Osteosarcoma Pathogenesis Leads the Way to New Target Treatments
Abstract
:1. Introduction
2. Osteosarcoma (OS) Pathogenesis
3. Potential Molecular Targets
3.1. Insulin-Like Growth Factor (IGF)-1 Receptor Antagonists
- Figitumumab (CP-751.871) is a monoclonal antibody in investigation for OS treatment, with a phase I clinical trial currently recruiting patients with advanced solid tumors (including bone sarcomas) to assess safety and tolerability of the antibody in combination with other drugs [30]. The R1507 phase II study, which includes an OS group, is currently underway.
- Phase I of a multicenter study with cixutumumab (BMI A12) in the treatment of young patients with relapsing or refractory OS and other solid tumors has been completed, with definition of the maximum tolerated cixutumumab dose [30].
- Robatumumab (SCH717454) showed extensive in vivo activity against solid tumors in the Pediatric Preclinical Testing Program, with complete response in two OS xenografts. Phase II studies of this antibody in the treatment of patients with recurrent Ewing’s sarcoma and OS concluded that, although IGF-1R remains an attractive treatment target, additional research is needed to identify responders and/or means to achieve durable remissions in order to successfully exploit IGF-1R signal blockade as a therapeutic target [33].
3.2. HER2/neu Receptor Blockers
3.3. PDFG (Platelet-Derived Growth Factor) Inhibitors
3.4. Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL) and Bisphosphonate Inhibitors
3.5. Tyrosine Kinase Src Antagonists
3.6. Vascular Endothelial Growth Factor (VEGF) Inhibitors
3.7. Mammalian Target of Rapamycin (MTOR) Inhibitors
3.8. Micro RNA (MiRNA) Therapeutic Targets
3.9. Signaling Pathways and Epigenetic Regulators
3.9.1. Hedgehog Pathway
3.9.2. Wnt/β-catenin
3.9.3. Notch Signaling Pathway
4. Immunotherapy
4.1. Nonspecific Immunotherapy
4.1.1. Cytokines
4.1.2. Immunomodulating Agents
4.1.3. Immune Checkpoint Inhibitors
4.2. Tumor Specific Immunotherapy
4.2.1. Dendritic Cell Peptide Vaccines
4.2.2. CAR-T Cells
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Antigen-presenting cells |
CAR-T | Chimeric antigen receptor T |
ChT | Chemotherapy |
COG | Children’s Oncology Group |
DC | Dendritic cells |
GM-CSF | Granulocyte-macrophage colony stimulating factor |
HER2 | Human Epidermal growth factor Receptor 2 |
Hh | Hedgehog |
ICI | Immune checkpoint inhibitors |
IGF | Insulin-like growth factor |
IGF-1R | IGF-1 receptor |
IL | Interleukin |
INF | Interferon |
miRNA | microRNA |
mTOR | Mammalian target of rapamycin |
NK | Natural killer |
OS | Osteosarcoma |
PD-L1 | Programmed cell death ligand 1 |
PD-1 | Programmed cell death protein 1 |
PDGF | Platelet-derived growth factor |
PDGFR | Platelet-derived growth factor receptor |
PD-L1 | Programmed cell death ligand 1 |
Ptch | Patched |
PTHrP | Parathyroid hormone- related peptide |
RANKL | Receptor activator of nuclear factor kappa-Β ligand |
Smo | Smoothened |
TGF | Transforming growth factor |
Th | T-helper |
TNF | Tumor necrosis factor |
Treg | Regulatory T cells |
uPA | Urokinase plasminogen activator |
VEGF | Vascular endothelial growth factor |
References
- Broadhead, M.L.; Clark, J.C.M.; Myers, D.E.; Dass, C.R.; Choong, P.F.M. The Molecular Pathogenesis of Osteosarcoma: A Review. Sarcoma 2011, 2011, 959248. [Google Scholar] [CrossRef] [PubMed]
- Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3029–3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma Overview. Rheumatol 2017, 4, 25–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadykova, L.R.; Ntekim, A.I.; Muyangwa-Semenova, M.; Rutland, C.S.; Jeyapalan, J.N.; Blatt, N.; Rizvanov, A.A. Epidemiology and Risk Factors of Osteosarcoma. Cancer Investig. 2020, 38, 259–269. [Google Scholar] [CrossRef]
