Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective
Abstract
:1. Introduction
1.1. Bioluminescence
1.2. Perception and Responses to Light in the Unicellular World
1.2.1. The Great Diversity of Bacterial and Eukaryotic Photoreceptors
1.2.2. Light and Unicellular Behaviours
1.3. Communication, Collective Behaviours and “Cognition” in the Unicellular World
1.3.1. Bacterial Communication and “Cognition”
1.3.2. Complex Behaviours in Unicellular Eukaryotes
2. Hypothesis: Bioluminescence Signalling in the Unicellular World
2.1. Light Signalling in Bioluminescent Bacteria
2.2. Do Dinoflagellates Converse by Light Signals?
2.2.1. Photoreception and Light-Induced Behaviours in Dinoflagellates
Title | Light Response | Species | References |
---|---|---|---|
Diurnal rhythms | |||
Bioluminescence is under circadian control | Gonyaulax polyedra | Sweeney and Hasting, 1957 [349] Hasting and Sweeney, 1958 [350] | |
Roenneberg and Hasting, 1988 [351] | |||
Roenneberg and Deng, 1997 [352] | |||
Roenneberg and Taylor, 1994 [353] | |||
Morse et al., 1989 [354] | |||
Krasnov et al. 1980 [339] | |||
Pyrodinium bahamense Gonyaulax polyedra Pyrocystis lunula | Biggley et al. 1969 [334] | ||
Mixed dinoflagellate communities: Gonyaulax spp. Alexandrium spp. Ceratium fusus Pyrocystis spp. Protoperidinium spp. | Marcinko et al., 2013 [355] | ||
Multiple bioluminescent species | Backus et al. 1961 [356] Yentsh et al., 1964 [357] | ||
Photoenhancement of bioluminescence | Ceratium fusus | Sullivan and Swift, 1995 [236] | |
Photoinhibition of bioluminescence | Alexandrium catenella, A. acatenella, A. tamerensis | Esaias et al., 1973 [344] | |
Gonyaulax polyedra | Hamman and Seliger, 1982 [345] | ||
Ceratius fusus | Sullivan and Swift, 1994 [346] | ||
Protoperidinium spp. | Buskey et al., 1992 [358] | ||
Laser-induced bioluminescence | |||
Artificial red flashes induce bioluminescence (wavelength 585 nm) | Pyrocystis lunula | Hickman and Lynch, 1981; Hickman et al. 1982 [340,341] | |
Detailed study of flash-induced bioluminescence | Pyrocystis lunula, Pyrocystis fusiformis, G. polyedra | Sweeney et al., 1983 [342] | |
Gene expression induced by light | |||
Xanthorhodopsin subgroup II: proton pump for energy supplement during light-limited photosynthesis | Prorocentrum donghaiense | Shi et al., 2015 [359] | |
Oxyrrhis marina | Guo et al., 2014 [360] | ||
A few genes are only transcriptionally regulated by light | Symbiodinium kawagutii | Zaheri et al., 2019 [361] | |
Light-transcriptional control of 9.8% of the genes | Karenia brevis | Van Dolah et al., 2007 [362] | |
Different photoresponses according to species | Dissodinium lunula, Pyrocystis fusiformis, Pyrocysti noctiluca | Swift and Meunier, 1976 [363] | |
Gonyaulax tamarensis Heterocapsa trique | Anderson and Stolzenbach, 1985 [364] | ||
Motility, phototaxis | |||
Swarming, diel vertical migration | Gonyaulax polyedra | Roenneberg et al., 1989 [365] | |
Light induces “stop-responses” or “shock reaction” (cessation of movement) | Girodinium dorsum | Forward and Davenport, 1968; 1970 [348,366] | |
Stop-response followed by positive phototaxis | Gymnodinium splendens | Forward, 1974 [233] Ekelund and Björn, 1987 [347] | |
Positive-Phototaxis (Comparison of phototaxis in dinoflagellate species with and without eyespots) | Scrippsieiia hexapraecinguia Peridlnium foliaceum Atexandrium hiranoi Gymnodinium mikimotoi | Horiguchi et al. 1999 [367] | |
Photoresponse of an heterotrophic dinoflagellate in three wavelengths: 450 nm, 525 nm and 680 nm) mediated by rhodopsin | Oxyrrhis marina | Hartz et al., 2011 [231] | |
Modulation of phototactic and stop response by wavelengths | Girodinium dorsum | Hand et al., 1967 [368] | |
Support the hypothesis of a two-pigment system in phototactic response | Girodinium dorsum | Forward, 1973 [232] | |
Peridinium gatunense | Häder et al., 1990 [234] | ||
Effect of light on symbiosic species | |||
Blue-light has a dominant effect on the cell cycle | Symbiodinium spp. | Wang et al., 2008 [369] | |
Physiological adaptation to light gradient in corals | Symbiodinium spp. | Wangpraseurt et al., 2016 [370] | |
Green light facilitates symbiont capture by coral larvae | Symbiodinium spp. | Hollingsworth et al., 2005 [371] | |
Symbiodinium species are specifically attracted by the green fluorescence emitted by its coral host | Symbiodinium spp. | Aihara et al., 2019 [245] | |
Variable phototaxis responses according to different Symbiodinium species | Symbiodinium spp. | Yamashita, 2021 [372] | |
Optical feedback loop involving dinoflagellates and coral in coral bleaching | Multiple species | Bollati et al., 2020 [373] | |
Eye-spot and spectral sensitivity of phototaxis | Kryptoperidinium foliaceum | Moldrup and Garl, 2012 [230] |
2.2.2. Excitability, Stimuli Integration and Complex Behaviours in Dinoflagellates
2.2.3. Photosensing of Bioluminescence: Emitting Light for Signalling
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haddock, S.H.D.; Moline, M.A.; Case, J.F. Bioluminescence in the Sea. Ann. Rev. Mar. Sci. 2010, 2, 443–493. [Google Scholar] [CrossRef] [Green Version]
- Widder, E.A. Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity. Science 2010, 328, 704–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herring, P.J. How to Survive in the Dark: Bioluminescence in the Deep Sea. Symp. Soc. Exp. Biol. 1985, 39, 323–350. [Google Scholar] [PubMed]
- Wilson, T.; Hastings, J.W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998, 14, 197–230. [Google Scholar] [CrossRef] [PubMed]
- Hegemann, P. Algal Sensory Photoreceptors. Annu. Rev. Plant. Biol. 2008, 59, 167–189. [Google Scholar] [CrossRef]
- Kottke, T.; Xie, A.; Larsen, D.S.; Hoff, W.D. Photoreceptors Take Charge: Emerging Principles for Light Sensing. Annu. Rev. Biophys. 2018, 47, 291–313. [Google Scholar] [CrossRef] [PubMed]
- Losi, A.; Mandalari, C.; Gärtner, W. The Evolution and Functional Role of Flavin-Based Prokaryotic Photoreceptors. Photochem. Photobiol. 2015, 91, 1021–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Horst, M.A.; Key, J.; Hellingwerf, K.J. Photosensing in Chemotrophic, Non-Phototrophic Bacteria: Let There Be Light Sensing Too. Trends Microbiol. 2007, 15, 554–562. [Google Scholar] [CrossRef]
- Beattie, G.A.; Hatfield, B.M.; Dong, H.; McGrane, R.S. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. Annu. Rev. Phytopathol. 2018, 56, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Armitage, J.P.; Hellingwerf, K.J. Light-Induced Behavioral Responses (‘Phototaxis’) in Prokaryotes. Photosynth Res. 2003, 76, 145–155. [Google Scholar] [CrossRef]
- Braatsch, S.; Klug, G. Blue Light Perception in Bacteria. Photosynth. Res. 2004, 79, 45–57. [Google Scholar] [CrossRef]
- Jékely, G. Evolution of Phototaxis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2795–2808. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P. The Cognitive Cell: Bacterial Behavior Reconsidered. Front. Microbiol. 2015, 6, 264. [Google Scholar] [CrossRef] [PubMed]
- Baluška, F.; Miller, W.B.; Reber, A.S. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int. J. Mol. Sci. 2021, 22, 2545. [Google Scholar] [CrossRef]
- Baluška, F.; Levin, M. On Having No Head: Cognition throughout Biological Systems. Front. Psychol. 2016, 7, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trewavas, A.J.; Baluška, F. The Ubiquity of Consciousness. EMBO Rep. 2011, 12, 1221–1225. [Google Scholar] [CrossRef] [Green Version]
- Marijuán, P.C.; Navarro, J.; del Moral, R. On Prokaryotic Intelligence: Strategies for Sensing the Environment. Biosystems 2010, 99, 94–103. [Google Scholar] [CrossRef]
- Marijuán, P.C.; Navarro, J.; del Moral, R. How the Living Is in the World: An Inquiry into the Informational Choreographies of Life. Prog. Biophys. Mol. Biol. 2015, 119, 469–480. [Google Scholar] [CrossRef]
- Trinh, M.K.; Wayland, M.T.; Prabakaran, S. Behavioural Analysis of Single-Cell Aneural Ciliate, Stentor Roeseli, Using Machine Learning Approaches. J. R. Soc. Interface 2019, 16, 20190410. [Google Scholar] [CrossRef]
- Dexter, J.P.; Prabakaran, S.; Gunawardena, J. A Complex Hierarchy of Avoidance Behaviors in a Single-Cell Eukaryote. Curr. Biol. 2019, 29, 4323–4329.e2. [Google Scholar] [CrossRef]
- Gelber, B. Food or Training Paramecium. Science 1957, 126, 1340–1341. [Google Scholar] [CrossRef] [PubMed]
- Gershman, S.J.; Balbi, P.E.; Gallistel, C.R.; Gunawardena, J. Reconsidering the Evidence for Learning in Single Cells. eLife 2021, 10, e61907. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, B.N. Cell-Signalling Dynamics in Time and Space. Nat. Rev. Mol. Cell Biol. 2006, 7, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Azeloglu, E.U.; Iyengar, R. Signaling Networks: Information Flow, Computation, and Decision Making. Cold Spring Harb. Perspect. Biol. 2015, 7, a005934. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; Chauhan, P.; Saha, B.; Kubatzky, K.F. Conceptual Evolution of Cell Signaling. Int. J. Mol. Sci. 2019, 20, 3292. [Google Scholar] [CrossRef] [Green Version]
- Timsit, Y.; Sergeant-Perthuis, G.; Bennequin, D. Evolution of Ribosomal Protein Network Architectures. Sci. Rep. 2021, 11, 625. [Google Scholar] [CrossRef]
- Poirot, O.; Timsit, Y. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome. Sci. Rep. 2016, 6, 26485. [Google Scholar] [CrossRef] [Green Version]
- Timsit, Y.; Bennequin, D. Nervous-Like Circuits in the Ribosome Facts, Hypotheses and Perspectives. Int. J. Mol. Sci. 2019, 20, 2911. [Google Scholar] [CrossRef] [Green Version]
- Bray, D. Protein Molecules as Computational Elements in Living Cells. Nature 1995, 376, 307–312. [Google Scholar] [CrossRef]
- Widder, E. Bioluminescence and the Pelagic Visual Environment. Mar. Freshwater Behav. Physiol. 2002, 35, 1–26. [Google Scholar] [CrossRef]
- Young, R.E. Oceanic Bioluminescence: An Overview of General Functions. Bull. Mar. Sci. 1983, 33, 829–845. [Google Scholar]
- Meighen, E.A. Genetics of Bacterial Bioluminescence. Annu. Rev. Genet. 1994, 28, 117–139. [Google Scholar] [CrossRef]
- Marcinko, C.L.J.; Painter, S.C.; Martin, A.P.; Allen, J.T. A Review of the Measurement and Modelling of Dinoflagellate Bioluminescence. Prog. Oceanogr. 2013, 109, 117–129. [Google Scholar] [CrossRef]
