Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro
Abstract
:1. Introduction
2. Results
2.1. Preparation and Cell-Surface Expression of Wild-Type eLH/CGR and the Mutant Receptors
2.2. cAMP Responsiveness Induced by Agonist in Activating Mutants and Inactivating Mutants
2.3. Cell-Surface Receptor Loss Induced by Treatment with the eCG Agonist
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Site-Directed Mutagenesis and Vector Construction
4.3. Production of Recombinant-eCGβ/α Mutants in CHO Suspension Cell
4.4. Transient Transfection into CHO-K1 Cells and HEK 293 Cells
4.5. cAMP Analysis by Homogeneous Time-Resolved Fluorescence (HTRF) Assays
4.6. Agonist-Induced Cell-Surface Loss of Receptor
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, K.S.; Park, J.J.; Byambaragchaa, M.; Kang, M.H. Characterization of tethered equine chorionic gonadotropin and its deglycosylated mutants by ovulation stimulation in mice. BMC Biotechnol. 2019, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Min, K.S.; Park, J.J.; Lee, S.Y.; Byambragchaa, M.; Kang, M.H. Comparative gene expression profiling of mouse ovaries upon stimulation with natural equine chorionic gonadotropin (N-eCG) and tethered recombinant-eCG (R-eCG). BMC Biotechnol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Min, K.S.; Hiyama, T.; Seong, H.H.; Hattori, N.; Tanaka, S.; Shiota, K. Biological activities of tethered equine chorionic gonadotropin (eCG) and its deglycosylated mutants. Reprod. Dev. 2004, 50, 297–304. [Google Scholar]
- Zhang, M.; Tao, Y.X.; Ryan, G.L.; Feng, X.; Fanelli, F.; Segaloff, D.L. Intrinsic differences in the response of the human lutropin receptor versus the human follitropin receptor to activating mutations. J. Biol. Chem. 2007, 282, 25527–25539. [Google Scholar] [CrossRef] [Green Version]
- Segaloff, D.L.; Ascoli, M. The lutropin/choriogonadotropin receptor... 4 years later. Endoc. Rev. 1993, 14, 324–347. [Google Scholar]
- Meehan, T.P.; Narayan, P. Constitutively active luteinizing hormone receptor: Consequences of in vivo expression. Mol. Cell Endocrinol. 2007, 294–300, 260–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraaij, R.; Post, M.; Kremer, H.; Milgrom, E.; Epping, W.; Brunner, H.G.; Grootegoed, J.A.; Themmen, A.P. A missense mutation in the second transmembrane segment of the luteinizing hormone receptor causes familial male-limited precocious puberty. J. Clin. Endocrinol. Metab. 1995, 80, 3168–3172. [Google Scholar] [PubMed] [Green Version]
- Shenker, A.; Laue, L.; Kosugi, S.; Merendino, J.J., Jr.; Minegishi, T.; Cutler, G.B., Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993, 365, 652–654. [Google Scholar] [CrossRef] [Green Version]
- Byambaragchaa, M.; Kim, D.J.; Kang, M.H.; Min, K.S. Site specificity of eel luteinizing hormone N-linked oligosaccharides in signal transduction. Gen. Comp. Endocrinol. 2018, 268, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Byambaragchaa, M.; Kim, J.S.; Park, H.K.; Kim, D.J.; Hong, S.M.; Kang, M.H.; Min, K.S. Constitutive activation and inactivation of mutations inducing cell surface loss of receptor and impairing of signal transduction of agonist-stimulated eel follicle-stimulating hormone receptor. Int. J. Mol. Sci. 2020, 21, 7075. [Google Scholar] [CrossRef]
- Min, K.S.; Liu, X.; Fabritz, J.; Jaquette, J.; Abell, A.N.; Ascoli, M. Mutations that induce constitutive activations and mutations that impair signal transduction modulate the basal and/or agonist-stimulated internalization of the lutropin/choriogonadotropin receptor. J. Biol. Chem. 1998, 273, 34911–34919. [Google Scholar] [CrossRef] [Green Version]