- Petrilli, A.S.; de Camargo, B.; Filho, V.O.; Bruniera, P.; Brunetto, A.L.; Jesus-Garcia, R.; Camargo, O.P.; Pena, W.; Péricles, P.; Davi, A.; et al. Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: Prognostic factors and impact on survival. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 1161–1168. [Google Scholar] [CrossRef]
- Tunn, P.U.; Reichardt, P. Chemotherapy for osteosarcoma without high-dose methotrexate: A 12-year follow-up on 53 patients. Onkologie 2007, 30, 228–232. [Google Scholar] [CrossRef]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef]
- Meyers, P.A.; Gorlick, R.; Heller, G.; Casper, E.; Lane, J.; Huvos, A.G.; Healey, J.H. Intensification of preoperative chemotherapy for osteogenic sarcoma: Results of the Memorial Sloan-Kettering (T12) protocol. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1998, 16, 2452–2458. [Google Scholar] [CrossRef]
- Whelan, J.S.; Bielack, S.S.; Marina, N.; Smeland, S.; Jovic, G.; Hook, J.M.; Krailo, M.; Anninga, J.; Butterfass-Bahloul, T.; Böhling, T.; et al. EURAMOS-1, an international randomised study for osteosarcoma: Results from pre-randomisation treatment. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2015, 26, 407–414. [Google Scholar] [CrossRef]
- Yang, Y.; Han, L.; He, Z.; Li, X.; Yang, S.; Yang, J.; Zhang, Y.; Li, D.; Yang, Y.; Yang, Z. Advances in limb salvage treatment of osteosarcoma. J. Bone Oncol. 2017, 10, 36–40. [Google Scholar] [CrossRef]
- Chou, A.J.; Gorlick, R. Chemotherapy resistance in osteosarcoma: Current challenges and future directions. Expert Rev. Anticancer 2006, 6, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Abarrategi, A.; Tornin, J.; Martinez-Cruzado, L.; Hamilton, A.; Martinez-Campos, E.; Rodrigo, J.P.; González, M.V.; Baldini, N.; Garcia-Castro, J.; Rodriguez, R. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells Int. 2016, 2016, 3631764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta, H.T.; Dass, C.R.; Choong, P.F.; Dunstan, D.E. Osteosarcoma treatment: State of the art. Cancer Metastasis. Rev. 2009, 28, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.; Gebhardt, M.; Teot, L.; Gorlick, R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 2004, 9, 422–441. [Google Scholar] [CrossRef] [PubMed]
- Gamberi, G.; Benassi, M.S.; Bohling, T.; Ragazzini, P.; Molendini, L.; Sollazzo, M.R.; Pompetti, F.; Merli, M.; Magagnoli, G.; Balladelli, A.; et al. C-myc and c-fos in human osteosarcoma: Prognostic value of mRNA and protein expression. Oncology 1998, 55, 556–563. [Google Scholar] [CrossRef]
- Shimizu, T.; Ishikawa, T.; Sugihara, E.; Kuninaka, S.; Miyamoto, T.; Mabuchi, Y.; Matsuzaki, Y.; Tsunoda, T.; Miya, F.; Morioka, H.; et al. c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 2010, 29, 5687–5699. [Google Scholar] [CrossRef] [Green Version]
- Franchi, A.; Arganini, L.; Baroni, G.; Calzolari, A.; Capanna, R.; Campanacci, D.; Caldora, P.; Masi, L.; Brandi, M.L.; Zampi, G. Expression of transforming growth factor β isoforms in osteosarcoma variants: Association of tgfβ1 with high-grade osteosarcomas. J. Pathol. 1998, 185, 284–289. [Google Scholar] [CrossRef]
- Rikhof, B.; de Jong, S.; Suurmeijer, A.J.H.; Meijer, C.; van der Graaf, W.T.A. The insulin-like growth factor system and sarcomas. J. Pathol. 2009, 217, 469–482. [Google Scholar] [CrossRef]
- Gagiannis, S.; Müller, M.; Uhlemann, S.; Koch, A.; Melino, G.; Krammer, P.H.; Nawroth, P.P.; Brune, M.; Schilling, T. Parathyroid hormone-related protein confers chemoresistance by blocking apoptosis signaling via death receptors and mitochondria. Int. J. Cancer 2009, 125, 1551–1557. [Google Scholar] [CrossRef]
