Solution
Hydroxypropyl Cyclodextrins in Buffered Aqueous Solution
4.2.2. Preliminary Investigation of the Ceftazidime-Vancomycin Incompatibility
4.2.3. Antibiotics Inclusion Characterization in HP-CD
NMR Analyses
1H NMR-Spectroscopy Chemical Shifts Measurements
1H NMR-Diffusion Measurements (1H-DOSY)
Influence of HPβCD on Inclusion of VA and Its Precipitation
4.2.4. Determination of the Best Preparation Method by Design of Experiment
4.2.5. Validation of the Preparation Method
4.2.6. Verification of the Efficiency Mixture of the Optimized Formula
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Infectious Keratitis: An Update on Epidemiology, Causative Microorganisms, Risk Factors, and Antimicrobial Resistance. Eye 2021, 35, 1084–1101. [Google Scholar] [CrossRef] [PubMed]
- Ung, L.; Bispo, P.J.M.; Shanbhag, S.S.; Gilmore, M.S.; Chodosh, J. The Persistent Dilemma of Microbial Keratitis: Global Burden, Diagnosis, and Antimicrobial Resistance. Surv. Ophthalmol. 2019, 64, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Puig, M.; Weiss, M.; Salinas, R.; Johnson, D.A.; Kheirkhah, A. Etiology and Risk Factors for Infectious Keratitis in South Texas. J. Ophthalmic Vis. Res. 2020, 15, 128–137. [Google Scholar] [CrossRef]
- Soleimani, M.; Tabatabaei, S.A.; Mohammadi, S.S.; Valipour, N.; Mirzaei, A. A Ten-Year Report of Microbial Keratitis in Pediatric Population under Five Years in a Tertiary Eye Center. J. Ophthalmic Inflamm. Infect. 2020, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.L.; Gatus, B.J.; Cabrera-Aguas, M.; Armstrong, B.H.; George, C.R.; Khoo, P.; Lahra, M.M. Bacterial Ocular Surveillance System (BOSS) Sydney, Australia 2017–2018. Commun. Dis. Intell. 2020, 44. [Google Scholar] [CrossRef]
- Sagerfors, S.; Ejdervik-Lindblad, B.; Söderquist, B. Infectious Keratitis: Isolated Microbes and Their Antibiotic Susceptibility Pattern during 2004–2014 in Region Örebro County, Sweden. Acta Ophthalmol. 2020, 98, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the Management of Infectious Keratitis. Ophthalmology 2017, 124, 1678–1689. [Google Scholar] [CrossRef]
- Austin, A.; Schallhorn, J.; Geske, M.; Mannis, M.; Lietman, T.; Rose-Nussbaumer, J. Empirical Treatment of Bacterial Keratitis: An International Survey of Corneal Specialists. BMJ Open Ophthalmol. 2017, 2, e000047. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Rhee, M.K.; Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S. Bacterial Keratitis Preferred Practice Pattern®. Ophthalmology 2019, 126, P1–P55. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Preuss, C.V.; Bernice, F. Vancomycin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Bui, T.; Preuss, C.V. Cephalosporins. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- American Society of Health-System Pharmacists. Handbook on Injectable Drugs, 20th ed.; ASHP: Bethesda, MD, USA, 2018; ISBN 978-1-58528-615-7. [Google Scholar]
- Fiscella, R.G. Physical Incompatibility of Vancomycin and Ceftazidime for Intravitreal Injection. Arch. Ophthalmol. 1993, 111, 730. [Google Scholar] [CrossRef]
- Pubchem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 7 March 2021).
