Sequential Application of Calcium Phosphate and ε-Polylysine Show Antibacterial and Dentin Tubule Occluding Effects In Vitro
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Efficiency of ε-Polylysine against P. gingivalis
2.2. Characterization of Calcium Phosphate and ε-Polylysine Mixtures
2.3. Antibacterial and Dentin Tubule Occlusion with Sequential Application of CPP and ε-Polylysine on P. g—Infected Dentin Surface
2.4. Longitudinal Analysis of Dentinal Tubules after Calcium Phosphate Precipitation and ε-Polylysine Treatment
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Inhibitory Effect of ε-Polylysine on P. gingivalis Growth
4.3. Experimental Design
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marsh, P. Controlling the oral biofilm with antimicrobials. J. Dent. 2010, 38, S11–S15. [Google Scholar] [CrossRef]
- Gomi, K.; Yashima, A.; Nagano, T.; Kanazashi, M.; Maeda, N.; Arai, T. Effects of full-mouth scaling and root planing in conjunction with systemically administered azithromycin. J. Periodontol. 2007, 78, 422–429. [Google Scholar] [CrossRef]
- Nakagawa, T.; Yamada, S.; Oosuka, Y.; Saito, A.; Hosaka, Y.; Ishikawa, T.; Okuda, K. Clinical and microbiological study of local minocycline delivery (Periocline) following scaling and root planing in recurrent periodontal pockets. Bull. Tokyo Dent. Coll. 1991, 32, 63–70. [Google Scholar] [PubMed]
- Bonito, A.J.; Lux, L.; Lohr, K.N. Impact of local adjuncts to scaling and root planing in periodontal disease therapy: A systematic review. J. Periodontol. 2005, 76, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Jepsen, S. Antibiotics/antimicrobials: Systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontology 2000 2016, 71, 82–112. [Google Scholar] [CrossRef]
- Rams, T.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic Resistance in Human Chronic Periodontitis Microbiota. J. Periodontol. 2014, 85, 160–169. [Google Scholar] [CrossRef]
- Ardila, C.M.; Granada, M.I.; Guzmán, I.C. Antibiotic resistance of subgingival species in chronic periodontitis patients. J. Periodontal Res. 2010, 45, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Falk, W.; Brune, F.; Fimmers, R.; Jepsen, S.; Ding, I.B. Prevalence and antibiotic susceptibility trends of periodontal pathogens in the subgingival microbiota of German periodontitis patients: A retrospective surveillance study. J. Clin. Periodontol. 2021, 48, 1216–1227. [Google Scholar] [CrossRef]
- Kulik, E.M.; Waltimo, T.; Weiger, R.; Schweizer, I.; Lenkeit, K.; Filipuzzi-Jenny, E.; Walter, C. Development of resistance of mutans streptococci and Porphyromonas gingivalis to chlorhexidine digluconate and amine fluoride/stannous fluoride-containing mouthrinses, in vitro. Clin. Oral Investig. 2015, 19, 1547–1553. [Google Scholar] [CrossRef]
- Brookes, Z.L.S.; Belfield, L.A.; Ashworth, A.; Agustench, P.C.; Raja, M.; Pollard, A.J.; Bescos, R. Effects of chlorhexidine mouthwash on the oral microbiome. J. Dent. 2021, 113, 103768. [Google Scholar] [CrossRef]
- Calogiuri, G.; di Leo, E.; Trautmann, A.; Nettis, E.; Ferrannini, A.; Vacca, A. Chlorhexidine hypersensitivity: A critical and updated review. J. Allergy Ther. 2013, 4, 7. [Google Scholar]
- Pemberton, M.; Gibson, J. Chlorhexidine and hypersensitivity reactions in dentistry. Br. Dent. J. 2012, 213, 547. [Google Scholar] [CrossRef] [Green Version]
- Pepperney, A.; Chikindas, M.L. Antibacterial peptides: Opportunities for the prevention and treatment of dental caries. Probiotics Antimicrob. Proteins 2011, 3, 68. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.; Shen, M.-H.; Van, Y.-T. Microbial synthesis of poly (ε-lysine) and its various applications. Bioresour. Technol. 2006, 97, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.C.; Singh, A.; Pandey, A.K.; Mishra, A. Review on production and medical applications of ɛ-polylysine. Biochem. Eng. J. 2012, 65, 70–81. [Google Scholar] [CrossRef]
- Holland, G.; Narhi, M.; Addy, M.; Gangarosa, L.; Orchardson, R. Guidelines for the design and conduct of clinical trials on dentine hypersensitivity. J. Clin. Periodontol. 1997, 24, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Rios, L.F.F.; Dantas, L.M.; Calabria, M.P.; Pereira, J.C.; Mosquim, V.; Wang, L. Obliterating potential of active products for dentin hypersensitivity treatment under an erosive challenge. J. Dent. 2021, 112, 103745. [Google Scholar] [CrossRef]