- Galet, C.; Ascoli, M. A constitutively active mutant of the human lutropin receptor (hLHR-L457R) escapes lysosome targeting and degradation. Mol. Endocrinol. 2006, 20, 2931–2945. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Osuga, Y.; Kobilka, B.K.; Hsueh, A.J. Transmembrane region V and VI of the human luteinizing hormone receptors are required for constitutive activation by a mutation in the third intracellular loop. J. Biol. Chem. 1996, 271, 22470–22478. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Kohn, L.D.; Saji, M.; Kataoka, N.; Okuno, A.; Cutler, G.B., Jr. A case of male-limited precocious puberty caused by a point mutation in the second transmembrane domain of the luteinizing hormone choriogonadotropin receptor gene. Biochem. Biophys. Res. Commun. 1996, 220, 1036–1042. [Google Scholar] [CrossRef]
- Latronico, A.C.; Segaloff, D.L. Insights learned from L457R, an activating mutant of the human lutropin receptor. Mol. Cell Endocrinol. 2007, 260–262, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Laue, L.; Chan, W.Y.; Hsueh, A.J.W.; Kudo, M.; Hsu, S.Y.; Wu, S.M.; Blomberg, L.; Cutler, G.B., Jr. Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male-limited precocious puberty. Proc. Natl. Acad. Sci. USA 1995, 92, 1906–1910. [Google Scholar] [CrossRef] [Green Version]
- Dhanwada, K.R.; Vijapurkar, U.; Ascoli, M. Two mutations of the lutropin/ choriogonadotropin receptor that impair signal transduction also interfere with receptor-mediated endocytosis. Mol. Endocrinol. 1996, 10, 544–554. [Google Scholar]
- Foster, S.R.; Brauner-Osborne, H. Investigating internalization and intracellular trafficking of GPCRs: New techniques and real-time experimental approaches. Handb. Exp. Pharmacol. 2018, 245, 41–61. [Google Scholar] [PubMed]
- Jacobsen, S.E.; Ammendrup-Johnsen, I.; Jansen, A.M.; Gether, U.; Madsen, K.L.; Brauner-Osborne, H. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. J. Biol. Chem. 2017, 292, 6910–6926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mos, I.; Jacobsen, S.E.; Foster, S.R.; Brauner-Osborne, H. Calcium-sensing receptor internalization is β-arrestin-dependent and modulated by allosteric ligands. Mol. Pharmacol. 2019, 96, 463–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norskov-Lauritsen, L.; Jorgensen, S.; Brauner-Osborne, H. N-glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization. FEBS Lett. 2015, 589, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Spiess, K.; Bagger, S.O.; Torz, L.J.; Jensen, K.H.R.; Walser, A.L.; Kvam, J.M.; Mogelmose, A.S.K.; Daugvilaite, V.; Junnila, R.K.; Hjorto, G.M.; et al. Arrestin-independent constitutive endocytosis of GPR125/ADGRA3. Ann. N.Y. Acad. Sci. 2019, 1456, 186–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaskaran, R.S.; Ascoli, M. The post-endocytotic fate of the gonadotropin receptors is an important determinant of the desensitization of gonadotropin responses. J. Mol. Endocrinol. 2005, 34, 447–457. [Google Scholar] [CrossRef]
- Krishnamurthy, H.; Kishi, H.; Shi, M.; Galct, C.; Bhaskaran, R.S.; Hirakawa, T.; Ascoli, M. Post-endocytotic trafficking of the FSH/FSH receptor complex. Mol. Endocrinol. 2003, 17, 2162–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byambaragchaa, M.; Ahn, T.H.; Choi, S.H.; Kang, M.H.; Min, K.S. Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor. Anim. Biosci. In press.