- Loftsson, T. Cyclodextrins in Parenteral Formulations. J. Pharm. Sci. 2021, 110, 654–664. [Google Scholar] [CrossRef]
- Loftsson, T.; Stefánsson, E. Cyclodextrins and Topical Drug Delivery to the Anterior and Posterior Segments of the Eye. Int. J. Pharm. 2017, 531, 413–423. [Google Scholar] [CrossRef]
- Muankaew, C.; Loftsson, T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin. Pharmacol. Toxicol. 2018, 122, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Supramolecular Cyclodextrin Complex: Diversity, Safety, and Applications in Ocular Therapeutics. Exp. Eye Res. 2019, 189, 107829. [Google Scholar] [CrossRef]
- Mura, P. Advantages of the Combined Use of Cyclodextrins and Nanocarriers in Drug Delivery: A Review. Int. J. Pharm. 2020, 579, 119181. [Google Scholar] [CrossRef] [PubMed]
- Sofian, Z.M.; Abdullah, J.M.; Rahim, A.A.; Shafee, S.S.; Mustafa, Z.; Razak, S.A. Cytotoxicity Evaluation of Vancomycin and Its Complex with Beta-Cyclodextrin on Human Glial Cell Line. Pak. J. Pharm. Sci. 2012, 25, 831–837. [Google Scholar] [PubMed]
- Zarif, M.S.; Afidah, A.R.; Abdullah, J.M.; Shariza, A.R. Physicochemical Characterization of Vancomycin and Its Complexes with Beta-Cyclodextrin. Biomed. Res. 2012, 23, 513–520. [Google Scholar]
- Misiuk, W. Investigation of Inclusion Complex of HP-γ-Cyclodextrin with Ceftazidime. J. Mol. Liq. 2016, 224, 387–392. [Google Scholar] [CrossRef]
- Ludwig, A.; Reimann, H. Eye. In Practical Pharmaceutics: An International Guideline for the Preparation, Care and Use of Medicinal Products; Bouwman-Boer, Y., Fenton-May, V., Le Brun, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 163–188. ISBN 978-3-319-15814-3. [Google Scholar]
- Trolle-Lassen, C. Investigations into the Sensitivity of the Human Eye to Hypo- and Hypertonic Solutions as Well as Solutions with Unphysiological Hydrogen Ion Concentrations. Pharm. Weekbl. 1958, 93, 148–155. [Google Scholar]
- Noh, G.M.; Nam, K.Y.; Lee, S.U.; Lee, S.J. Precipitation of Vancomycin and Ceftazidime on Intravitreal Injection in Endophthalmitis Patients. Korean J. Ophthalmol. 2019, 33, 296–297. [Google Scholar] [CrossRef]
- Lifshitz, T.; Lapid-Gortzak, R.; Finkelman, Y.; Klemperer, I. Vancomycin and Ceftazidime Incompatibility upon Intravitreal Injection. Br. J. Ophthalmol. 2000, 84, 117–118. [Google Scholar] [CrossRef] [Green Version]
- Park, I.; Lee, S.J. Factors Affecting Precipitation of Vancomycin and Ceftazidime on Intravitreal Injection. J. Ocul. Pharmacol. Ther. 2013, 29, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Servais, H.; Tulkens, P.M. Stability and Compatibility of Ceftazidime Administered by Continuous Infusion to Intensive Care Patients. Antimicrob. Agents Chemother. 2001, 45, 2643–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wazny, L.D.; Blake, P.G. Incompatibility of Vancomycin and Ceftazidime for Intraperitoneal Use. Perit. Dial. Int. 2002, 22, 93–94. [Google Scholar] [CrossRef]
- Kwok, A.K.H.; Hui, M.; Pang, C.P.; Chan, R.C.Y.; Cheung, S.W.; Yip, C.M.S.; Lam, D.S.C.; Cheng, A.F.B. An In Vitro Study of Ceftazidime and Vancomycin Concentrations in Various Fluid Media: Implications for Use in Treating Endophthalmitis. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1182–1188. [Google Scholar] [PubMed]
- Nguyen, M. Handbook on Injectable Drugs. Crit. Care Med. 2013, 41, e190. [Google Scholar] [CrossRef]
- Raju, B.; Bali, T.; Thiagarajan, G.; Rao, V.; Das, T.; Sharma, S. Physicochemical Properties and Antibacterial Activity of the Precipitate of Vancomycin and Ceftazidime: Implications in the Management of Endophthalmitis. Retina 2008, 28, 320–325. [Google Scholar] [CrossRef]
- Ng, H.P.; Koh, K.F.; Tham, L.S. Vancomycin Causes Dangerous Precipitation When Infused with Gelatin Fluid. Anaesthesia 2000, 55, 1039–1040. [Google Scholar] [CrossRef]
- Chemicalize—Instant Cheminformatics Solutions. Available online: https://chemicalize.com/welcome (accessed on 25 July 2021).