- Mombelli, A.; McNabb, H.; Lang, N.P. Black-pigmenting Gram-negative bacteria in periodontal disease. II. Screening strategies for detection of P. gingivalis. J. Periodontal Res. 1991, 26, 308–313. [Google Scholar] [CrossRef]
- Zijnge, V.; van Leeuwen, M.B.M.; Degener, J.E.; Abbas, F.; Thurnheer, T.; Gmür, R.; Harmsen, H.J. Oral biofilm architecture on natural teeth. PLoS ONE 2010, 5, e9321. [Google Scholar] [CrossRef] [Green Version]
- von Troil, B.; Needleman, I.; Sanz, M. A systematic review of the prevalence of root sensitivity following periodontal therapy. J. Clin. Periodontol. 2002, 29, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gillam, D. The prevalence of root sensitivity following periodontal therapy: A systematic review. Int. J. Dent. 2012, 2012, 407023. [Google Scholar] [CrossRef] [PubMed]
- Tammaro, S.; Wennström, J.L.; Bergenholtz, G. Root-dentin sensitivity following non-surgical periodontal treatment. J. Clin. Periodontol. 2000, 27, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Akimoto, T. A new method of treatment for dentin hypersensitivity by precipitation of calcium phosphate in situ. Dent. Mater. J. 1990, 9, 167–172, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, K.; Suge, T.; Yoshiyama, M.; Kawasaki, A.; Asaoka, K.; Ebisu, S. Occlusion of dentinal tubules with calcium phosphate using acidic calcium phosphate solution followed by neutralization. J. Dent. Res. 1994, 73, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, A.; Ishikawa, K.; Suge, T.; Shimizu, H.; Suzuki, K.; Matsuo, T.; Ebisu, S. Effects of plaque control on the patency and occlusion of dentine tubules in situ. J. Oral Rehabil. 2001, 28, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Suge, T.; Kawasaki, A.; Ishikawa, K.; Matsuo, T.; Ebisu, S. Effects of plaque control on the patency of dentinal tubules: An in vivo study in beagle dogs. J. Periodontol. 2006, 77, 454–459. [Google Scholar] [CrossRef]
- Wang, M.-C.; Chen, H.-T.; Shih, W.-J.; Chang, H.-F.; Hon, M.-H.; Hung, I.-M. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD). Ceram. Int. 2015, 41, 2999–3008. [Google Scholar] [CrossRef]
- Shetty, S.; Kohad, R.; Yeltiwar, R. Hydroxyapatite as an in-office agent for tooth hypersensitivity: A clinical and scanning electron microscopic study. J. Periodontol. 2010, 81, 1781–1789. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, J.-B.; Lee, C.-W.; Koo, K.-T.; Kim, T.-I.; Seol, Y.-J.; Lee, Y.-M.; Ku, Y.; Chung, C.-P.; Rhyu, I.-C. The clinical effects of a hydroxyapatite containing toothpaste for dentine hypersensitivity. J. Korean Acad. Periodontol. 2009, 39, 87–94. [Google Scholar] [CrossRef]
- Ślósarczyk, A.; Knychalska-Karwan, Z.; Stobierska, E.; Paszkiewicz, Z. Cracow hydroxyapatite ceramics—A product report. Med. Sci. Monit. 1998, 4, PI172–PI175. [Google Scholar]
- Earl, J.; Wood, D.; Milne, S. Hydrothermal synthesis of hydroxyapatite. J. Phys. Conf. Ser. 2006, 26, 268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dima, S.; Huang, H.-T.; Watanabe, I.; Pan, Y.-H.; Lee, Y.-Y.; Chang, W.-J.; Teng, N.-C. Sequential Application of Calcium Phosphate and ε-Polylysine Show Antibacterial and Dentin Tubule Occluding Effects In Vitro. Int. J. Mol. Sci. 2021, 22, 10681. https://doi.org/10.3390/ijms221910681
Dima S, Huang H-T, Watanabe I, Pan Y-H, Lee Y-Y, Chang W-J, Teng N-C. Sequential Application of Calcium Phosphate and ε-Polylysine Show Antibacterial and Dentin Tubule Occluding Effects In Vitro. International Journal of Molecular Sciences. 2021; 22(19):10681. https://doi.org/10.3390/ijms221910681
Chicago/Turabian StyleDima, Shinechimeg, Hsiao-Ting Huang, Ikki Watanabe, Yu-Hua Pan, Yin-Yin Lee, Wei-Jen Chang, and Nai-Chia Teng. 2021. "Sequential Application of Calcium Phosphate and ε-Polylysine Show Antibacterial and Dentin Tubule Occluding Effects In Vitro" International Journal of Molecular Sciences 22, no. 19: 10681. https://doi.org/10.3390/ijms221910681