- Jan, Y.; Matter, M.; Pai, J.-T.; Chen, Y.-L.; Pilch, J.; Komatsu, M.; Ong, E.; Fukuda, M.; Ruoslahti, E. A Mitochondrial Protein, Bit1, Mediates Apoptosis Regulated by Integrins and Groucho/TLE Corepressors. Cell 2004, 116, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Janes, S.M.; Watt, F.M. Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol 2004, 166, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibuya, M.; Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 2006, 312, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Mugishima, H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J. Atheroscler. Thromb. 2006, 13, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancopoulos, G.D.; Davis, S.; Gale, N.W.; Rudge, J.S.; Wiegand, S.J.; Holash, J. Vascular-specific growth factors and blood vessel formation. Nature 2000, 407, 242–248. [Google Scholar] [CrossRef]
- Lobov, I.B.; Renard, R.A.; Papadopoulos, N.; Gale, N.W.; Thurston, G.; Yancopoulos, G.D.; Wiegand, S.J. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. USA 2007, 104, 3219–3224. [Google Scholar] [CrossRef] [Green Version]
- Masson, V.; De La Ballina, L.R.; Munaut, C.; Wielockx, B.; Jost, M.; Maillard, C.; Blacher, S.; Bajou, K.; Itoh, T.; Itohara, S.; et al. Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J. 2005, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hofbauer, L.C.; Heufelder, A.E. Osteoprotegerin and its cognate ligand: A new paradigm of osteoclastogenesis. Eur. J. Endocrinol. 1998, 139, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Lamoureux, F.; Richard, P.; Wittrant, Y.; Battaglia, S.; Pilet, P.; Trichet, V.; Blanchard, F.; Gouin, F.; Pitard, B.; Heymann, D.; et al. Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: Blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res. 2007, 67, 7308–7318. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Beird, H.C.; Andrew Livingston, J.; Advani, S.; Mitra, A.; Cao, S.; Reuben, A.; Ingram, D.; Wang, W.-L.; Ju, Z.; et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 2020, 11, 1008. [Google Scholar] [CrossRef] [Green Version]
- Hattinger, C.M.; Pasello, M.; Ferrari, S.; Picci, P.; Serra, M. Emerging drugs for high-grade osteosarcoma. Expert Opin. Emerg. Drugs 2010, 15, 615–634. [Google Scholar] [CrossRef]
- Scotlandi, K.; Picci, P.; Kovar, H. Targeted therapies in bone sarcomas. Curr. Cancer Drug Targets 2009, 9, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, V.M.; Middleton, M.R.; Eckhardt, S.G.; Rudin, C.M.; Juergens, R.A.; Gedrich, R.; Gogov, S.; McCarthy, S.; Poondru, S.; Stephens, A.W.; et al. Phase I Dose-Escalation Study of Linsitinib (OSI-906) and Erlotinib in Patients with Advanced Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 2897–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, P.M.; Bielack, S.S.; Gorlick, R.G.; Skubitz, K.; Daw, N.C.; Herzog, C.E.; Monge, O.R.; Lassaletta, A.; Boldrini, E.; Pápai, Z.; et al. A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatric Blood Cancer 2016, 63, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Ebb, D.; Meyers, P.; Grier, H.; Bernstein, M.; Gorlick, R.; Lipshultz, S.E.; Krailo, M.; Devidas, M.; Barkauskas, D.A.; Siegal, G.P.; et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: A report from the children’s oncology group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 2545–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Piperdi, S.; Rosenblum, J.; Antonescu, C.R.; Chen, W.; Kim, H.S.; Huvos, A.G.; Sowers, R.; Meyers, P.A.; Healey, J.H.; et al. Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer 2008, 112, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A.; Healey, J.H.; Chou, A.J.; Wexler, L.H.; Merola, P.R.; Morris, C.D.; Laquaglia, M.P.; Kellick, M.G.; Abramson, S.J.; Gorlick, R. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer 2011, 117, 1736–1744. [Google Scholar] [CrossRef] [Green Version]