- Johnson, J.L.H.; Yalkowsky, S.H. Reformulation of a New Vancomycin Analog: An Example of the Importance of Buffer Species and Strength. AAPS PharmSciTech 2006, 7, E33–E37. [Google Scholar] [CrossRef]
- Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of Beta-Cyclodextrin Inclusion Complexes Containing an Essential Oil Component. Food Chem. 2016, 196, 968–975. [Google Scholar] [CrossRef]
- Sambasevam, K.P.; Mohamad, S.; Sarih, N.M.; Ismail, N.A. Synthesis and Characterization of the Inclusion Complex of β-Cyclodextrin and Azomethine. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef]
- Williams, R.O.; Mahaguna, V.; Sriwongjanya, M. Characterization of an Inclusion Complex of Cholesterol and Hydroxypropyl-Beta-Cyclodextrin. Eur. J. Pharm. Biopharm. 1998, 46, 355–360. [Google Scholar] [CrossRef]
- Goswami, S.; Sarkar, M. Fluorescence, FTIR and 1H NMR Studies of the Inclusion Complexes of the Painkiller Lornoxicam with β-, γ-Cyclodextrins and Their Hydroxy Propyl Derivatives in Aqueous Solutions at Different PHs and in the Solid State. New J. Chem. 2018, 42, 15146–15156. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018, 23, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ja’far, M.H.; Nik Mohamed Kamal, N.N.S.; Hui, B.Y.; Kamaruzzaman, M.F.; Zain, N.N.M.; Yahaya, N.; Raoov, M. Inclusion of Curcumin in β-Cyclodextrins as Potential Drug Delivery System: Preparation, Characterization and Its Preliminary Cytotoxicity Approaches. Sains Malays. 2018, 47, 977–989. [Google Scholar] [CrossRef]
- Wu, D.H.; Chen, A.D.; Johnson, C.S. An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. J. Magn. Reson. Ser. A 1995, 115, 260–264. [Google Scholar] [CrossRef]
- Simova, S.; Berger, S. Diffusion Measurements vs. Chemical Shift Titration for Determination of Association Constants on the Example of Camphor–Cyclodextrin Complexes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 163–170. [Google Scholar] [CrossRef]
- Crutchfield, C.A.; Harris, D.J. Molecular Mass Estimation by PFG NMR Spectroscopy. J. Magn. Reson. 2006, 185, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Venuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; De Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomolecules 2019, 9, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielding, L. Determination of Association Constants (Ka) from Solution NMR Data. Tetrahedron 2000, 56, 6151–6170. [Google Scholar] [CrossRef]
- European Medicines Agency Cyclodextrins. Available online: https://www.ema.europa.eu/en/cyclodextrins (accessed on 25 July 2021).
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Dutescu, R.M.; Panfil, C.; Schrage, N. Osmolarity of Prevalent Eye Drops, Side Effects, and Therapeutic Approaches. Cornea 2015, 34, 560–566. [Google Scholar] [CrossRef]
- Özalp, O.; Atalay, E.; Alataş, İ.Ö.; Küskü Kiraz, Z.; Yıldırım, N. Assessment of Phosphate and Osmolarity Levels in Chronically Administered Eye Drops. Turk. J. Ophthalmol. 2019, 49, 123–129. [Google Scholar] [CrossRef]
- United States Pharmacopeia USP <771> Ophthalmic Products—Quality Tests, USP 43-NF38. Available online: https://www.uspnf.com/notices/usp-nf-final-print-edition (accessed on 8 September 2021).