- Valiadi, M.; Iglesias-Rodriguez, D. Understanding Bioluminescence in Dinoflagellates-How Far Have We Come? Microorganisms 2013, 1, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Herring, P.J. Some Features of the Bioluminescence of the Radiolarian Thalassicolla sp. Mar. Biol. 1979, 53, 213–216. [Google Scholar] [CrossRef]
- Latz, M.I.; Frank, T.M.; Case, J.F.; Swift, E.; Bidigare, R.R. Bioluminescence of Colonial Radiolaria in the Western Sargasso Sea. J. Exp. Mar. Biol. Ecol. 1987, 109, 25–38. [Google Scholar] [CrossRef]
- Mallefet, J.; Stevens, D.W.; Duchatelet, L. Bioluminescence of the Largest Luminous Vertebrate, the Kitefin Shark, Dalatias Licha: First Insights and Comparative Aspects. Front. Mar. Sci. 2021, 8, 153. [Google Scholar] [CrossRef]
- Baldwin, T.O.; Christopher, J.A.; Raushel, F.M.; Sinclair, J.F.; Ziegler, M.M.; Fisher, A.J.; Rayment, I. Structure of Bacterial Luciferase. Curr. Opin. Struct. Biol. 1995, 5, 798–809. [Google Scholar] [CrossRef]
- Liu, L.; Hastings, J.W. Two Different Domains of the Luciferase Gene in the Heterotrophic Dinoflagellate Noctiluca Scintillans Occur as Two Separate Genes in Photosynthetic Species. Proc. Natl. Acad. Sci. USA 2007, 104, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Schultz, L.W.; Liu, L.; Cegielski, M.; Hastings, J.W. Crystal Structure of a PH-Regulated Luciferase Catalyzing the Bioluminescent Oxidation of an Open Tetrapyrrole. Proc. Natl. Acad. Sci. USA 2005, 102, 1378–1383. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Kishi, Y.; Shimomura, O.; Morse, D.; Hastings, J.W. Structure of Dinoflagellate Luciferin and Its Enzymic and Nonenzymic Air-Oxidation Products. J. Am. Chem. Soc. 1989, 111, 7607–7611. [Google Scholar] [CrossRef]
- Loening, A.M.; Fenn, T.D.; Gambhir, S.S. Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis. J. Mol. Biol. 2007, 374, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Conti, E.; Franks, N.P.; Brick, P. Crystal Structure of Firefly Luciferase Throws Light on a Superfamily of Adenylate-Forming Enzymes. Structure 1996, 4, 287–298. [Google Scholar] [CrossRef]
- Tomabechi, Y.; Hosoya, T.; Ehara, H.; Sekine, S.-I.; Shirouzu, M.; Inouye, S. Crystal Structure of NanoKAZ: The Mutated 19 KDa Component of Oplophorus Luciferase Catalyzing the Bioluminescent Reaction with Coelenterazine. Biochem Biophys Res. Commun. 2016, 470, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Viviani, V.R. The Origin, Diversity, and Structure Function Relationships of Insect Luciferases. Cell Mol. Life Sci 2002, 59, 1833–1850. [Google Scholar] [CrossRef]
- Larionova, M.D.; Markova, S.V.; Vysotski, E.S. Bioluminescent and Structural Features of Native Folded Gaussia Luciferase. J. Photochem. Photobiol. B 2018, 183, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Markova, S.V.; Larionova, M.D.; Vysotski, E.S. Shining Light on the Secreted Luciferases of Marine Copepods: Current Knowledge and Applications. Photochem. Photobiol. 2019, 95, 705–721. [Google Scholar] [CrossRef]
- Wu, N.; Kobayashi, N.; Tsuda, K.; Unzai, S.; Saotome, T.; Kuroda, Y.; Yamazaki, T. Solution Structure of Gaussia Luciferase with Five Disulfide Bonds and Identification of a Putative Coelenterazine Binding Cavity by Heteronuclear NMR. Sci. Rep. 2020, 10, 20069. [Google Scholar] [CrossRef]
- Desjardin, D.E.; Oliveira, A.G.; Stevani, C.V. Fungi Bioluminescence Revisited. Photochem. Photobiol. Sci. 2008, 7, 170–182. [Google Scholar] [CrossRef]
- Oliveira, A.G.; Desjardin, D.E.; Perry, B.A.; Stevani, C.V. Evidence That a Single Bioluminescent System Is Shared by All Known Bioluminescent Fungal Lineages. Photochem. Photobiol. Sci. 2012, 11, 848–852. [Google Scholar] [CrossRef]
- Ke, H.-M.; Lee, H.-H.; Lin, C.-Y.I.; Liu, Y.-C.; Lu, M.R.; Hsieh, J.-W.A.; Chang, C.-C.; Wu, P.-H.; Lu, M.J.; Li, J.-Y.; et al. Mycena Genomes Resolve the Evolution of Fungal Bioluminescence. Proc. Natl. Acad. Sci. USA 2020, 117, 31267–31277. [Google Scholar] [CrossRef]
- Kotlobay, A.A.; Sarkisyan, K.S.; Mokrushina, Y.A.; Marcet-Houben, M.; Serebrovskaya, E.O.; Markina, N.M.; Gonzalez Somermeyer, L.; Gorokhovatsky, A.Y.; Vvedensky, A.; Purtov, K.V.; et al. Genetically Encodable Bioluminescent System from Fungi. Proc. Natl. Acad. Sci. USA 2018, 115, 12728–12732. [Google Scholar] [CrossRef] [Green Version]
- Kaskova, Z.M.; Dörr, F.A.; Petushkov, V.N.; Purtov, K.V.; Tsarkova, A.S.; Rodionova, N.S.; Mineev, K.S.; Guglya, E.B.; Kotlobay, A.; Baleeva, N.S.; et al. Mechanism and Color Modulation of Fungal Bioluminescence. Sci. Adv. 2017, 3, e1602847. [Google Scholar] [CrossRef] [Green Version]
- Lau, E.S.; Oakley, T.H. Multi-Level Convergence of Complex Traits and the Evolution of Bioluminescence. Biol. Rev. Camb. Philos. Soc. 2021, 96, 673–691. [Google Scholar] [CrossRef] [PubMed]
- Delroisse, J.; Ullrich-Lüter, E.; Blaue, S.; Ortega-Martinez, O.; Eeckhaut, I.; Flammang, P.; Mallefet, J. A Puzzling Homology: A Brittle Star Using a Putative Cnidarian-Type Luciferase for Bioluminescence. Open Biol. 2017, 7, 160300. [Google Scholar] [CrossRef] [Green Version]
- Waldenmaier, H.E.; Oliveira, A.G.; Stevani, C.V. Thoughts on the Diversity of Convergent Evolution of Bioluminescence on Earth. Int. J. Astrobiol. 2012, 11, 335–343. [Google Scholar] [CrossRef]
- Hastings, J.W. Biological Diversity, Chemical Mechanisms, and the Evolutionary Origins of Bioluminescent Systems. J. Mol. Evol. 1983, 19, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.G. Coastal Bioluminescence: Patterns and Functions. Bull. Mar. Sci. 1983, 33, 787–817. [Google Scholar]
- Sitnikov, D.M.; Schineller, J.B.; Baldwin, T.O. Transcriptional Regulation of Bioluminesence Genes from Vibrio Fischeri. Mol. Microbiol. 1995, 17, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Vannier, T.; Hingamp, P.; Turrel, F.; Tanet, L.; Lescot, M.; Timsit, Y. Diversity and Evolution of Bacterial Bioluminescence Genes in the Global Ocean. NAR Genom. Bioinform. 2020, 2, lqaa018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodl, E.; Winkler, A.; Macheroux, P. Molecular Mechanisms of Bacterial Bioluminescence. Comput. Struct. Biotechnol. J. 2018, 16, 551–564. [Google Scholar] [CrossRef]
- Dunlap, P. Biochemistry and Genetics of Bacterial Bioluminescence. Adv. Biochem. Eng. Biotechnol. 2014, 144, 37–64. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.F.; de Wergifosse, B.; Noiset, O.; Dubuisson, M.; Janssens, B.; Thompson, E.M. The Origins of Marine Bioluminescence: Turning Oxygen Defence Mechanisms into Deep-Sea Communication Tools. J. Exp. Biol. 1998, 201, 1211–1221. [Google Scholar] [CrossRef]
- Timmins, G.S.; Jackson, S.K.; Swartz, H.M. The Evolution of Bioluminescent Oxygen Consumption as an Ancient Oxygen Detoxification Mechanism. J. Mol. Evol. 2001, 52, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Czyz, A.; Plata, K.; Wegrzyn, G. Stimulation of DNA Repair as an Evolutionary Drive for Bacterial Luminescence. Luminescence 2003, 18, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, J.; Gajewska, M.; Lyzeń, R.; Czyz, A.; Wegrzyn, G. Bioluminescence-Mediated Stimulation of Photoreactivation in Bacteria. FEMS Microbiol. Lett. 2005, 250, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Zarubin, M.; Belkin, S.; Ionescu, M.; Genin, A. Bacterial Bioluminescence as a Lure for Marine Zooplankton and Fish. Proc. Natl. Acad. Sci. USA 2012, 109, 853–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschtgen, M.-S.; Brennan, C.A.; Nikolakakis, K.; Cohen, S.; McFall-Ngai, M.; Ruby, E.G. Insights into Flagellar Function and Mechanism from the Squid-Vibrio Symbiosis. NPJ Biofilms Microbiomes 2019, 5, 32. [Google Scholar] [CrossRef]
- Tanet, L.; Martini, S.; Casalot, L.; Tamburini, C. Reviews and Syntheses: Bacterial Bioluminescence–Ecology and Impact in the Biological Carbon Pump. Biogeosciences 2020, 17, 3757–3778. [Google Scholar] [CrossRef]
- McFall-Ngai, M. Divining the Essence of Symbiosis: Insights from the Squid-Vibrio Model. PLoS Biol. 2014, 12, e1001783. [Google Scholar] [CrossRef] [Green Version]
- Ruby, E.G. Symbiotic Conversations Are Revealed under Genetic Interrogation. Nat. Rev. Microbiol. 2008, 6, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Eckert, R.; Sibaoka, T. The Flash-Triggering Action Potential of the Luminescent Dinoflagellate Noctiluca. J. Gen. Physiol. 1968, 52, 258–282. [Google Scholar] [CrossRef] [Green Version]
- Prevett, A.; Lindström, J.; Xu, J.; Karlson, B.; Selander, E. Grazer-Induced Bioluminescence Gives Dinoflagellates a Competitive Edge. Curr. Biol. 2019, 29, R564–R565. [Google Scholar] [CrossRef]
- Fajardo, C.; De Donato, M.; Rodulfo, H.; Martinez-Rodriguez, G.; Costas, B.; Mancera, J.M.; Fernandez-Acero, F.J. New Perspectives Related to the Bioluminescent System in Dinoflagellates: Pyrocystis Lunula, a Case Study. Int. J. Mol. Sci. 2020, 21, 1784. [Google Scholar] [CrossRef] [Green Version]
- Hanley, K.A.; Widder, E.A. Bioluminescence in Dinoflagellates: Evidence That the Adaptive Value of Bioluminescence in Dinoflagellates Is Concentration Dependent. Photochem. Photobiol. 2017, 93, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Lindström, J.; Grebner, W.; Rigby, K.; Selander, E. Effects of Predator Lipids on Dinoflagellate Defence Mechanisms—Increased Bioluminescence Capacity. Sci. Rep. 2017, 7, 13104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valiadi, M.; Debora Iglesias-Rodriguez, M.; Amorim, A. Distribution and genetic diversity of the luciferase gene within marine dinoflagellates(1). J. Phycol. 2012, 48, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Colley, N.J.; Nilsson, D.-E. Photoreception in Phytoplankton. Integr. Comp. Biol. 2016, 56, 764–775. [Google Scholar] [CrossRef]
- Häder, D.P. Photosensory Behavior in Procaryotes. Microbiol. Rev. 1987, 51, 1–21. [Google Scholar] [CrossRef]
- Herrou, J.; Crosson, S. Function, Structure and Mechanism of Bacterial Photosensory LOV Proteins. Nat. Rev. Microbiol. 2011, 9, 713–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, M.-Y.; Soulier, N.T.; Canniffe, D.P.; Shen, G.; Bryant, D.A. Light Regulation of Pigment and Photosystem Biosynthesis in Cyanobacteria. Curr. Opin. Plant. Biol. 2017, 37, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Ishizuka, T. Cyanobacteriochromes: A New Superfamily of Tetrapyrrole-Binding Photoreceptors in Cyanobacteria. Photochem. Photobiol. Sci. 2008, 7, 1159–1167. [Google Scholar] [CrossRef]