- Baird, K.; Glod, J.; Steinberg, S.M.; Reinke, D.; Pressey, J.G.; Mascarenhas, L.; Federman, N.; Marina, N.; Chawla, S.; Lagmay, J.P.; et al. Results of a Randomized, Double-Blinded, Placebo-Controlled, Phase 2.5 Study of Saracatinib (AZD0530), in Patients with Recurrent Osteosarcoma Localized to the Lung. Sarcoma 2020, 2020, 7935475. [Google Scholar] [CrossRef]
- Hughes, D.P.M. Novel agents in development for pediatric sarcomas. Curr. Opin. Oncol. 2009, 21, 332–337. [Google Scholar] [CrossRef]
- Ding, L.; Congwei, L.; Bei, Q.; Tao, Y.; Ruiguo, W.; Heze, Y.; Bo, D.; Zhihong, L. mTOR: An attractive therapeutic target for osteosarcoma? Oncota160rget 2016, 7, 50805. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.Y.; Zhang, W.B.; Wang, J.; Shen, Y.H.; Wei, Y.Y. Inhibitory effect and significance of rapamycin on the mammalian target of rapamycin signaling pathway in osteosarcoma stem cells and osteosarcoma cells. Chin. J. Oncol. 2013, 35, 175–180. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, Z.; Li, J.; Li, Q.; Hu, S.; Li, J.; Sun, M.; Cai, Z. Oleanolic acid derivative Dex-OA has potent anti-tumor and anti-metastatic activity on osteosarcoma cells in vitro and in vivo. Investig. New Drugs 2011, 29, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.P.; Staddon, A.P.; Baker, L.H.; Schuetze, S.M.; Tolcher, A.W.; D’Amato, G.Z.; Blay, J.Y.; Mita, M.M.; Sankhala, K.K.; Berk, L.; et al. Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Gobin, B.; Battaglia, S.; Lanel, R.; Chesneau, J.; Amiaud, J.; Rédini, F.; Ory, B.; Heymann, D. NVP-BEZ235, a dual PI3K/mTOR inhibitor, inhibits osteosarcoma cell proliferation and tumor development in vivo with an improved survival rate. Cancer Lett. 2014, 344, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.R.; Min, H.; Fang, J.F.; Zhou, F.; Deng, X.W.; Zhang, Y.Q. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma. Cancer Biol. Ther. 2015, 16, 602–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grignani, G.; Palmerini, E.; Ferraresi, V.; D’Ambrosio, L.; Bertulli, R.; Asaftei, S.D.; Tamburini, A.; Pignochino, Y.; Sangiolo, D.; Marchesi, E.; et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: A non-randomised phase 2 clinical trial. Lancet. Oncol. 2015, 16, 98–107. [Google Scholar] [CrossRef]
- Thompson, P.A.; Chintagumpala, M. Targeted therapy in bone and soft tissue sarcoma in children and adolescents. Curr. Oncol. Rep. 2012, 14, 197–205. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef]
- Lei, Y.; Junxin, C.; Yongcan, H.; Xiaoguang, L.; Binsheng, Y. Role of microRNAs in the crosstalk between osteosarcoma cells and the tumour microenvironment. J. Bone Oncol. 2020, 25, 100322. [Google Scholar] [CrossRef]
- Lu, J.; Song, G.; Tang, Q.; Yin, J.; Zou, C.; Zhao, Z.; Xie, X.; Xu, H.; Huang, G.; Wang, J.; et al. MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene 2017, 36, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, K.; Chao, Y.; Wang, X. MicroRNA-1296-5p suppresses the proliferation, migration, and invasion of human osteosarcoma cells by targeting NOTCH2. J. Cell. Biochem. 2020, 121, 2038–2046. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Zhang, L.; Si, M.; Yin, H.; Li, J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis 2013, 34, 1601–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, Y.; Yang, H.; Zhao, L.; Song, R.; Tan, H.; Wang, L. MicroRNA-873 targets HOXA9 to inhibit the aggressive phenotype of osteosarcoma by deactivating the Wnt/β-catenin pathway. Int. J. Oncol. 2019, 54, 1809–1820. [Google Scholar] [CrossRef]
- Ren, J.; Yang, M.; Xu, F.; Chen, J. microRNA-758 inhibits the malignant phenotype of osteosarcoma cells by directly targeting HMGA1 and deactivating the Wnt/β-catenin pathway. Am. J. Cancer Res. 2019, 9, 36–52. [Google Scholar]