- Mathew, M.; Gupta, V.D. Stability of Vancomycin Hydrochloride Solutions at Various PH Values as Determined by High-Performance Liquid Chromatography. Drug Dev. Ind. Pharm. 1995, 21, 257–264. [Google Scholar] [CrossRef]
- Zhou, M.; Notari, R.E. Influence of PH, Temperature, and Buffers on the Kinetics of Ceftazidime Degradation in Aqueous Solutions. J. Pharm. Sci. 1995, 84, 534–538. [Google Scholar] [CrossRef]
- Kodym, A.; Hapka-Zmich, D.; Gołab, M.; Gwizdala, M. Stability of Ceftazidime in 1% and 5% Buffered Eye Drops Determined with HPLC Method. Acta Pol. Pharm. 2011, 68, 99–107. [Google Scholar]
- Gautier, E.; Saillard, J.; Deshayes, C.; Vrignaud, S.; Lagarce, F.; Briot, T. Stability of a 50 Mg/ML Ceftazidime Eye-Drops Formulation. Pharm. Technol. Hosp. Pharm. 2018, 3, 219–226. [Google Scholar] [CrossRef]
- Barbault, S.; Aymard, G.; Feldman, D.; Pointereau-Bellanger, A.; Thuillier, A. Stability of Vancomycin Eye Drops. J. Pharm. Clin. 1999, 18, 183–189. [Google Scholar]
- Bouattour, Y.; Chennell, P.; Wasiak, M.; Jouannet, M.; Sautou, V. Stability of an Ophthalmic Formulation of Polyhexamethylene Biguanide in Gamma-Sterilized and Ethylene Oxide Sterilized Low Density Polyethylene Multidose Eyedroppers. PeerJ 2018, 6, e4549. [Google Scholar] [CrossRef]
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial Profile of Ocular Infections: A Systematic Review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Bispo, P.J.M.; Kobashi, H.; Jacobs, D.S.; Gilmore, M.S.; Ciolino, J.B. Resolution of Fluoroquinolone-Resistant Escherichia Coli Keratitis with a PROSE Device for Enhanced Targeted Antibiotic Delivery. Am. J. Ophthalmol. Case Rep. 2018, 12, 73–75. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) Procedure for Establishing Zone Diameter Breakpoints and Quality Control Criteria for New Antimicrobial Agents, SOP Version 9.2 2020. Available online: https://www.eucast.org/. (accessed on 13 September 2021).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. Version 10.0, 2020. 2020. Available online: https://www.eucast.org/ (accessed on 12 September 2021).
- Berton, B.; Chennell, P.; Yessaad, M.; Bouattour, Y.; Jouannet, M.; Wasiak, M.; Sautou, V. Stability of Ophthalmic Atropine Solutions for Child Myopia Control. Pharmaceutics 2020, 12, 781. [Google Scholar] [CrossRef]
- Bíró, T.; Aigner, Z. Current Approaches to Use Cyclodextrins and Mucoadhesive Polymers in Ocular Drug Delivery—A Mini-Review. Sci. Pharm. 2019, 87, 15. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Veiga, B.; Sigurdsson, H.H.; Loftsson, T. Nepafenac-Loaded Cyclodextrin/Polymer Nanoaggregates: A New Approach to Eye Drop Formulation. Materials 2019, 12, 229. [Google Scholar] [CrossRef] [Green Version]
- Mazet, R.; Choisnard, L.; Levilly, D.; Wouessidjewe, D.; Gèze, A. Investigation of Combined Cyclodextrin and Hydrogel Formulation for Ocular Delivery of Dexamethasone Acetate by Means of Experimental Designs. Pharmaceutics 2018, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Chennell, P.; Yessaad, M.; Abd El Kader, F.; Jouannet, M.; Wasiak, M.; Bouattour, Y.; Sautou, V. Do Ophthalmic Solutions of Amphotericin B Solubilised in 2-Hydroxypropyl-γ-Cyclodextrins Possess an Extended Physicochemical Stability? Pharmaceutics 2020, 12, 786. [Google Scholar] [CrossRef]
Initial Concentration (mg mL−1) | pH of the VA/CZ Mixture | Concentration (mg mL−1) in the Supernatant (n = 3) | % of Initial Concentration | Initial Concentration (mmol L−1) | Loss (mmol L−1) | ||
---|---|---|---|---|---|---|---|
Average | RSD | ||||||