- Kim, J.M.; Munkhuu, O.; Byambragchaa, M.; Lee, B.I.; Kim, S.K.; Kang, M.H.; Kim, D.J.; Min, K.S. Site-specific roles of N-linked oligosaccharides in recombinant eel follicle-stimulating hormone for secretion and signal transduction. Gen. Comp. Endocrinol. 2019, 276, 37–44. [Google Scholar] [CrossRef]
- Wang, Z.; Hipkin, R.W.; Ascoli, M. Progressive cytoplasmic tail truncations of the lutropin-choriogonadotropin receptor prevent agonist- or phorbol ester-induced phosphorylation, impair agonist- or phorbol ester-induced desensitization, and enhance agonist-induced receptor down-regulation. Mol. Endocrinol. 1996, 10, 748–759. [Google Scholar] [PubMed] [Green Version]
- Wang, Z.; Liu, X.; Ascoli, M. Phosphorylation of the lutropin/choriogonadotropin receptor facilities uncoupling of the receptor from adenylyl cyclase and endocytosis of the bound hormone. Mol. Endocrinol. 1997, 11, 183–192. [Google Scholar] [CrossRef]
- Kosugi, S.; Mori, T.; Shenker, A. The role of Asp578 in maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. J. Biol. Chem. 1996, 271, 31813–31817. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, S.; Mori, T.; Shenker, A. An anionic residue at position 564 is important for maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. Mol. Pharamacol. 1998, 53, 894–901. [Google Scholar]
- Bradbury, F.; Kawate, N.; Foster, C.M.; Menon, K.M.J. Post-translational processing in the golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface. J. Biol. Chem. 1997, 272, 5921–5926. [Google Scholar] [CrossRef] [Green Version]
- Shinozaki, H.; Fabekku, F.; Liu, X.; Butterbrodt, J.; Nakamura, K.; Segaloff, D.L. Pleiotropic effects of substitutions of a highly conserved leucine in transmembrane helix III of the human lutropin/choriogonadotropin receptor with respect to constitutive activating and hormone responsiveness. Mol. Endocrinol. 2001, 15, 972–984. [Google Scholar] [CrossRef]
- Zhang, M.; Mizrachi, D.; Fanelli, F.; Segaloff, D.L. The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. J. Biol. Chem. 2005, 280, 26169–26176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.X.; Abel, A.N.; Liu, X.; Nakamura, K.; Segaloff, D.L. Constitutive activation of G protein-coupled receptors as a result of selective substitution of a conserved leucine residue in transmembrane helix III. Mol. Endocrinol. 2000, 14, 1272–1282. [Google Scholar] [CrossRef]
- Latronico, A.C.; Abell, A.N.; Arnhold, I.J.P.; Liu, X.; Lins, T.S.S.; Brito, V.N.; Billerbeck, A.E.; Segaloff, D.L.; Mendonca, B.B. A unique constitutively activating mutation in the third transmembrane helix of the luteinizing hormone receptor causes sporadic male gonadotropin independent precocious puberty. J. Clin. Endocrinol. Metab. 1998, 83, 2435–2440. [Google Scholar] [PubMed] [Green Version]