- Ueki, N.; Matsunaga, S.; Inouye, I.; Hallmann, A. How 5000 Independent Rowers Coordinate Their Strokes in Order to Row into the Sunlight: Phototaxis in the Multicellular Green Alga Volvox. BMC Biol. 2010, 8, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möglich, A. Signal Transduction in Photoreceptor Histidine Kinases. Protein Sci. 2019, 28, 1923–1946. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.H.; Doerks, T.; Letunic, I.; Raes, J.; Bork, P. Discovering Functional Novelty in Metagenomes: Examples from Light-Mediated Processes. J. Bacteriol. 2009, 191, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Fischer, R. Light Sensing and Responses in Fungi. Nat. Rev. Microbiol. 2019, 17, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.L. Beyond the Eye: Molecular Evolution of Extraocular Photoreception. Integr. Comp. Biol. 2016, 56, 842–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, A.; Mullineaux, C.W. Light-Controlled Motility in Prokaryotes and the Problem of Directional Light Perception. FEMS Microbiol. Rev. 2017, 41, 900–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijlsma, J.J.E.; Groisman, E.A. Making Informed Decisions: Regulatory Interactions between Two-Component Systems. Trends Microbiol. 2003, 11, 359–366. [Google Scholar] [CrossRef]
- Swartz, T.E.; Tseng, T.-S.; Frederickson, M.A.; Paris, G.; Comerci, D.J.; Rajashekara, G.; Kim, J.-G.; Mudgett, M.B.; Splitter, G.A.; Ugalde, R.A.; et al. Blue-Light-Activated Histidine Kinases: Two-Component Sensors in Bacteria. Science 2007, 317, 1090–1093. [Google Scholar] [CrossRef]
- Cheung, J.; Hendrickson, W.A. Sensor Domains of Two-Component Regulatory Systems. Curr. Opin. Microbiol. 2010, 13, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Jacob-Dubuisson, F.; Mechaly, A.; Betton, J.-M.; Antoine, R. Structural Insights into the Signalling Mechanisms of Two-Component Systems. Nat. Rev. Microbiol. 2018, 16, 585–593. [Google Scholar] [CrossRef]
- Jin, J.; Pawson, T. Modular Evolution of Phosphorylation-Based Signalling Systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 2540–2555. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A.; Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
- Schuergers, N.; Lenn, T.; Kampmann, R.; Meissner, M.V.; Esteves, T.; Temerinac-Ott, M.; Korvink, J.G.; Lowe, A.R.; Mullineaux, C.W.; Wilde, A. Cyanobacteria Use Micro-Optics to Sense Light Direction. eLife 2016, 5, e12620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavelis, G.S.; Hayakawa, S.; White, R.A.; Gojobori, T.; Suttle, C.A.; Keeling, P.J.; Leander, B.S. Eye-like Ocelloids Are Built from Different Endosymbiotically Acquired Components. Nature 2015, 523, 204–207. [Google Scholar] [CrossRef]
- Möglich, A.; Yang, X.; Ayers, R.A.; Moffat, K. Structure and Function of Plant Photoreceptors. Annu. Rev. Plant. Biol. 2010, 61, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, K.S.; Manahan, C.C.; Crane, B.R. Photochemistry of Flavoprotein Light Sensors. Nat. Chem. Biol. 2014, 10, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J.A.; Schwalbach, M.S.; Stingl, U. Proteorhodopsins: An Array of Physiological Roles? Nat. Rev. Microbiol. 2008, 6, 488–494. [Google Scholar] [CrossRef]
- Finkel, O.M.; Béjà, O.; Belkin, S. Global Abundance of Microbial Rhodopsins. ISME J. 2013, 7, 448–451. [Google Scholar] [CrossRef] [Green Version]
- Avelar, G.M.; Schumacher, R.I.; Zaini, P.A.; Leonard, G.; Richards, T.A.; Gomes, S.L. A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus. Curr. Biol. 2014, 24, 1234–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikuta, T.; Shihoya, W.; Sugiura, M.; Yoshida, K.; Watari, M.; Tokano, T.; Yamashita, K.; Katayama, K.; Tsunoda, S.P.; Uchihashi, T.; et al. Structural Insights into the Mechanism of Rhodopsin Phosphodiesterase. Nat. Commun. 2020, 11, 5605. [Google Scholar] [CrossRef]
- Gallot-Lavallée, L.; Archibald, J.M. Evolutionary Biology: Viral Rhodopsins Illuminate Algal Evolution. Curr. Biol. 2020, 30, R1469–R1471. [Google Scholar] [CrossRef] [PubMed]
- Oda, K.; Vierock, J.; Oishi, S.; Rodriguez-Rozada, S.; Taniguchi, R.; Yamashita, K.; Wiegert, J.S.; Nishizawa, T.; Hegemann, P.; Nureki, O. Crystal Structure of the Red Light-Activated Channelrhodopsin Chrimson. Nat. Commun. 2018, 9, 3949. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Shi, X.; Lin, S. Heterologous Expression and Cell Membrane Localization of Dinoflagellate Opsins (Rhodopsin Proteins) in Mammalian Cells. Mar. Life Sci. Technol. 2020, 2, 302–308. [Google Scholar] [CrossRef]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, O.P.; Lodowski, D.T.; Elstner, M.; Hegemann, P.; Brown, L.S.; Kandori, H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 2014, 114, 126–163. [Google Scholar] [CrossRef]
- Butryn, A.; Raza, H.; Rada, H.; Moraes, I.; Owens, R.J.; Orville, A.M. Molecular Basis for GTP Recognition by Light-Activated Guanylate Cyclase RhGC. FEBS J. 2020, 287, 2797–2807. [Google Scholar] [CrossRef] [Green Version]
- Spudich, E.N.; Takahashi, T.; Spudich, J.L. Sensory Rhodopsins I and II Modulate a Methylation/Demethylation System in Halobacterium Halobium Phototaxis. Proc. Natl. Acad. Sci. USA 1989, 86, 7746–7750. [Google Scholar] [CrossRef] [Green Version]
- Luecke, H.; Schobert, B.; Lanyi, J.K.; Spudich, E.N.; Spudich, J.L. Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction. Science 2001, 293, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Spudich, J.L.; Luecke, H. Sensory Rhodopsin II: Functional Insights from Structure. Curr. Opin. Struct. Biol. 2002, 12, 540–546. [Google Scholar] [CrossRef]
- Vogeley, L.; Sineshchekov, O.A.; Trivedi, V.D.; Sasaki, J.; Spudich, J.L.; Luecke, H. Anabaena Sensory Rhodopsin: A Photochromic Color Sensor at 2.0 A. Science 2004, 306, 1390–1393. [Google Scholar] [CrossRef] [Green Version]
- Borgstahl, G.E.O.; Williams, D.R.; Getzoff, E.D. 1.4.ANG. Structure of Photoactive Yellow Protein, a Cytosolic Photoreceptor: Unusual Fold, Active Site, and Chromophore. Biochemistry 1995, 34, 6278–6287. [Google Scholar] [CrossRef]
- Pellequer, J.L.; Wager-Smith, K.A.; Kay, S.A.; Getzoff, E.D. Photoactive Yellow Protein: A Structural Prototype for the Three-Dimensional Fold of the PAS Domain Superfamily. Proc. Natl. Acad. Sci. USA 1998, 95, 5884–5890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mix, L.T.; Hara, M.; Rathod, R.; Kumauchi, M.; Hoff, W.D.; Larsen, D.S. Noncanonical Photocycle Initiation Dynamics of the Photoactive Yellow Protein (PYP) Domain of the PYP-Phytochrome-Related (Ppr) Photoreceptor. J. Phys. Chem. Lett. 2016, 7, 5212–5218. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Swem, L.R.; Rushing, B.G.; Devanathan, S.; Tollin, G.; Bauer, C.E. Bacterial Photoreceptor with Similarity to Photoactive Yellow Protein and Plant Phytochromes. Science 1999, 285, 406–409. [Google Scholar] [CrossRef]
- Wang, J. Visualization of H Atoms in the X-Ray Crystal Structure of Photoactive Yellow Protein: Does It Contain Low-Barrier Hydrogen Bonds? Protein Sci. 2019, 28, 1966–1972. [Google Scholar] [CrossRef]
- Kumauchi, M.; Hara, M.T.; Stalcup, P.; Xie, A.; Hoff, W.D. Identification of Six New Photoactive Yellow Proteins—Diversity and Structure-Function Relationships in a Bacterial Blue Light Photoreceptor. Photochem. Photobiol. 2008, 84, 956–969. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.L.; Zhulin, I.B. PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light. Microbiol. Mol. Biol. Rev. 1999, 63, 479–506. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M. A Short History of Structure Based Research on the Photocycle of Photoactive Yellow Protein. Struct. Dyn. 2017, 4, 032201. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.O.; Lee, J.H.; Kim, J.; Schmidt, M.; Moffat, K.; Srajer, V.; Ihee, H. Volume-Conserving Trans-Cis Isomerization Pathways in Photoactive Yellow Protein Visualized by Picosecond X-Ray Crystallography. Nat. Chem. 2013, 5, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Sigala, P.A.; Tsuchida, M.A.; Herschlag, D. Hydrogen Bond Dynamics in the Active Site of Photoactive Yellow Protein. Proc. Natl. Acad. Sci. USA 2009, 106, 9232–9237. [Google Scholar] [CrossRef] [Green Version]
- Glantz, S.T.; Carpenter, E.J.; Melkonian, M.; Gardner, K.H.; Boyden, E.S.; Wong, G.K.-S.; Chow, B.Y. Functional and Topological Diversity of LOV Domain Photoreceptors. Proc. Natl. Acad. Sci. USA 2016, 113, E1442–E1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, G.P.; Losi, A.; Gärtner, W. Metagenome-Based Screening Reveals Worldwide Distribution of LOV-Domain Proteins. Photochem. Photobiol. 2012, 88, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Pathak, G.P.; Ehrenreich, A.; Losi, A.; Streit, W.R.; Gärtner, W. Novel Blue Light-Sensitive Proteins from a Metagenomic Approach. Environ. Microbiol. 2009, 11, 2388–2399. [Google Scholar] [CrossRef]
- Krauss, U.; Minh, B.Q.; Losi, A.; Gärtner, W.; Eggert, T.; von Haeseler, A.; Jaeger, K.-E. Distribution and Phylogeny of Light-Oxygen-Voltage-Blue-Light-Signaling Proteins in the Three Kingdoms of Life. J. Bacteriol. 2009, 191, 7234–7242. [Google Scholar] [CrossRef] [Green Version]
- Mandalari, C.; Losi, A.; Gärtner, W. Distance-Tree Analysis, Distribution and Co-Presence of Bilin- and Flavin-Binding Prokaryotic Photoreceptors for Visible Light. Photochem. Photobiol. Sci. 2013, 12, 1144–1157. [Google Scholar] [CrossRef]
- Takahashi, F. Blue-Light-Regulated Transcription Factor, Aureochrome, in Photosynthetic Stramenopiles. J. Plant. Res. 2016, 129, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Kroth, P.G.; Wilhelm, C.; Kottke, T. An Update on Aureochromes: Phylogeny-Mechanism-Function. J. Plant. Physiol. 2017, 217, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Matiiv, A.B.; Chekunova, E.M. Aureochromes-Blue Light Receptors. Biochemistry 2018, 83, 662–673. [Google Scholar] [CrossRef]
- Weber, A.M.; Kaiser, J.; Ziegler, T.; Pilsl, S.; Renzl, C.; Sixt, L.; Pietruschka, G.; Moniot, S.; Kakoti, A.; Juraschitz, M.; et al. A Blue Light Receptor That Mediates RNA Binding and Translational Regulation. Nat. Chem. Biol. 2019, 15, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.M.; Neil, L.C.; Gardner, K.H. Structural Basis of a Phototropin Light Switch. Science 2003, 301, 1541–1544. [Google Scholar] [CrossRef]
- Okajima, K. Molecular Mechanism of Phototropin Light Signaling. J. Plant. Res. 2016, 129, 149–157. [Google Scholar] [CrossRef]