- Xia, P.; Gu, R.; Zhang, W.; Shao, L.; Li, F.; Wu, C.; Sun, Y. MicroRNA-377 exerts a potent suppressive role in osteosarcoma through the involvement of the histone acetyltransferase 1-mediated Wnt axis. J. Cell. Physiol. 2019, 234, 22787–22798. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, C.; Wang, N.; Chen, J. miR-425-5p decreases LncRNA MALAT1 and TUG1 expressions and suppresses tumorigenesis in osteosarcoma via Wnt/β-catenin signaling pathway. Int. J. Biochem. Cell Biol. 2019, 111, 42–51. [Google Scholar] [CrossRef]
- Lin, Z.-W.; Zhang, W.; Jiang, S.-D.; Wei, W.-B.; Li, X.-F. Inhibition of microRNA-940 suppresses the migration and invasion of human osteosarcoma cells through the secreted frizzled-related protein 1–mediated Wnt/β-catenin signaling pathway. J. Cell. Biochem. 2019, 120, 2657–2670. [Google Scholar] [CrossRef]
- Duan, Z.; Choy, E.; Harmon, D.; Liu, X.; Susa, M.; Mankin, H.; Hornicek, F. MicroRNA-199a-3p Is Downregulated in Human Osteosarcoma and Regulates Cell Proliferation and Migration. Mol. Cancer Ther. 2011, 10, 1337. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Wang, E.; Tian, F. MicroRNA-140 suppresses osteosarcoma tumor growth by enhancing anti-tumor immune response and blocking mTOR signaling. Biochem. Biophys. Res. Commun. 2018, 495, 1342–1348. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, F.; Zhou, Q.; Pan, W.; Wang, X.; Xu, J.; Ni, L.; Yang, H. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco-Targets Ther. 2016, 9, 1589–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-N.; Luo, S.; Liu, C.; Piao, Z.; Gou, W.; Wang, Y.; Guan, W.; Li, Q.; Zou, H.; Yang, Z.-Z.; et al. miR-491 Inhibits Osteosarcoma Lung Metastasis and Chemoresistance by Targeting αB-crystallin. Mol. Ther. 2017, 25, 2140–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Q.; Xu, X.; Song, Q.; Xu, Y.; Tai, Y.; Goodman, S.B.; Bi, W.; Xu, M.; Jiao, S.; Maloney, W.J.; et al. miR-223-3p Inhibits Human Osteosarcoma Metastasis and Progression by Directly Targeting CDH6. Mol. Ther. 2018, 26, 1299–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Q.; Xiao, X.; Liang, Y.; Peng, L.; Guo, Z.; Li, W.; Yu, W. miR-19a-mediated downregulation of RhoB inhibits the dephosphorylation of AKT1 and induces osteosarcoma cell metastasis. Cancer Lett. 2018, 428, 147–159. [Google Scholar] [CrossRef]
- Cai, H.; Zhao, H.; Tang, J.; Wu, H. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J. Surg. Res. 2015, 194, 505–510. [Google Scholar] [CrossRef]
- Fei, D.; Li, Y.; Zhao, D.; Zhao, K.; Dai, L.; Gao, Z. Serum miR-9 as a prognostic biomarker in patients with osteosarcoma. J. Int. Med. Res. 2014, 42, 932–937. [Google Scholar] [CrossRef]
- Andersen, G.B.; Knudsen, A.; Hager, H.; Hansen, L.L.; Tost, J. miRNA profiling identifies deregulated miRNAs associated with osteosarcoma development and time to metastasis in two large cohorts. Mol. Oncol. 2018, 12, 114–131. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, Z.; Xu, J.; Chen, C.; Ge, Q.; Li, P.; Wei, D.; Wu, Z.; Sun, X. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway. FEBS J. 2018, 285, 1359–1371. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-Y.; Deng, S.-Y.; He, Y.-B.; Ni, G.-X. miR-451 inhibits cell growth, migration and angiogenesis in human osteosarcoma via down-regulating IL 6R. Biochem. Biophys. Res. Commun. 2017, 482, 987–993. [Google Scholar] [CrossRef]
- Lamora, A.; Talbot, J.; Mullard, M.; Brounais-Le Royer, B.; Redini, F.; Verrecchia, F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J. Clin. Med. 2016, 5, 96. [Google Scholar] [CrossRef]