- Pahkarukova, N.; Masoudi, A.; Pani, B.; Staus, D.; Lefkowitz, R.J. Allosteric activation of proto-oncogene kinase src by GPCR-beta-arrestin complexes. J. Biol. Chem. 2020, 295, 16773–16784. [Google Scholar] [CrossRef] [PubMed]
- Slosky, L.M.; Bai, Y.; Toth, K.; Ray, C.; Rochelle, L.K.; Badea, A.; Chandrasekhar, R.; Pogorelov, V.M.; Abraham, D.M.; Atluri, N.; et al. β-arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 2020, 181, 1364–1379. [Google Scholar] [CrossRef]
- Jean-Alphonse, F.; Bowersox, S.; Chen, S.; Beard, G.; Puthenveedu, M.A.; Hanyaloglu, A.C. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. J. Biol. Chem. 2014, 289, 3960–3977. [Google Scholar] [CrossRef] [Green Version]
- Levoye, A.; Zwier, J.M.; Jaracz-Ros, A.; Klipfel, L.; Cottet, M.; Maurel, D.; Bdioui, S.; Balabanian, K.; Prezeau, L.; Trinquet, E.; et al. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate. Front. Endocrinol. 2015, 6, 167. [Google Scholar] [CrossRef] [Green Version]
- Stansley, B.J.; Conn, P.J. Neuropharmacological insight from allosteric modulation of mGlu receptors. Trends Pharmacol. Sci. 2019, 40, 240–252. [Google Scholar] [CrossRef]
- Lee, S.Y.; Byambaragchaa, M.; Kang, H.J.; Choi, S.H.; Kang, M.H.; Min, K.S. Specific roles of N- and O-linked oligosaccharide sites on biological activity of equine chorionic gonadotropin (eCG) in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor (LH/CGR) and follicle-stimulating hormone receptor (FSHR). BMC Biotechnol. 2021, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Byambaragchaa, M.; Park, A.; Gil, S.J.; Lee, H.W.; Ko, Y.J.; Choi, S.H.; Kang, M.H.; Min, K.S. Luteinizing hormone-like and follicle-stimulating hormone-like activities of equine chorionic gonadotropin β-subunit mutants in cells expressing rat luteinizing hormone/chorionic gonadotropin receptor and rat follicle-stimulating hormone receptor. Anim. Cells Syst. 2021, 25, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Mundell, S.J.; Matharu, A.L.; Nisar, S.; Palmer, T.M.; Benovic, J.L.; Kelly, E. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling. Br. J. Pharmacol. 2010, 159, 518–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
eLH/CG Receptors | cAMP Responses | ||
---|---|---|---|
Basal a (nmol/10 4 Cells) | EC50(ng/mL) | Rmax b (nmol/104 Cells) | |
eLH/CGR-wt | 1.5 ± 0.2 (1.0-fold) | 44.2 (38.1 to 52.7) c | 85.3 ± 2.5 (100%) |
eLH/CGR-M398T | 2.1 ± 0.3 (1.4-fold) | 19.8 (16.9 to 24.0) | 54.5 ± 1.9 (64%) |
eLH/CGR-L457R | 25.4 ± 1.5 (16.9-fold) | 24.4 (18.7 to 34.8) | 40.2 ± 1.1 (47%) |
eLH/CGR-D564G | 24.7 ± 0.6 (16.4-fold) | 58.3 (51.3 to 67.5) | 90.8 ± 3.1 (106%) |
eLH/CGR-D578Y | 16.9 ± 0.8 (11.2-fold) | 47.9 (40.5 to 58.8) | 99.6 ± 4.5 (117%) |
eLH/CG Receptors | cAMP Responses | ||
---|---|---|---|
Basal a (nmol/104 Cells) | EC50 (ng/mL) | Rmax b (nmol/104 Cells) | |