- Möglich, A.; Moffat, K. Structural Basis for Light-Dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA. J. Mol. Biol. 2007, 373, 112–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barends, T.R.M.; Hartmann, E.; Griese, J.J.; Beitlich, T.; Kirienko, N.V.; Ryjenkov, D.A.; Reinstein, J.; Shoeman, R.L.; Gomelsky, M.; Schlichting, I. Structure and Mechanism of a Bacterial Light-Regulated Cyclic Nucleotide Phosphodiesterase. Nature 2009, 459, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Kennis, J.T.M.; Mathes, T. Molecular Eyes: Proteins That Transform Light into Biological Information. Interface Focus 2013, 3, 20130005. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, T.; Masuda, S. Light-Induced Chromophore and Protein Responses and Mechanical Signal Transduction of BLUF Proteins. Biophys. Rev. 2018, 10, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-Y.; Tame, J.R.H. Seeing the Light with BLUF Proteins. Biophys. Rev. 2017, 9, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Kutomi, O.; Yamamoto, R.; Hirose, K.; Mizuno, K.; Nakagiri, Y.; Imai, H.; Noga, A.; Obbineni, J.M.; Zimmermann, N.; Nakajima, M.; et al. A Dynein-Associated Photoreceptor Protein Prevents Ciliary Acclimation to Blue Light. Sci. Adv. 2021, 7, eabf3621. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.; Domratcheva, T.; Tarutina, M.; Wu, Q.; Ko, W.-H.; Shoeman, R.L.; Gomelsky, M.; Gardner, K.H.; Schlichting, I. Structure of a Bacterial BLUF Photoreceptor: Insights into Blue Light-Mediated Signal Transduction. Proc. Natl. Acad. Sci. USA 2005, 102, 12350–12355. [Google Scholar] [CrossRef] [Green Version]
- Masuda, S.; Bauer, C.E. AppA Is a Blue Light Photoreceptor That Antirepresses Photosynthesis Gene Expression in Rhodobacter Sphaeroides. Cell 2002, 110, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Winkler, A.; Heintz, U.; Lindner, R.; Reinstein, J.; Shoeman, R.L.; Schlichting, I. A Ternary AppA-PpsR-DNA Complex Mediates Light Regulation of Photosynthesis-Related Gene Expression. Nat. Struct. Mol. Biol. 2013, 20, 859–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohki, M.; Sugiyama, K.; Kawai, F.; Tanaka, H.; Nihei, Y.; Unzai, S.; Takebe, M.; Matsunaga, S.; Adachi, S.-I.; Shibayama, N.; et al. Structural Insight into Photoactivation of an Adenylate Cyclase from a Photosynthetic Cyanobacterium. Proc. Natl. Acad. Sci. USA 2016, 113, 6659–6664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, R.; Hartmann, E.; Tarnawski, M.; Winkler, A.; Frey, D.; Reinstein, J.; Meinhart, A.; Schlichting, I. Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase. J. Mol. Biol. 2017, 429, 1336–1351. [Google Scholar] [CrossRef]
- Brautigam, C.A.; Smith, B.S.; Ma, Z.; Palnitkar, M.; Tomchick, D.R.; Machius, M.; Deisenhofer, J. Structure of the Photolyase-like Domain of Cryptochrome 1 from Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2004, 101, 12142–12147. [Google Scholar] [CrossRef] [Green Version]
- Mei, Q.; Dvornyk, V. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes. PLoS ONE 2015, 10, e0135940. [Google Scholar] [CrossRef] [Green Version]
- Brudler, R.; Hitomi, K.; Daiyasu, H.; Toh, H.; Kucho, K.; Ishiura, M.; Kanehisa, M.; Roberts, V.A.; Todo, T.; Tainer, J.A.; et al. Identification of a New Cryptochrome Class. Structure, Function, and Evolution. Mol. Cell 2003, 11, 59–67. [Google Scholar] [CrossRef]
- Ahmad, M. Photocycle and Signaling Mechanisms of Plant Cryptochromes. Curr. Opin. Plant. Biol. 2016, 33, 108–115. [Google Scholar] [CrossRef]
- Cashmore, A.R.; Jarillo, J.A.; Wu, Y.J.; Liu, D. Cryptochromes: Blue Light Receptors for Plants and Animals. Science 1999, 284, 760–765. [Google Scholar] [CrossRef]
- Essen, L.-O.; Franz, S.; Banerjee, A. Structural and Evolutionary Aspects of Algal Blue Light Receptors of the Cryptochrome and Aureochrome Type. J. Plant. Physiol. 2017, 217, 27–37. [Google Scholar] [CrossRef]
- Fortunato, A.E.; Annunziata, R.; Jaubert, M.; Bouly, J.-P.; Falciatore, A. Dealing with Light: The Widespread and Multitasking Cryptochrome/Photolyase Family in Photosynthetic Organisms. J. Plant. Physiol. 2015, 172, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.; Ignatz, E.; Wenzel, S.; Zielosko, H.; Putu, E.P.G.N.; Maestre-Reyna, M.; Tsai, M.-D.; Yamamoto, J.; Mittag, M.; Essen, L.-O. Structure of the Bifunctional Cryptochrome ACRY from Chlamydomonas Reinhardtii. Nucleic Acids Res. 2018, 46, 8010–8022. [Google Scholar] [CrossRef] [PubMed]
- Haug, M.F.; Gesemann, M.; Lazović, V.; Neuhauss, S.C.F. Eumetazoan Cryptochrome Phylogeny and Evolution. Genome Biol. Evol. 2015, 7, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Kimø, S.M.; Friis, I.; Solov’yov, I.A. Atomistic Insights into Cryptochrome Interprotein Interactions. Biophys. J. 2018, 115, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Kottke, T.; Oldemeyer, S.; Wenzel, S.; Zou, Y.; Mittag, M. Cryptochrome Photoreceptors in Green Algae: Unexpected Versatility of Mechanisms and Functions. J. Plant. Physiol. 2017, 217, 4–14. [Google Scholar] [CrossRef]
- Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M. The Cryptochromes: Blue Light Photoreceptors in Plants and Animals. Annu. Rev. Plant. Biol. 2011, 62, 335–364. [Google Scholar] [CrossRef]
- Heijde, M.; Zabulon, G.; Corellou, F.; Ishikawa, T.; Brazard, J.; Usman, A.; Sanchez, F.; Plaza, P.; Martin, M.; Falciatore, A.; et al. Characterization of Two Members of the Cryptochrome/Photolyase Family from Ostreococcus Tauri Provides Insights into the Origin and Evolution of Cryptochromes. Plant. Cell Environ. 2010, 33, 1614–1626. [Google Scholar] [CrossRef]
- Müller, M.; Carell, T. Structural Biology of DNA Photolyases and Cryptochromes. Curr. Opin. Struct. Biol. 2009, 19, 277–285. [Google Scholar] [CrossRef]
- Lin, C.; Todo, T. The Cryptochromes. Genome Biol. 2005, 6, 220. [Google Scholar] [CrossRef] [Green Version]
- Solov’yov, I.A.; Domratcheva, T.; Moughal Shahi, A.R.; Schulten, K. Decrypting Cryptochrome: Revealing the Molecular Identity of the Photoactivation Reaction. J. Am. Chem. Soc. 2012, 134, 18046–18052. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.; Jaskolski, M.; Davis, S.J. Circadian Oscillator Proteins across the Kingdoms of Life: Structural Aspects. BMC Biol. 2019, 17, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoltowski, B.D. Resolving Cryptic Aspects of Cryptochrome Signaling. Proc. Natl. Acad. Sci. USA 2015, 112, 8811–8812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Wang, X.; Zhang, M.; Bian, M.; Deng, W.; Zuo, Z.; Yang, Z.; Zhong, D.; Lin, C. Trp Triad-Dependent Rapid Photoreduction Is Not Required for the Function of Arabidopsis CRY1. Proc. Natl. Acad. Sci. USA 2015, 112, 9135–9140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Lin, C. A Structural View of Plant CRY2 Photoactivation and Inactivation. Nat. Struct. Mol. Biol. 2020, 27, 401–403. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, C. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu. Rev. Plant. Biol. 2020, 71, 103–129. [Google Scholar] [CrossRef] [Green Version]
- Palayam, M.; Ganapathy, J.; Guercio, A.M.; Tal, L.; Deck, S.L.; Shabek, N. Structural Insights into Photoactivation of Plant Cryptochrome-2. Commun Biol. 2021, 4, 28. [Google Scholar] [CrossRef]
- Wagner, J.R.; Brunzelle, J.S.; Forest, K.T.; Vierstra, R.D. A Light-Sensing Knot Revealed by the Structure of the Chromophore-Binding Domain of Phytochrome. Nature 2005, 438, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Essen, L.-O.; Mailliet, J.; Hughes, J. The Structure of a Complete Phytochrome Sensory Module in the Pr Ground State. Proc. Natl. Acad. Sci. USA 2008, 105, 14709–14714. [Google Scholar] [CrossRef] [Green Version]
- Rockwell, N.C.; Lagarias, J.C. Phytochrome Evolution in 3D: Deletion, Duplication, and Diversification. New Phytol. 2020, 225, 2283–2300. [Google Scholar] [CrossRef] [Green Version]
- Nagano, S. From Photon to Signal in Phytochromes: Similarities and Differences between Prokaryotic and Plant Phytochromes. J. Plant. Res. 2016, 129, 123–135. [Google Scholar] [CrossRef]
- Woitowich, N.C.; Halavaty, A.S.; Waltz, P.; Kupitz, C.; Valera, J.; Tracy, G.; Gallagher, K.D.; Claesson, E.; Nakane, T.; Pandey, S.; et al. Structural Basis for Light Control of Cell Development Revealed by Crystal Structures of a Myxobacterial Phytochrome. IUCrJ 2018, 5, 619–634. [Google Scholar] [CrossRef] [Green Version]
- Burgie, E.S.; Zhang, J.; Vierstra, R.D. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion. Structure 2016, 24, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takala, H.; Björling, A.; Berntsson, O.; Lehtivuori, H.; Niebling, S.; Hoernke, M.; Kosheleva, I.; Henning, R.; Menzel, A.; Ihalainen, J.A.; et al. Signal Amplification and Transduction in Phytochrome Photosensors. Nature 2014, 509, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Nagel, G.; Ollig, D.; Fuhrmann, M.; Kateriya, S.; Musti, A.M.; Bamberg, E.; Hegemann, P. Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. Science 2002, 296, 2395–2398. [Google Scholar] [CrossRef]
- Deisseroth, K.; Hegemann, P. The Form and Function of Channelrhodopsin. Science 2017, 357, 6356. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.E. Structure-Function Relationship of Channelrhodopsins. Adv. Exp. Med. Biol. 2021, 1293, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Grimm, C.; Hegemann, P. Biophysics of Channelrhodopsin. Annu. Rev. Biophys. 2015, 44, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Lórenz-Fonfría, V.A.; Heberle, J. Channelrhodopsin Unchained: Structure and Mechanism of a Light-Gated Cation Channel. Biochim. Biophys. Acta 2014, 1837, 626–642. [Google Scholar] [CrossRef] [Green Version]
- Oda, K.; Nomura, T.; Nakane, T.; Yamashita, K.; Inoue, K.; Ito, S.; Vierock, J.; Hirata, K.; Maturana, A.D.; Katayama, K.; et al. Time-Resolved Serial Femtosecond Crystallography Reveals Early Structural Changes in Channelrhodopsin. eLife 2021, 10, e62389. [Google Scholar] [CrossRef] [PubMed]