- Song, B.; Wang, Y.; Titmus, M.A.; Botchkina, G.; Formentini, A.; Kornmann, M.; Ju, J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol. Cancer 2010, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev. 2008, 22, 2454–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwabo Kamdje, A.H.; Takam Kamga, P.; Tagne Simo, R.; Vecchio, L.; Seke Etet, P.F.; Muller, J.M.; Bassi, G.; Lukong, E.; Kumar Goel, R.; Mbo Amvene, J.; et al. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol. Med. 2017, 14, 109–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Z.; Han, L.; Chen, Y.; He, F.; Sun, B.; Kamar, S.; Zhang, Y.; Yang, Y.; Wang, C.; Yang, Z. Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Carballo, G.B.; Honorato, J.R.; de Lopes, G.P.F.; Spohr, T.C.L.d.S.e. A highlight on Sonic hedgehog pathway. Cell Commun. Signal. 2018, 16, 11. [Google Scholar] [CrossRef]
- Lo, W.W.; Pinnaduwage, D.; Gokgoz, N.; Wunder, J.S.; Andrulis, I.L. Aberrant Hedgehog Signaling and Clinical Outcome in Osteosarcoma. Sarcoma 2014, 2014, 261804. [Google Scholar] [CrossRef] [Green Version]
- Nagao-Kitamoto, H.; Setoguchi, T.; Kitamoto, S.; Nakamura, S.; Tsuru, A.; Nagata, M.; Nagano, S.; Ishidou, Y.; Yokouchi, M.; Kitajima, S.; et al. Ribosomal protein S3 regulates GLI2-mediated osteosarcoma invasion. Cancer Lett. 2015, 356, 855–861. [Google Scholar] [CrossRef]
- Chan, L.H.; Wang, W.; Yeung, W.; Deng, Y.; Yuan, P.; Mak, K.K. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 2014, 33, 4857–4866. [Google Scholar] [CrossRef] [Green Version]
- Lo, W.W.; Wunder, J.S.; Dickson, B.C.; Campbell, V.; McGovern, K.; Alman, B.A.; Andrulis, I.L. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer 2014, 120, 537–547. [Google Scholar] [CrossRef]
- Zhao, Z.; Jia, Q.; Wu, M.S.; Xie, X.; Wang, Y.; Song, G.; Zou, C.Y.; Tang, Q.; Lu, J.; Huang, G.; et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Duchartre, Y.; Kim, Y.-M.; Kahn, M. The Wnt signaling pathway in cancer. Crit. Rev. Oncol. Hematol. 2016, 99, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Zhao, M.; Tian, A.; Zhang, X.; Yao, Z.; Ma, X. Aberrant activation of Wnt/β-catenin signaling drives proliferation of bone sarcoma cells. Oncotarget 2015, 6, 17570–17583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaya, K.; Ogawa, H.; Kuroda, M.; Izumi, M.; Ishida, T.; Mukai, K. Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis. Clin. Exp. Metastasis 2003, 20, 525–529. [Google Scholar] [CrossRef]
- Sun, L.; Wang, L.; Luan, S.; Jiang, Y.; Wang, Q. miR-429 inhibits osteosarcoma progression by targeting HOXA9 through suppressing Wnt/β-catenin signaling pathway. Oncol. Lett. 2020, 20, 2447–2455. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Huang, H.; Yuan, X.; Zhang, P.; Ye, C.; Wei, M.; Huang, Y.; Luo, X.; Luo, J. Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/β-catenin and MAPKs signaling pathways. Genes Dis. 2020. [Google Scholar] [CrossRef]
- Mao, X.; Jin, Y.; Feng, T.; Wang, H.; Liu, D.; Zhou, Z.; Yan, Q.; Yang, H.; Yang, J.; Yang, J.; et al. Ginsenoside Rg3 Inhibits the Growth of Osteosarcoma and Attenuates Metastasis through the Wnt/β-Catenin and EMT Signaling Pathway. Evid. Based Complement. Altern. Med. 2020, 2020, 6065124. [Google Scholar] [CrossRef]
- McManus, M.M.; Weiss, K.R.; Hughes, D.P. Understanding the role of Notch in osteosarcoma. Adv. Exp. Med. Biol. 2014, 804, 67–92. [Google Scholar] [CrossRef]
- Wang, L.; Jin, F.; Qin, A.; Hao, Y.; Dong, Y.; Ge, S.; Dai, K. Targeting Notch1 signaling pathway positively affects the sensitivity of osteosarcoma to cisplatin by regulating the expression and/or activity of Caspase family. Mol. Cancer 2014, 13, 139. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Deng, S.; Guo, W.; Yu, L.; Yang, J.; Zhou, S.; Gao, T. Notch pathway inhibition using DAPT, a γ-secretase inhibitor (GSI), enhances the antitumor effect of cisplatin in resistant osteosarcoma. Mol. Carcinog. 2019, 58, 3–18. [Google Scholar] [CrossRef]