eLH/CGR-wt | 0.5 ± 0.1 | 30.3 (26.3 to 35.8) c | 85.1 ± 3.5 (100%) |
eLH/CGR-D405N | 0.2 ± 0.1 | 134.9 (115.4 to 162.5) | 10.8 ± 0.9 (13%) |
eLH/CGR-R464H | 1.9 ± 0.5 | 913.7 (662.4 to 1473) | 3.4 ± 0.2 (4%) |
eLH/CGR-Y546F | 1.2 ± 0.3 | 95.9 (84.5 to 110.6) | 22.3 ± 1.9 (26%) |
eLH/CGR Cell Lines | t1/2 (min) | Plateau (% of Control) |
---|---|---|
eLH/CGR-WT eLH/CGR-M398T eLH/CGR-L457R eLH/CGR-D564G eLH/CGR-D578Y | 7.6 ± 0.6 (n = 8) 3.4 ± 0.2 (n = 4) 3.2 ± 0.1 (n = 6) 5.1 ± 0.3 (n = 5) 5.3 ± 0.4 (n = 4) | 56.2 ± 3.1 57.7 ± 3.8 61.1 ± 3.2 32.1 ± 1.9 42.7 ± 2.9 |
eLH/CGR Cell Lines | t1/2 (min) | Plateau (% of Control) |
---|---|---|
eLH/CGR-WT eLH/CGR-D405N eLH/CGR-R464H eLH/CGR-Y546F | 5.3 ± 0.3 (n = 6) -a (n = 3) 35.6 ± 2.1 (n = 4) - (n = 3) | 65.6 ± 2.7 - 68.7 ± 4.5 - |
Primer Name | Primer Sequence | |
---|---|---|
1 | eLH/CGR-wt forward | 5′-ATGAATTCATGGGGAGAAGGTCACTAGCACTAC-3′ EcoRI site |
2 | eLH/CGR-wt reverse | 5′-CCTCGAGTTAACACTCTGTATAGCAAGTCTT-3′ XhoI site |
3 | M398T forward | 5′-CTAACAGTGCCCCGTTTTCTCACGTGCAATC-3′ |
4 | M398T reverse | 5′-GATTGTCACGGGGCAAAAGAGTGCACGTTAG-3′ |
5 | L457R forward | 5′-CTGCTACACCCGCACAGTCATCACACTAG-3′ |
6 | L457R reverse | 5′-GACAGATGTGGGCGTGTCAGTAGTGTGATC-3′ |
7 | D564G forward | 5′-CTTAGCAATCTTTGTGCCTTTGTTGGTAGC-3′ |
8 | D564G reverse | 5′-GCTACCAACAAAGGCACAAAGATTGCTAAG-3′ |
9 10 11 | D578Y forward D578Y reverse D405N forward | 5′-CCTCATCTTCACCTATTTCACCTGCATGGCACC-3′ 5′-CCATGCAGGTGAAATAGGTGAAGATGAGGACTGC-3′ 5′-CTCTCTTTTGCAAACTTTTGCATGGGGCTCTATC-3′ |
12 | D405N reverse | 5′-GCCCCATGCAAAAGTTTGCAAAAGAGAGATTGCA-3′ |
13 | R464H forward | 5′-CACACTAGAACACTGGCACACCATCACCTATG-3′ |
14 | R464H reverse | 5′-GATGGTGTGCCAGTGTTCTAGTGTGATGACTGTG-3′ |
15 | Y546F forward | 5′-GTGCTTGCTTCATTAAAATTTATTTTGCAG-3′ |
16 | Y546F reverse | 5′-TTAATGAAGCAAGCACAAATGATGAAGAAGGC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byambaragchaa, M.; Seong, H.-K.; Choi, S.-H.; Kim, D.-J.; Kang, M.-H.; Min, K.-S. Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro. Int. J. Mol. Sci. 2021, 22, 10723. https://doi.org/10.3390/ijms221910723
Byambaragchaa M, Seong H-K, Choi S-H, Kim D-J, Kang M-H, Min K-S. Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro. International Journal of Molecular Sciences. 2021; 22(19):10723. https://doi.org/10.3390/ijms221910723
Chicago/Turabian StyleByambaragchaa, Munkhzaya, Hoon-Ki Seong, Seung-Hee Choi, Dae-Jung Kim, Myung-Hwa Kang, and Kwan-Sik Min. 2021. "Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro" International Journal of Molecular Sciences 22, no. 19: 10723. https://doi.org/10.3390/ijms221910723
APA StyleByambaragchaa, M., Seong, H. -K., Choi, S. -H., Kim, D. -J., Kang, M. -H., & Min, K. -S. (2021). Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro. International Journal of Molecular Sciences, 22(19), 10723. https://doi.org/10.3390/ijms221910723