- Govorunova, E.G.; Sineshchekov, O.A.; Janz, R.; Liu, X.; Spudich, J.L. Natural Light-Gated Anion Channels: A Family of Microbial Rhodopsins for Advanced Optogenetics. Science 2015, 349, 647–650. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kato, H.E.; Yamashita, K.; Ito, S.; Inoue, K.; Ramakrishnan, C.; Fenno, L.E.; Evans, K.E.; Paggi, J.M.; Dror, R.O.; et al. Crystal Structure of the Natural Anion-Conducting Channelrhodopsin GtACR1. Nature 2018, 561, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Sineshchekov, O.A.; Govorunova, E.G.; Li, H.; Spudich, J.L. Bacteriorhodopsin-like Channelrhodopsins: Alternative Mechanism for Control of Cation Conductance. Proc. Natl. Acad. Sci. USA 2017, 114, E9512–E9519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabelskii, D.; Alekseev, A.; Kovalev, K.; Rankovic, V.; Balandin, T.; Soloviov, D.; Bratanov, D.; Savelyeva, E.; Podolyak, E.; Volkov, D.; et al. Viral Rhodopsins 1 Arean Unique Family of Light-Gated Cation Channels. Nat. Commun. 2020, 11, 5707. [Google Scholar] [CrossRef]
- Perlova, T.; Gruebele, M.; Chemla, Y.R. Blue Light Is a Universal Signal for Escherichia Coli Chemoreceptors. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Jost, M.; Fernández-Zapata, J.; Polanco, M.C.; Ortiz-Guerrero, J.M.; Chen, P.Y.-T.; Kang, G.; Padmanabhan, S.; Elías-Arnanz, M.; Drennan, C.L. Structural Basis for Gene Regulation by a B12-Dependent Photoreceptor. Nature 2015, 526, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Takano, H.; Mise, K.; Hagiwara, K.; Hirata, N.; Watanabe, S.; Toriyabe, M.; Shiratori-Takano, H.; Ueda, K. Role and Function of LitR, an Adenosyl B12-Bound Light-Sensitive Regulator of Bacillus Megaterium QM B1551, in Regulation of Carotenoid Production. J. Bacteriol. 2015, 197, 2301–2315. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Guerrero, J.M.; Polanco, M.C.; Murillo, F.J.; Padmanabhan, S.; Elías-Arnanz, M. Light-Dependent Gene Regulation by a Coenzyme B12-Based Photoreceptor. Proc. Natl. Acad. Sci. USA 2011, 108, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, S.; Jost, M.; Drennan, C.L.; Elías-Arnanz, M. A New Facet of Vitamin B12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu. Rev. Biochem. 2017, 86, 485–514. [Google Scholar] [CrossRef]
- Sumi, S.; Suzuki, Y.; Matsuki, T.; Yamamoto, T.; Tsuruta, Y.; Mise, K.; Kawamura, T.; Ito, Y.; Shimada, Y.; Watanabe, E.; et al. Light-Inducible Carotenoid Production Controlled by a MarR-Type Regulator in Corynebacterium Glutamicum. Sci. Rep. 2019, 9, 13136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Zapata, J.; Pérez-Castaño, R.; Aranda, J.; Colizzi, F.; Polanco, M.C.; Orozco, M.; Padmanabhan, S.; Elías-Arnanz, M. Plasticity in Oligomerization, Operator Architecture, and DNA Binding in the Mode of Action of a Bacterial B12-Based Photoreceptor. J. Biol. Chem. 2018, 293, 17888–17905. [Google Scholar] [CrossRef] [Green Version]
- Bridwell-Rabb, J.; Drennan, C.L. Vitamin B12 in the Spotlight Again. Curr. Opin. Chem. Biol. 2017, 37, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Sumi, S.; Shiratori-Takano, H.; Ueda, K.; Takano, H. Role and Function of Class III LitR, a Photosensor Homolog from Burkholderia Multivorans. J. Bacteriol. 2018, 200, e00285-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, R.H.; Genner, M.J.; Hudson, A.G.; Partridge, J.C.; Wagner, H.-J. Localisation and Origin of the Bacteriochlorophyll-Derived Photosensitizer in the Retina of the Deep-Sea Dragon Fish Malacosteus Niger. Sci. Rep. 2016, 6, 39395. [Google Scholar] [CrossRef] [Green Version]
- Tardu, M.; Bulut, S.; Kavakli, I.H. MerR and ChrR Mediate Blue Light Induced Photo-Oxidative Stress Response at the Transcriptional Level in Vibrio Cholerae. Sci. Rep. 2017, 7, 40817. [Google Scholar] [CrossRef]
- Nakajima, Y.; Kojima, K.; Kashiyama, Y.; Doi, S.; Nakai, R.; Sudo, Y.; Kogure, K.; Yoshizawa, S. Bacterium Lacking a Known Gene for Retinal Biosynthesis Constructs Functional Rhodopsins. Microbes Environ. 2020, 35. [Google Scholar] [CrossRef] [PubMed]
- Francis, D. On the Eyespot of the Dinoflagellate, Nematodinium. J. Exp. Biol. 1967, 47, 495–501. [Google Scholar] [CrossRef]
- Kreimer, G. The Green Algal Eyespot Apparatus: A Primordial Visual System and More? Curr. Genet. 2009, 55, 19–43. [Google Scholar] [CrossRef]
- Gómez, F. The Function of the Ocelloid and Piston in the Dinoflagellate Erythropsidinium (Gymnodiniales, Dinophyceae). J. Phycol. 2017, 53, 629–641. [Google Scholar] [CrossRef]
- Gehring, W.J. The Evolution of Vision. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Losi, A.; Gärtner, W. The Evolution of Flavin-Binding Photoreceptors: An Ancient Chromophore Serving Trendy Blue-Light Sensors. Annu. Rev. Plant. Biol. 2012, 63, 49–72. [Google Scholar] [CrossRef] [Green Version]
- Drews, G. Contributions of Theodor Wilhelm Engelmann on Phototaxis, Chemotaxis, and Photosynthesis. Photosynth Res. 2005, 83, 25–34. [Google Scholar] [CrossRef]
- McBride, M.J. Shining a Light on an Opportunistic Pathogen. J. Bacteriol. 2010, 192, 6325–6326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubner, C.E. Bacteria “Read” Light To Gain a Competitive Advantage. J. Bacteriol. 2019, 201, e00082-19. [Google Scholar] [CrossRef] [Green Version]
- Hoff, W.D.; van der Horst, M.A.; Nudel, C.B.; Hellingwerf, K.J. Prokaryotic Phototaxis. Methods Mol. Biol. 2009, 571, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.L.; Miller, J.B.; Warrick, H.M.; Koshland, D.E. Electron Acceptor Taxis and Blue Light Effect on Bacterial Chemotaxis. J. Bacteriol. 1979, 140, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, W.W.; Hoff, W.D.; Armitage, J.P.; Hellingwerf, K.J. The Eubacterium Ectothiorhodospira Halophila Is Negatively Phototactic, with a Wavelength Dependence That Fits the Absorption Spectrum of the Photoactive Yellow Protein. J. Bacteriol. 1993, 175, 3096–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoff, W.D.; Jung, K.H.; Spudich, J.L. Molecular Mechanism of Photosignaling by Archaeal Sensory Rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 223–258. [Google Scholar] [CrossRef] [Green Version]
- Schuergers, N.; Mullineaux, C.W.; Wilde, A. Cyanobacteria in Motion. Curr. Opin. Plant. Biol. 2017, 37, 109–115. [Google Scholar] [CrossRef]
- Hardman, S.J.O.; Heyes, D.J.; Sazanovich, I.V.; Scrutton, N.S. Photocycle of Cyanobacteriochrome TePixJ. Biochemistry 2020, 59, 2909–2915. [Google Scholar] [CrossRef]
- Burgie, E.S.; Walker, J.M.; Phillips, G.N.; Vierstra, R.D. A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes. Structure 2013, 21, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Ragatz, L.; Jiang, Z.Y.; Bauer, C.E.; Gest, H. Macroscopic Phototactic Behavior of the Purple Photosynthetic Bacterium Rhodospirillum Centenum. Arch. Microbiol. 1995, 163, 1–6. [Google Scholar] [CrossRef]
- Menon, S.N.; Varuni, P.; Menon, G.I. Information Integration and Collective Motility in Phototactic Cyanobacteria. PLoS Comput. Biol. 2020, 16, e1007807. [Google Scholar] [CrossRef]
- Varuni, P.; Menon, S.N.; Menon, G.I. Phototaxis as a Collective Phenomenon in Cyanobacterial Colonies. Sci. Rep. 2017, 7, 17799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losi, A.; Mandalari, C.; Gärtner, W. From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World. Plants 2014, 3, 70–94. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.K.; Biswas, A.; Kakkar, A.; Lomada, S.K.; Pradhan, B.B.; Chatterjee, S. A Bacteriophytochrome Mediates Interplay between Light Sensing and the Second Messenger Cyclic Di-GMP to Control Social Behavior and Virulence. Cell Rep. 2020, 32, 108202. [Google Scholar] [CrossRef]
- Purcell, E.B.; Siegal-Gaskins, D.; Rawling, D.C.; Fiebig, A.; Crosson, S. A Photosensory Two-Component System Regulates Bacterial Cell Attachment. Proc. Natl. Acad. Sci. USA 2007, 104, 18241–18246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussi, M.A.; Gaddy, J.A.; Cabruja, M.; Arivett, B.A.; Viale, A.M.; Rasia, R.; Actis, L.A. The Opportunistic Human Pathogen Acinetobacter Baumannii Senses and Responds to Light. J. Bacteriol. 2010, 192, 6336–6345. [Google Scholar] [CrossRef] [Green Version]
- Santamaría-Hernando, S.; Cerna-Vargas, J.P.; Martínez-García, P.M.; de Francisco-de Polanco, S.; Nebreda, S.; Rodríguez-Palenzuela, P.; Rodríguez-Herva, J.J.; López-Solanilla, E. Blue-Light Perception by Epiphytic Pseudomonas Syringae Drives Chemoreceptor Expression, Enabling Efficient Plant Infection. Mol. Plant. Pathol. 2020, 21, 1606–1619. [Google Scholar] [CrossRef]
- Maresca, J.A.; Keffer, J.L.; Hempel, P.P.; Polson, S.W.; Shevchenko, O.; Bhavsar, J.; Powell, D.; Miller, K.J.; Singh, A.; Hahn, M.W. Light Modulates the Physiology of Nonphototrophic Actinobacteria. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Losi, A.; Gärtner, W. A Light Life Together: Photosensing in the Plant Microbiota. Photochem. Photobiol. Sci. 2021, 20, 451–473. [Google Scholar] [CrossRef]
- Yin, R.; Dai, T.; Avci, P.; Jorge, A.E.S.; de Melo, W.C.M.A.; Vecchio, D.; Huang, Y.-Y.; Gupta, A.; Hamblin, M.R. Light Based Anti-Infectives: Ultraviolet C Irradiation, Photodynamic Therapy, Blue Light, and Beyond. Curr. Opin. Pharmacol. 2013, 13, 731–762. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Gupta, A.; Murray, C.K.; Vrahas, M.S.; Tegos, G.P.; Hamblin, M.R. Blue Light for Infectious Diseases: Propionibacterium Acnes, Helicobacter Pylori, and Beyond? Drug Resist. Updates 2012, 15, 223–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angarano, V.; Smet, C.; Akkermans, S.; Watt, C.; Chieffi, A.; Van Impe, J.F.M. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas Fluorescens and Staphylococcus Epidermidis Biofilms. Antibiotics 2020, 9, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadi, J.; Wu, S.; Brightwell, G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020, 9, 1895. [Google Scholar] [CrossRef] [PubMed]
- Van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D. Locked Chromophore Analogs Reveal That Photoactive Yellow Protein Regulates Biofilm Formation in the Deep Sea Bacterium Idiomarina Loihiensis. J. Am. Chem. Soc. 2009, 131, 17443–17451. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Shan, Y.; Zheng, R.; Liu, R.; Sun, C. Growth Promotion of a Deep-Sea Bacterium by Sensing Infrared Light through a Bacteriophytochrome Photoreceptor. Environ. Microbiol. 2021, 23, 4466–4477. [Google Scholar] [CrossRef]
- Foster, K.W.; Smyth, R.D. Light Antennas in Phototactic Algae. Microbiol. Rev. 1980, 44, 572–630. [Google Scholar] [CrossRef]
- Lenci, F.; Colombetti, G. Photobehavior of Microorganisms: A Biophysical Approach. Annu. Rev. Biophys. Bioeng. 1978, 7, 341–361. [Google Scholar] [CrossRef]
- Moldrup, M.; Moestrup, Ø.; Hansen, P.J. Loss of Phototaxis and Degeneration of an Eyespot in Long-Term Algal Cultures: Evidence from Ultrastructure and Behaviour in the Dinoflagellate Kryptoperidinium Foliaceum. J. Eukaryot. Microbiol. 2013, 60, 327–334. [Google Scholar] [CrossRef]