- Tanaka, M.; Setoguchi, T.; Hirotsu, M.; Gao, H.; Sasaki, H.; Matsunoshita, Y.; Komiya, S. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br. J. Cancer 2009, 100, 1957–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational biology of osteosarcoma. Nat. Rev. Cancer 2014, 14, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Corre, I.; Verrecchia, F.; Crenn, V.; Redini, F.; Trichet, V. The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem. Cells 2020, 9, 976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cersosimo, F.; Lonardi, S.; Bernardini, G.; Telfer, B.; Mandelli, G.E.; Santucci, A.; Vermi, W.; Giurisato, E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int. J. Mol. Sci. 2020, 21, 5207. [Google Scholar] [CrossRef] [PubMed]
- Siegel, H.J.; Pressey, J.G. Current concepts on the surgical and medical management of osteosarcoma. Expert Rev. Anticancer 2008, 8, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.M.; Smeland, S.; Bielack, S.S.; Bernstein, M.; Jovic, G.; Krailo, M.D.; Hook, J.M.; Arndt, C.; van den Berg, H.; Brennan, B.; et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international, randomised controlled trial. Lancet Oncol. 2016, 17, 1396–1408. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Li, B.; Wang, S.; Chen, T.; Ye, Z. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. J. Cell. Biochem. 2019, 10. [Google Scholar] [CrossRef]
- Wedekind, M.F.; Wagner, L.M.; Cripe, T.P. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr. Blood Cancer 2018, 65, e27227. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Zhang, X.; Liu, T.; Zhang, X. Strategies and developments of immunotherapies in osteosarcoma. Oncol. Lett. 2016, 11, 511–520. [Google Scholar] [CrossRef] [Green Version]
Molecular Target | Research Drug | Clinical Trial | Results and Conclusions |
---|---|---|---|
IGF-1 receptor antagonists | Figitumumab (CP-751.871) | Phase I/II trial NCT00560235 | Figitumumab had modest activity as single-agent in advanced Ewing sarcoma |
Cixutumumab (BMI A12) | Phase II trials NCT00831844 | Cixutumumab was well tolerated in children with refractory solid tumors, with limited objective single-agent activity and prolonged stable disease in 15% of patients | |
NCT01016015; NCT01614795 | The combination of cixutumumab and temsirolimus showed clinical activity in patients with sarcoma, but no objective responses in a phase II trial of pediatric and young adults with recurrent or refractory sarcoma | ||
Robatumumab (SCH717454) | Phase II trial—NCT00617890 | Additional research is needed to identify responders, with low disease burden as an important factor for osteosarcoma response | |
HER2/neu receptor blockers | Trastuzumab | Cooperative Children’s Oncology Group (COG) phase II study | Trastuzumab can be safely delivered in combination with anthracycline-based ChT and dexrazoxane, but its therapeutic benefit remains uncertain |
PDFG inhibitors | Imatinib | Cooperative Children’s Oncology Group (COG) phase II study | Imatinib failed to demonstrate activity against OS as single agent at conventional doses |
RANKL and bisphosphonate inhibitors | Pamidronate | Phase II trial | Pamidronate can be safely incorporated into ChT regimens for the treatment of OS without impairing its effectiveness and can also improve the durability of limb reconstruction. Survival results remain to be determined |
Tyrosine kinase Src antagonists | Dasatinib | Phase I trial—NCT00316953 | Drug disposition and tolerability of dasatinib in children were similar to those observed in adult patients |
Saracatinib | Phase II trial—NCT00559507 | Saracatinib was well tolerated, with a suggestion of potential clinical benefit, but no apparent impact in survival | |