Vancomycin | 24.16 | 7 | 6.69 | 6.26% | 27.7% | 16.67 | 12.05 |
8 | 12.08 | 6.92% | 50.0% | 8.33 | |||
Ceftazidime | 21.95 | 7 | 15.66 | 6.14% | 71.4% | 40.16 | 11.51 |
8 | 20.69 | 6.62% | 94.3% | 2.31 |
Parameters | Average Response (When Parameters Vary from Minimum to Maximum) | ||||
---|---|---|---|---|---|
Visual Examination | Turbidity | ≥10 µm Particles Count | ≤10 µm Particles Count | Osmolality | |
HPβCD Concentration | −0.39 | −50.03 | −140 | 7 | 103 |
HPγCD Concentration | −0.47 | −56.09 | −787 | −235 | 73 |
pH mixture of HPβCD/VA | 0.11 | 22.76 | 498 | 417 | −8 |
pH mixture of HPγCD/CZ | 0.35 | 33.14 | 109 | 176 | −41 |
Stirring duration of HPβCD/VA | −0.28 | −44.02 | 157 | 345 | 14 |
Stirring duration of HPγCD/CZ | 0.3 | 49.08 | −219 | 36 | −2 |
final pH of the mixture | −2.33 | −389.86 | −581 | −261 | 14 |
Inhibition Diameters (mm) | |||
---|---|---|---|
Staphylococcus aureus | Escherichia coli | Pseudomonas aeruginosa | |
HPγCD | 6 ± 0 | 6 ± 0 | 6 ± 0 |
HPβCD | 6 ± 0 | 6 ± 0 | 6 ± 0 |
CZ | 18 ± 1 | 27 ± 1 | 26 ± 1 |
VA | 17 ± 1 | 6 ± 0 | 6 ± 0 |
CZ/HPγCD | 17 ± 1 | 27 ± 1 | 25 ± 1 |
VA/HPβCD | 16 ± 1 | 6 ± 0 | 6 ± 0 |
CZ/HPγCD + VA/HPβCD mixture (formula B) | 21 ± 1 | 27 ± 0 | 26 ± 0 |
Phosphate Buffer Solution | pH 3 | pH 4 | pH 6 | pH 8 |
---|---|---|---|---|
H3PO4 at 85 mg mL−1 (µL) | 2000 | 212 | - | - |
NaH2PO4, 2H2O (mg) | 205 | 230 | 202.5 | 1.1 |
Na2HPO4, 12H2O (mg) | - | - | 73.7 | 505 |
Volume of 380 mM HPβCD solution at pH 8 (mL) | 0 | 0.819 | 1.364 | 1.910 | 2.182 | 2.455 | 2.728 | 3.000 |
Volume 50 mM phosphate buffer solution pH 8 (mL) | 3.000 | 2.181 | 1.636 | 1.090 | 0.818 | 0.545 | 0.272 | 0 |
Volume of VA 200 mg/mL solution (mL) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Corresponding ratio HPβCD:VA | 0:1 | 3:1 | 5:1 | 7:1 | 8:1 | 9:1 | 10:1 | 11:1 |
Parameters | Type | Studied Levels |
---|---|---|
HPβCD ratio (compared to VA) | Multilevel | 0; 2; 5 and 10 |
HPγCD ratio (compared to CZ) | Multilevel | 0; 1 and 3 |
VA/HPβCD pH mixture | Quantitative | 3 to 6 |
CZ/HPγCD pH mixture | Quantitative | 4 to 8 |
VA/HPβCD mixture time (hours) | Multilevel | 0.5; 1 and 2 |
CZ/HPγCD mixture time (hours) | Multilevel | 0.5; 1 and 2 |
pH of the final solution | Multilevel | 7; 7.5; 8 and 8.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouattour, Y.; Neflot-Bissuel, F.; Traïkia, M.; Biesse-Martin, A.-S.; Frederic, R.; Yessaad, M.; Jouannet, M.; Wasiak, M.; Chennell, P.; Sautou, V. Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis. Int. J. Mol. Sci. 2021, 22, 10538. https://doi.org/10.3390/ijms221910538
Bouattour Y, Neflot-Bissuel F, Traïkia M, Biesse-Martin A-S, Frederic R, Yessaad M, Jouannet M, Wasiak M, Chennell P, Sautou V. Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis. International Journal of Molecular Sciences. 2021; 22(19):10538. https://doi.org/10.3390/ijms221910538
Chicago/Turabian StyleBouattour, Yassine, Florent Neflot-Bissuel, Mounir Traïkia, Anne-Sophie Biesse-Martin, Robin Frederic, Mouloud Yessaad, Mireille Jouannet, Mathieu Wasiak, Philip Chennell, and Valerie Sautou. 2021. "Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis" International Journal of Molecular Sciences 22, no. 19: 10538. https://doi.org/10.3390/ijms221910538
APA StyleBouattour, Y., Neflot-Bissuel, F., Traïkia, M., Biesse-Martin, A.-S., Frederic, R., Yessaad, M., Jouannet, M., Wasiak, M., Chennell, P., & Sautou, V. (2021). Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis. International Journal of Molecular Sciences, 22(19), 10538. https://doi.org/10.3390/ijms221910538