- Moldrup, M.; Garm, A. Spectral Sensitivity of Phototaxis in the Dinoflagellate Kryptoperidinium Foliaceum and Their Reaction to Physical Encounters. J. Exp. Biol. 2012, 215, 2342–2346. [Google Scholar] [CrossRef] [Green Version]
- Hartz, A.J.; Sherr, B.F.; Sherr, E.B. Photoresponse in the Heterotrophic Marine Dinoflagellate Oxyrrhis Marina. J. Eukaryot. Microbiol. 2011, 58, 171–177. [Google Scholar] [CrossRef]
- Forward, R.B. Phototaxis in a Dinoflagellate: Action Spectra as Evidence for a Two-Pigment System. Planta 1973, 111, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Forward, R.B. Phototaxis by the Dinoflagellate Gymnodinium Splendens Lebour. J. Protozool. 1974, 21, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.P.; Häder, M.; Liu, S.M.; Ullrich, W. Effects of Solar Radiation on Photoorientation, Motility and Pigmentation in a Freshwater Peridinium. Biosystems 1990, 23, 335–343. [Google Scholar] [CrossRef]
- Saranak, J.; Foster, K.W. Photoreceptor for Curling Behavior in Peranema Trichophorum and Evolution of Eukaryotic Rhodopsins. Eukaryot. Cell 2005, 4, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.M.; Swift, E. Photoenhancement of Bioluminescence Capacity in Natural and Laboratory Populations of the Autotrophic Dinoflagellate Ceratium Fusus (Ehrenb.) Dujardin. J. Geophys. Res. Oceans 1995, 100, 6565–6574. [Google Scholar] [CrossRef]
- Iseki, M.; Matsunaga, S.; Murakami, A.; Ohno, K.; Shiga, K.; Yoshida, K.; Sugai, M.; Takahashi, T.; Hori, T.; Watanabe, M. A Blue-Light-Activated Adenylyl Cyclase Mediates Photoavoidance in Euglena Gracilis. Nature 2002, 415, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.-P.; Iseki, M. Photomovement in Euglena. Adv. Exp Med. Biol. 2017, 979, 207–235. [Google Scholar] [CrossRef] [PubMed]
- Sobierajska, K.; Fabczak, H.; Fabczak, S. Photosensory Transduction in Unicellular Eukaryotes: A Comparison between Related Ciliates Blepharisma Japonicum and Stentor Coeruleus and Photoreceptor Cells of Higher Organisms. J. Photochem. Photobiol. B 2006, 83, 163–171. [Google Scholar] [CrossRef]
- Hultberg, M.; Asp, H.; Marttila, S.; Bergstrand, K.-J.; Gustafsson, S. Biofilm Formation by Chlorella Vulgaris Is Affected by Light Quality. Curr. Microbiol. 2014, 69, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Suetsugu, N.; Wada, M. Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome. Plant. Cell Physiol. 2013, 54, 8–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, T.; Suetsugu, N.; Wada, M. Plant Nuclear Photorelocation Movement. J. Exp. Bot. 2014, 65, 2873–2881. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Wenzel, S.; Müller, N.; Prager, K.; Jung, E.-M.; Kothe, E.; Kottke, T.; Mittag, M. An Animal-Like Cryptochrome Controls the Chlamydomonas Sexual Cycle. Plant. Physiol. 2017, 174, 1334–1347. [Google Scholar] [CrossRef] [Green Version]
- Rivera, A.S.; Ozturk, N.; Fahey, B.; Plachetzki, D.C.; Degnan, B.M.; Sancar, A.; Oakley, T.H. Blue-Light-Receptive Cryptochrome Is Expressed in a Sponge Eye Lacking Neurons and Opsin. J. Exp. Biol. 2012, 215, 1278–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aihara, Y.; Maruyama, S.; Baird, A.H.; Iguchi, A.; Takahashi, S.; Minagawa, J. Green Fluorescence from Cnidarian Hosts Attracts Symbiotic Algae. Proc. Natl. Acad. Sci. USA 2019, 116, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Binet, A. The Psychic Life of Micro-Organisms. A Study in Experimental Psychology; The Open Court Publishing Company, London Agents Kegan Paul Trench, Trubner & Co. LTD: London, UK, 1888. [Google Scholar]
- Jennings, H.S.; Herbert, S. Behavior of the Lower Organisms; Columbia University Press: New York, NY, USA, 1906. [Google Scholar]
- Loeb, J. The Mechanistic Conception of Life. Harvard University Press: Cambridge, MA, USA, 2013; ISBN 978-0-674-86431-3. [Google Scholar]
- Mukherjee, S.; Bassler, B.L. Bacterial Quorum Sensing in Complex and Dynamically Changing Environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef]
- Shiner, E.K.; Rumbaugh, K.P.; Williams, S.C. Inter-Kingdom Signaling: Deciphering the Language of Acyl Homoserine Lactones. FEMS Microbiol. Rev. 2005, 29, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Reading, N.C.; Sperandio, V. Quorum Sensing: The Many Languages of Bacteria. FEMS Microbiol. Lett. 2006, 254, 1–11. [Google Scholar] [CrossRef]
- Joint, I.; Tait, K.; Wheeler, G. Cross-Kingdom Signalling: Exploitation of Bacterial Quorum Sensing Molecules by the Green Seaweed Ulva. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henke, J.M.; Bassler, B.L. Bacterial Social Engagements. Trends Cell Biol. 2004, 14, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Jemielita, M.; Stergioula, V.; Tikhonov, M.; Bassler, B.L. Photosensing and Quorum Sensing Are Integrated to Control Pseudomonas Aeruginosa Collective Behaviors. PLoS Biol. 2019, 17, e3000579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera, G. When Microbial Conversations Get Physical. Trends Microbiol. 2011, 19, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifra, M.; Fields, J.Z.; Farhadi, A. Electromagnetic Cellular Interactions. Prog. Biophys. Mol. Biol. 2011, 105, 223–246. [Google Scholar] [CrossRef]
- Kučera, O.; Cifra, M. Cell-to-Cell Signaling through Light: Just a Ghost of Chance? Cell Commun. Signal. 2013, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Scholkmann, F.; Fels, D.; Cifra, M. Non-Chemical and Non-Contact Cell-to-Cell Communication: A Short Review. Am. J. Transl. Res. 2013, 5, 586–593. [Google Scholar]
- Humphries, J.; Xiong, L.; Liu, J.; Prindle, A.; Yuan, F.; Arjes, H.A.; Tsimring, L.; Süel, G.M. Species-Independent Attraction to Biofilms through Electrical Signaling. Cell 2017, 168, 200–209.e12. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.W.; Zhai, X.; Kikuchi, K.; Redford, S.E.; Prindle, A.; Liu, J.; Greenfield, S.; Walczak, A.M.; Garcia-Ojalvo, J.; Mugler, A.; et al. Signal Percolation within a Bacterial Community. Cell Syst. 2018, 7, 137–145.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.J.; Lee, S.K.; Kim, T.; Ghim, C.-M. Microbial Linguistics: Perspectives and Applications of Microbial Cell-to-Cell Communication. BMB Rep. 2011, 44, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ben Jacob, E.; Becker, I.; Shapira, Y.; Levine, H. Bacterial Linguistic Communication and Social Intelligence. Trends Microbiol. 2004, 12, 366–372. [Google Scholar] [CrossRef]
- Majumdar, S.; Pal, S. Information Transmission in Microbial and Fungal Communication: From Classical to Quantum. J. Cell Commun. Signal. 2018, 12, 491–502. [Google Scholar] [CrossRef]
- Fels, D. Endogenous Physical Regulation of Population Density in the Freshwater Protozoan Paramecium Caudatum. Sci. Rep. 2017, 7, 13800. [Google Scholar] [CrossRef] [Green Version]
- Bassler, B.L.; Losick, R. Bacterially Speaking. Cell 2006, 125, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Combarnous, Y.; Nguyen, T.M.D. Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int. J. Mol. Sci. 2020, 21, 8052. [Google Scholar] [CrossRef]
- Bruni, G.N.; Weekley, R.A.; Dodd, B.J.T.; Kralj, J.M. Voltage-Gated Calcium Flux Mediates Escherichia Coli Mechanosensation. Proc. Natl. Acad. Sci. USA 2017, 114, 9445–9450. [Google Scholar] [CrossRef] [Green Version]
- Adler, J. Bacterial Chemotaxis and Molecular Neurobiology. Cold Spring Harb. Symp. Quant. Biol. 1983, 48, 803–804. [Google Scholar] [CrossRef]
- Koshland, D.E. Bacterial Chemotaxis in Relation to Neurobiology. Annu. Rev. Neurosci. 1980, 3, 43–75. [Google Scholar] [CrossRef] [PubMed]
- Adler, J. Motile Escherichia Coli Migrate in Bands That Are Influenced by Oxygen and Organic Nutrients. Science 1966, 153, 708–716. [Google Scholar] [CrossRef]
- Galperin, M.Y. What Bacteria Want. Environ. Microbiol. 2018, 20, 4221–4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.D.; Wolanin, P.M.; Stock, J.B. Signal Transduction in Bacterial Chemotaxis. Bioessays 2006, 28, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Micali, G.; Endres, R.G. Bacterial Chemotaxis: Information Processing, Thermodynamics, and Behavior. Curr. Opin. Microbiol. 2016, 30, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellingwerf, K.J. Bacterial Observations: A Rudimentary Form of Intelligence? Trends Microbiol. 2005, 13, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Hazelbauer, G.L.; Falke, J.J.; Parkinson, J.S. Bacterial Chemoreceptors: High-Performance Signaling in Networked Arrays. Trends Biochem. Sci. 2008, 33, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falke, J.J.; Piasta, K.N. Architecture and Signal Transduction Mechanism of the Bacterial Chemosensory Array: Progress, Controversies, and Challenges. Curr. Opin. Struct. Biol. 2014, 29, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Adler, J.; Tso, W.W. “Decision”-Making in Bacteria: Chemotactic Response of Escherichia Coli to Conflicting Stimuli. Science 1974, 184, 1292–1294. [Google Scholar] [CrossRef]
- Koshland, D.E. A Response Regulator Model in a Simple Sensory System. Science 1977, 196, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Koshland, D.E.; Goldbeter, A.; Stock, J.B. Amplification and Adaptation in Regulatory and Sensory Systems. Science 1982, 217, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y. A Census of Membrane-Bound and Intracellular Signal Transduction Proteins in Bacteria: Bacterial IQ, Extroverts and Introverts. BMC Microbiol. 2005, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Baluška, F.; Miller, W.B. Senomic View of the Cell: Senome versus Genome. Commun. Integr. Biol. 2018, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ben-Jacob, E.; Levine, H. Self-Engineering Capabilities of Bacteria. J. R. Soc. Interface 2006, 3, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Keijzer, F. Moving and Sensing without Input and Output: Early Nervous Systems and the Origins of the Animal Sensorimotor Organization. Biol. Philos. 2015, 30, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Pattee, H.H. Cell Phenomenology: The First Phenomenon. Prog. Biophys. Mol. Biol. 2015, 119, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K. Heritability Lost; Intelligence Found. Intelligence Is Integral to the Adaptation and Survival of All Organisms Faced with Changing Environments. EMBO Rep. 2012, 13, 591–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hein, A.M.; Carrara, F.; Brumley, D.R.; Stocker, R.; Levin, S.A. Natural Search Algorithms as a Bridge between Organisms, Evolution, and Ecology. Proc. Natl. Acad. Sci. USA 2016, 113, 9413–9420. [Google Scholar] [CrossRef] [Green Version]