VEGF inhibitors | Bevacizumab | Phase II trial—NCT0066734; NCT00667342 | The estimated 4-year event-free survival (EFS) rate and overall survival rate were 57.5 6 10.0% and 83.4 6 7.8%, respectively. Eight (28%) of 29 evaluable patients had good histologic response (<5% viable tumor) to preoperative chemo- therapy. The addition of bevacizumab to MAP for localized osteosarcoma is feasible but frequent wound complications are encountered. The observed histologic response and EFS do not support further evaluation of bevacizumab in osteosarcoma |
Endostar | Phase II trial—NCT01002092 | The study’s primary endpoint is safety and efficacy of Endostar combined with ChT in non-metastatic OS patients—trial without published results | |
mTOR inhibitors | Sirolimus | Phase II trial—NCT02429973 | Gemcitabine plus sirolimus exhibited satisfactory antitumor activity and safety in this OS population, exceeding the prespecified 40% of 4-month PFS |
Ridaforolimus | Phase II NCT00112372 NCT00093080 | OS patient had a PR | |
Tensirolimus | Discussed in the IGF-1 receptor antagonist section | ||
Cytocines | Mifamurtide in combination with postoperative ChT | Phase II Trial (SARCOMA13) NCT03643133 | Improvement in 6-year overall survival and an additional average of 2.58 years of life and 2.20 quality-adjusted life years vs. ChT alone. |
Immunomodulating agents | INFα-2b in combination with postoperative doxorubicin, cisplatin and methotrexate | Phase III Trial (EURAMOS-1) NCT00134030 | Improvement in event-free and overall survival in resectable OS, with good histological response after preoperatively ChT |
Immune checkpoint inhibitors | Pembrolizumab | Phase II Trials Pembrolizumab (NCT02301039 and NCT03013127) Avelumab (NCT03006848) Nivolumab (NCT02304458 | Disappointing results (5% of patients with PR to pembrolizumab); only avelumab trial currently recruiting; other trials suspended due to immune side effects |
Avelumab | |||
Nivolumab | |||
Dendritic cell peptide vaccines | DC vaccines + decitabine or gemcitabine pretreatment | Phase I/II studies DC vaccine + decitabine (NCT01241162) DC vaccine + gemcitabine (NCT01803152) | Primary and metastatic tumor growth inhibition and remodeling of tumor microenvironment with reduced Treg and immunosuppressive cytokines and increased CD8+ T lymphocytes, with small outcome benefits in clinical trials |
CAR-T cells | HER-2 CARt Cells IGFR1 CARt Cells ROR1 CARt Cells | Phase I/II Trials | HER-2 CAR-T cells: Tumor regression in animal models with no toxicity, disease stability and, given the 6-week stability of these cells, long-lasting effect in a phase I/II trial in HER-2 positive sarcoma. IGFR1/ROR1 CAR-T cells: Suppressed tumor growth in both localized and disseminated sarcoma xenograft models |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, I.; Melo-Alvim, C.; Lopes-Brás, R.; Esperança-Martins, M.; Costa, L. Osteosarcoma Pathogenesis Leads the Way to New Target Treatments. Int. J. Mol. Sci. 2021, 22, 813. https://doi.org/10.3390/ijms22020813
Fernandes I, Melo-Alvim C, Lopes-Brás R, Esperança-Martins M, Costa L. Osteosarcoma Pathogenesis Leads the Way to New Target Treatments. International Journal of Molecular Sciences. 2021; 22(2):813. https://doi.org/10.3390/ijms22020813
Chicago/Turabian StyleFernandes, Isabel, Cecília Melo-Alvim, Raquel Lopes-Brás, Miguel Esperança-Martins, and Luís Costa. 2021. "Osteosarcoma Pathogenesis Leads the Way to New Target Treatments" International Journal of Molecular Sciences 22, no. 2: 813. https://doi.org/10.3390/ijms22020813
APA StyleFernandes, I., Melo-Alvim, C., Lopes-Brás, R., Esperança-Martins, M., & Costa, L. (2021). Osteosarcoma Pathogenesis Leads the Way to New Target Treatments. International Journal of Molecular Sciences, 22(2), 813. https://doi.org/10.3390/ijms22020813