- Kandel, E.; Abel, T. Neuropeptides, Adenylyl Cyclase, and Memory Storage. Science 1995, 268, 825–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussutour, A. Learning in Single Cell Organisms. Biochem. Biophys. Res. Commun. 2021, 564, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.F. Cellular Cognition: Sequential Logic in a Giant Protist. Curr. Biol. 2019, 29, R1303–R1305. [Google Scholar] [CrossRef]
- Beekman, M.; Latty, T. Brainless but Multi-Headed: Decision Making by the Acellular Slime Mould Physarum Polycephalum. J. Mol. Biol. 2015, 427, 3734–3743. [Google Scholar] [CrossRef]
- De la Fuente, I.M.; Bringas, C.; Malaina, I.; Fedetz, M.; Carrasco-Pujante, J.; Morales, M.; Knafo, S.; Martínez, L.; Pérez-Samartín, A.; López, J.I.; et al. Evidence of Conditioned Behavior in Amoebae. Nat. Commun. 2019, 10, 3690. [Google Scholar] [CrossRef] [Green Version]
- Burgos, J.E. Is a Nervous System Necessary for Learning? Perspect. Behav. Sci. 2018, 41, 343–368. [Google Scholar] [CrossRef]
- Majumdar, S.; Pal, S. Cross- Species Communication in Bacterial World. J. Cell Commun. Signal. 2017, 11, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Manna, S.; Ghanty, C.; Baindara, P.; Barik, T.K.; Mandal, S.M. Electrochemical Communication in Biofilm of Bacterial Community. J. Basic Microbiol. 2020, 60, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Fels, D. Cellular Communication through Light. PLoS ONE 2009, 4, e5086. [Google Scholar] [CrossRef]
- Trushin, M.V. Studies on Distant Regulation of Bacterial Growth and Light Emission. Microbiology 2003, 149, 363–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trushin, M.V. Light-Mediated “Conversation” among Microorganisms. Microbiol. Res. 2004, 159, 1–10. [Google Scholar] [CrossRef]
- Seliger, H.H. The Origin of Bioluminescence. Photochem. Photobiol. 1975, 21, 355–361. [Google Scholar] [CrossRef]
- Seliger, H.H. The Evolution of Bioluminescence in Bacteria. Photochem. Photobiol. 1987, 45, 291–297. [Google Scholar] [CrossRef]
- O’Kane, D.J.; Prasher, D.C. Evolutionary Origins of Bacterial Bioluminescence. Mol. Microbiol. 1992, 6, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Miyashiro, T.; Ruby, E.G. Shedding Light on Bioluminescence Regulation in Vibrio Fischeri. Mol. Microbiol. 2012, 84, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Visick, K.L.; Foster, J.; Doino, J.; McFall-Ngai, M.; Ruby, E.G. Vibrio Fischeri Lux Genes Play an Important Role in Colonization and Development of the Host Light Organ. J. Bacteriol. 2000, 182, 4578–4586. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.; Rozas, N.S.; Oakley, T.H.; Mitchell, J.; Colley, N.J.; McFall-Ngai, M.J. Evidence for Light Perception in a Bioluminescent Organ. Proc. Natl. Acad. Sci. USA 2009, 106, 9836–9841. [Google Scholar] [CrossRef] [Green Version]
- Tanet, L.; Tamburini, C.; Baumas, C.; Garel, M.; Simon, G.; Casalot, L. Bacterial Bioluminescence: Light Emission in Photobacterium Phosphoreum Is Not Under Quorum-Sensing Control. Front. Microbiol. 2019, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Norsworthy, A.N.; Visick, K.L. Gimme Shelter: How Vibrio Fischeri Successfully Navigates an Animal’s Multiple Environments. Front. Microbiol. 2013, 4, 356. [Google Scholar] [CrossRef] [Green Version]
- Septer Alecia, N.; Lyell Noreen, L.; Stabb Eric, V. The Iron-Dependent Regulator Fur Controls Pheromone Signaling Systems and Luminescence in the Squid Symbiont Vibrio Fischeri ES114. Appl. Environ. Microbiol. 2013, 79, 1826–1834. [Google Scholar] [CrossRef] [Green Version]
- Septer, A.N.; Bose, J.L.; Lipzen, A.; Martin, J.; Whistler, C.; Stabb, E.V. Bright Luminescence of Vibrio Fischeri Aconitase Mutants Reveals a Connection between Citrate and the Gac/Csr Regulatory System. Mol. Microbiol. 2015, 95, 283–296. [Google Scholar] [CrossRef]
- Septer, A.N.; Bose, J.L.; Dunn, A.K.; Stabb, E.V. FNR-Mediated Regulation of Bioluminescence and Anaerobic Respiration in the Light-Organ Symbiont Vibrio Fischeri. FEMS Microbiol. Lett. 2010, 306, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabei, Y.; Ogawa, A.; Era, M.; Ninomiya, J.; Morita, H. Influence of Cations and Anions on the Induction of Cell Density-Independent Luminescence in Photorhabdus Luminescens. J. Basic Microbiol. 2013, 53, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Tabei, Y.; Era, M.; Ogawa, A.; Morita, H. Effects of Magnesium Sulfate on the Luminescence of Vibrio Fischeri under Nutrient-Starved Conditions. Biosci. Biotechnol. Biochem. 2011, 75, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.J. Photorhabdus: A Tale of Contrasting Interactions. Microbiology 2020, 166, 335–348. [Google Scholar] [CrossRef]
- Eckstein, S.; Heermann, R. Regulation of Phenotypic Switching and Heterogeneity in Photorhabdus Luminescens Cell Populations. J. Mol. Biol. 2019, 431, 4559–4568. [Google Scholar] [CrossRef]
- Regaiolo, A.; Dominelli, N.; Andresen, K.; Heermann, R. The Biocontrol Agent and Insect Pathogen Photorhabdus Luminescens Interacts with Plant Roots. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Mo, M.; Yokawa, K.; Wan, Y.; Baluška, F. How and Why Do Root Apices Sense Light under the Soil Surface? Front. Plant. Sci. 2015, 6, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wampler, J.E.; Jamieson, B.G.M. Earthworm Bioluminescence: Comparative Physiology and Biochemistry. Compar. Biochem. Physiol. Part. B Compar. Biochem. 1980, 66, 43–50. [Google Scholar] [CrossRef]
- Rodionova, N.S.; Rota, E.; Tsarkova, A.S.; Petushkov, V.N. Progress in the Study of Bioluminescent Earthworms. Photochem. Photobiol. 2017, 93, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Verdes, A.; Gruber, D.F. Glowing Worms: Biological, Chemical, and Functional Diversity of Bioluminescent Annelids. Integr. Comp. Biol. 2017, 57, 18–32. [Google Scholar] [CrossRef]
- Burtseva, O.; Baulina, O.; Zaytseva, A.; Fedorenko, T.; Chekanov, K.; Lobakova, E. In Vitro Biofilm Formation by Bioluminescent Bacteria Isolated from the Marine Fish Gut. Microb Ecol. 2021, 81, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, null; McFall-Ngai, null Fundamental Concepts in Symbiotic Interactions: Light and Dark, Day and Night, Squid and Legume. J. Plant. Growth Regul. 2000, 19, 113–130. [CrossRef] [PubMed]
- Grimes, D.J.; Ford, T.E.; Colwell, R.R.; Baker-Austin, C.; Martinez-Urtaza, J.; Subramaniam, A.; Capone, D.G. Viewing Marine Bacteria, Their Activity and Response to Environmental Drivers from Orbit: Satellite Remote Sensing of Bacteria. Microb Ecol. 2014, 67, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Haddock, S.H.D.; Elvidge, C.D.; Lee, T.F. Detection of a Bioluminescent Milky Sea from Space. Proc. Natl. Acad. Sci. USA 2005, 102, 14181–14184. [Google Scholar] [CrossRef] [Green Version]
- Lapota, D.; Galt, C.; Losee, J.R.; Huddell, H.D.; Orzech, J.K.; Nealson, K.H. Observations and Measurements of Planktonic Bioluminescence in and Around a Milky Sea; Naval Ocean Systems Center: San Diego, CA, USA, 1988. [Google Scholar]
- Tamburini, C.; Canals, M.; Durrieu de Madron, X.; Houpert, L.; Lefèvre, D.; Martini, S.; D’Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; et al. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLoS ONE 2013, 8, e67523. [Google Scholar] [CrossRef] [Green Version]
- Cusick, K.D.; Widder, E.A. Bioluminescence and Toxicity as Driving Factors in Harmful Algal Blooms: Ecological Functions and Genetic Variability. Harmful Algae 2020, 98, 101850. [Google Scholar] [CrossRef]
- DeSa, R.; Hastings, J.W. The Characterization of Scintillons: Bioluminescent Particles from the Marine Dinoflagellate, Gonyaulax Polyedra. J. Gen. Physiol. 1968, 51, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Inoué, S.; Flint, A.; Hastings, J.W. Compartmentalization of Algal Bioluminescence: Autofluorescence of Bioluminescent Particles in the Dinoflagellate Gonyaulax as Studied with Image-Intensified Video Microscopy and Flow Cytometry. J. Cell Biol. 1985, 100, 1435–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, M.T.; Sweeney, B.M.; Hastings, J.W. The Ultrastructural Localization of Luciferase in Three Bioluminescent Dinoflagellates, Two Species of Pyrocystis, and Noctiluca, Using Anti-Luciferase and Immunogold Labelling. J. Cell Sci. 1987, 87, 189–196. [Google Scholar] [CrossRef]
- Latz, M.I.; Bovard, M.; VanDelinder, V.; Segre, E.; Rohr, J.; Groisman, A. Bioluminescent Response of Individual Dinoflagellate Cells to Hydrodynamic Stress Measured with Millisecond Resolution in a Microfluidic Device. J. Exp. Biol. 2008, 211, 2865–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.K.; Latz, M.I.; Sobolewski, P.; Frangos, J.A. Evidence for the Role of G-Proteins in Flow Stimulation of Dinoflagellate Bioluminescence. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 2007, 292, R2020–R2027. [Google Scholar] [CrossRef] [Green Version]
- Von Dassow, P.; Latz, M.I. The Role of Ca2+ in Stimulated Bioluminescence of the Dinoflagellate Lingulodinium Polyedrum. J. Exp. Biol. 2002, 205, 2971–2986. [Google Scholar] [CrossRef]
- Fogel, M.; Hastings, J.W. Bioluminescence: Mechanism and Mode of Control of Scintillon Activity. Proc. Natl. Acad. Sci. USA 1972, 69, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.E.; Morgan, D.; Musset, B.; Cherny, V.V.; Place, A.R.; Hastings, J.W.; Decoursey, T.E. Voltage-Gated Proton Channel in a Dinoflagellate. Proc. Natl. Acad. Sci. USA 2011, 108, 18162–18167. [Google Scholar] [CrossRef] [Green Version]
- Cusick, K.D.; Widder, E.A. Intensity Differences in Bioluminescent Dinoflagellates Impact Foraging Efficiency in a Nocturnal Predator. Bull. Mar. Sci. 2014, 90, 797–811. [Google Scholar] [CrossRef]
- Biggley, W.H.; Swift, E.; Buchanan, R.J.; Seliger, H.H. Stimulable and Spontaneous Bioluminescence in the Marine Dinoflagellates, Pyrodinium Bahamense, Gonyaulax Polyedra, and Pyrocystis Lunula. J. Gen. Physiol. 1969, 54, 96–122. [Google Scholar] [CrossRef] [Green Version]
- Latz, M.I.; Nauen, J.C.; Rohr, J. Bioluminescence Response of Four Species of Dinoflagellates to Fully Developed Pipe Flow. J. Plankton Res. 2004, 26, 1529–1546. [Google Scholar] [CrossRef] [Green Version]
- Esaias, W.E.; Curl, H.C. Effect of Dinoflagellate Bioluminescence on Copepod Ingestion Rates. Limnol. Oceanogr. 1972, 17, 901–906. [Google Scholar] [CrossRef]
- Valiadi, M.; de Rond, T.; Amorim, A.; Gittins, J.R.; Gubili, C.; Moore, B.S.; Iglesias-Rodriguez, M.D.; Latz, M.I. Molecular and Biochemical Basis for the Loss of Bioluminescence in the Dinoflagellate Noctiluca Scintillans along the West Coast of the U.S.A. Limnol. Oceanogr. 2019, 64, 2709–2724. [Google Scholar] [CrossRef]
- Latz, M.I.; Lee, A.O. Spontaneous and Stimulated Bioluminescence of the Dinoflagellate Ceratocorys Horrzda (Peridiniales)1. J. Phycol. 1995, 31, 120–132. [Google Scholar] [CrossRef]
- Krasnow, R.; Dunlap, J.C.; Taylor, W.; Hastings, J.W.; Vetterling, W.; Gooch, V. Circadian Spontaneous Bioluminescent Glow and Flashing of Gonyaulax Polyedra. J. Comparat. Physiol. 1980, 138, 19–26. [Google Scholar] [CrossRef]
- Daniel Hickman, G.; Edmonds, J.A.; Lynch, R.V. Laser-Induced Marine Bioluminescence Measurements and the Potential for Airborne Remote Sensing. Remote Sens. Environ. 1984, 15, 77–89. [Google Scholar] [CrossRef]
- Hickman, G.D.; Richard, V.; Lynch, I.I.I. Laser-Induced Bioluminescence. In Proceedings of the Los Alamos Conference on Optics ’81, International Society for Optics and Photonics, Los Alamos, NM, USA, 30 December 1981; Volume 0288, pp. 263–268. [Google Scholar]
- Sweeney, B.M.; Fork, D.C.; Satoh, K. Stimulation of Bioluminescence in Dinoflagellates by Red Light*. Photochem. Photobiol. 1983, 37, 457–465. [Google Scholar] [CrossRef]
- Roenneberg, T.; Merrow, M. Circadian Systems: Different Levels of Complexity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 1687–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esaias, W.E.; Curl, H.C.; Seliger, H.H. Action Spectrum for a Low Intensity, Rapid Photoinhibition of Mechanically Stimulable Bioluminescence in the Marine Dinoflagellates Gonyaulax Catenella, G. Acatenella, and G. Tamarensis. J. Cell Physiol. 1973, 82, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Hamman, J.P.; Seliger, H.H. The Chemical Mimicking of the Mechanical Stimulation, Photoinhibition, and Recovery from Photoinhibition of Bioluminescence in Marine Dinoflagellate, Gonyaulax Polyedra. J. Cell Physiol. 1982, 111, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.M.; Swift, E. Photoinhibition of Mechanically Stimulable Bioluminescence in the Autotrophic Dinoflagellate Ceratium Fusus (Pyrrophyta)1. J. Phycol. 1994, 30, 627–633. [Google Scholar] [CrossRef]
- Ekelund, N.G.A.; Björn, L.O. Photophobic Stop-Response in a Dinoflagellate: Modulation by Preirradiation. Physiol. Plantarum 1987, 70, 394–398. [Google Scholar] [CrossRef]
- Forward, R.; Davenport, D. Red and Far-Red Light Effects on a Short-Term Behavioral Response of a Dinoflagellate. Science 1968, 161, 1028–1029. [Google Scholar] [CrossRef]
- Sweeney, B.M.; Hastings, J.W. Characteristics of the Diurnal Rhythm of Luminescence in Gonyaulax Polyedra. J. Cell. Compar. Physiol. 1957, 49, 115–128. [Google Scholar] [CrossRef]
- Hastings, J.W.; Sweeney, B.M. A Persistent Diurnal Rhythm of Luminescence in Gonyaulax Polyedra. Biol. Bull. 1958, 115, 440–458. [Google Scholar] [CrossRef]
- Roenneberg, T.; Hastings, J.W. Two Photoreceptors Control the Circadian Clock of a Unicellular Alga. Naturwissenschaften 1988, 75, 206–207. [Google Scholar] [CrossRef]
- Roenneberg, T.; Deng, T.-S. Photobiology of the Gonyaulax Circadian System. I. Different Phase Response Curves for Red and Blue Light. Planta 1997, 202, 494–501. [Google Scholar] [CrossRef]
- Roenneberg, T.; Taylor, W. Light-Induced Phase Responses in Gonyaulax Are Drastically Altered by Creatine. J. Biol. Rhythms 1994, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Morse, D.; Milos, P.M.; Roux, E.; Hastings, J.W. Circadian Regulation of Bioluminescence in Gonyaulax Involves Translational Control. Proc. Natl. Acad. Sci. USA 1989, 86, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcinko, C.L.J.; Allen, J.T.; Poulton, A.J.; Painter, S.C.; Martin, A.P. Diurnal Variations of Dinoflagellate Bioluminescence within the Open-Ocean North-East Atlantic. J. Plankton Res. 2013, 35, 177–190. [Google Scholar] [CrossRef]
- Backus, R.H.; Yentsch, C.S.; Wing, A. Bioluminescence in the Surface Waters of the Sea. Nature 1961, 192, 518–521. [Google Scholar] [CrossRef]
- Yentsch, C.S.; Backus, R.H.; Wing, A. Factors Affecting the Vertical Distribution of Bioluminescence in the Euphotic Zone1. Limnol. Oceanogr. 1964, 9, 519–524. [Google Scholar] [CrossRef]
- Buskey, E.J.; Strom, S.; Coulter, C. Biolumiscence of Heterotrophic Dinoflagellates from Texas Coastal Waters. J. Exp. Mar. Biol. Ecol. 1992, 159, 37–49. [Google Scholar] [CrossRef]
- Shi, X.; Li, L.; Guo, C.; Lin, X.; Li, M.; Lin, S. Rhodopsin Gene Expression Regulated by the Light Dark Cycle, Light Spectrum and Light Intensity in the Dinoflagellate Prorocentrum. Front. Microbiol. 2015, 6, 555. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, H.; Lin, S. Light-Promoted Rhodopsin Expression and Starvation Survival in the Marine Dinoflagellate Oxyrrhis Marina. PLoS ONE 2014, 9, e114941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaheri, B.; Dagenais-Bellefeuille, S.; Song, B.; Morse, D. Assessing Transcriptional Responses to Light by the Dinoflagellate Symbiodinium. Microorganisms 2019, 7, 261. [Google Scholar] [CrossRef] [Green Version]
- Van Dolah, F.M.; Lidie, K.B.; Morey, J.S.; Brunelle, S.A.; Ryan, J.C.; Monroe, E.A.; Haynes, B.L. Microarray Analysis of Diurnal- and Circadian-Regulated Genes in the Florida Red-Tide Dinoflagellate Karenia Brevis (Dinophyceae). J. Phycol. 2007, 43, 741–752. [Google Scholar] [CrossRef]
- Swift, E.; Meunier, V. Effects of Light Intensity on Division Rate, Stimulable Bioluminescence and Cell Size of the Oceanic Dinoflagellates Dissodinium Lunula, Pyrocystis Fusiformis and Pyrocystis Noctiluca. J. Phycol. 1976, 12, 14–22. [Google Scholar]
- Anderson, D.M.; Stolzenbach, K.D. Selective Retention of Two Dinoflagellates in a Well-Mixed Estuarine Embayment: The Importance of Diel Vertical Migration and Surface Avoidance. Mar. Ecol. Progress Ser. 1985, 25, 39–50. [Google Scholar] [CrossRef]
- Roenneberg, T.; Colfax, G.N.; Hastings, J.W. A Circadian Rhythm of Population Behavior in Gonyaulax Polyedra. J. Biol. Rhythms 1989, 4, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Forward, R.B.; Davenport, D. The Circadian Rhythm of a Behavioral Photoresponse in the Dinoflagellate Gyrodinium Dorsum. Planta 1970, 92, 259–266. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kawai, H.; Kubota, M.; Takahashi, T.; Watanabe, M. Phototactic Responses of Four Marine Dinoflagellates with Different Types of Eyespot and Chloroplast. Phycol. Res. 1999, 47, 101–107. [Google Scholar] [CrossRef]
- Hand, W.G.; Forward, R.; Davenport, D. Short-Term Photic Regulation of a Receptor Mechanism in a Dinoflagellate. Biol. Bull. 1967, 133, 150–165. [Google Scholar] [CrossRef]
- Wang, L.-H.; Liu, Y.-H.; Ju, Y.-M.; Hsiao, Y.-Y.; Fang, L.-S.; Chen, C.-S. Cell Cycle Propagation Is Driven by Light–Dark Stimulation in a Cultured Symbiotic Dinoflagellate Isolated from Corals. Coral Reefs 2008, 27, 823. [Google Scholar] [CrossRef]
- Wangpraseurt, D.; Pernice, M.; Guagliardo, P.; Kilburn, M.R.; Clode, P.L.; Polerecky, L.; Kühl, M. Light Microenvironment and Single-Cell Gradients of Carbon Fixation in Tissues of Symbiont-Bearing Corals. ISME J. 2016, 10, 788–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingsworth, L.L.; Kinzie, R.A.; Lewis, T.D.; Krupp, D.A.; Leong, J.-A.C. Phototaxis of Motile Zooxanthellae to Green Light May Facilitate Symbiont Capture by Coral Larvae. Coral Reefs 2005, 24, 523. [Google Scholar] [CrossRef]
- Yamashita, H.; Koike, K.; Shinzato, C.; Jimbo, M.; Suzuki, G. Can Acropora Tenuis Larvae Attract Native Symbiodiniaceae Cells by Green Fluorescence at the Initial Establishment of Symbiosis? PLoS ONE 2021, 16, e0252514. [Google Scholar] [CrossRef]
- Bollati, E.; D’Angelo, C.; Alderdice, R.; Pratchett, M.; Ziegler, M.; Wiedenmann, J. Optical Feedback Loop Involving Dinoflagellate Symbiont and Scleractinian Host Drives Colorful Coral Bleaching. Curr. Biol. 2020, 30, 2433–2445.e3. [Google Scholar] [CrossRef]
- Jaubert, M.; Bouly, J.-P.; Ribera d’Alcalà, M.; Falciatore, A. Light Sensing and Responses in Marine Microalgae. Curr. Opin. Plant. Biol. 2017, 37, 70–77. [Google Scholar] [CrossRef]
- Duanmu, D.; Rockwell, N.C.; Lagarias, J.C. Algal Light Sensing and Photoacclimation in Aquatic Environments. Plant. Cell Environ. 2017, 40, 2558–2570. [Google Scholar] [CrossRef]
- Hayakawa, S.; Takaku, Y.; Hwang, J.S.; Horiguchi, T.; Suga, H.; Gehring, W.; Ikeo, K.; Gojobori, T. Function and Evolutionary Origin of Unicellular Camera-Type Eye Structure. PLoS ONE 2015, 10, e0118415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, T.G.; González-Pech, R.A.; Cheng, Y.; Mohamed, A.R.; Burt, D.W.; Bhattacharya, D.; Ragan, M.A.; Chan, C.X. Genomes of the Dinoflagellate Polarella Glacialis Encode Tandemly Repeated Single-Exon Genes with Adaptive Functions. BMC Biol. 2020, 18, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lin, S. Genomic Understanding of Dinoflagellates. Res. Microbiol. 2011, 162, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, C.; Amil-Ruiz, F.; Fuentes-Almagro, C.; De Donato, M.; Martinez-Rodriguez, G.; Escobar-Niño, A.; Carrasco, R.; Mancera, J.M.; Fernandez-Acero, F.J. An “Omic” Approach to Pyrocystis Lunula: New Insights Related with This Bioluminescent Dinoflagellate. J. Proteomics 2019, 209, 103502. [Google Scholar] [CrossRef]
- Rhiel, E.; Westermann, M.; Steiniger, F.; Hoischen, C. The Proteorhodopsins of the Dinoflagellate Oxyrrhis Marina: Ultrastructure and Localization by Immunofluorescence Light Microscopy and Immunoelectron Microscopy. Protoplasma 2020, 257, 1531–1541. [Google Scholar] [CrossRef]
- Rhiel, E.; Ammermann, S. The Influence of Light Quality and Prey Organisms on the Amounts of Rhodopsins of the Dinoflagellate Oxyrrhis Marina. Nova Hedwigia 2021, 112, 307–321. [Google Scholar] [CrossRef]
- Lowe, C.D.; Mello, L.V.; Samatar, N.; Martin, L.E.; Montagnes, D.J.S.; Watts, P.C. The Transcriptome of the Novel Dinoflagellate Oxyrrhis Marina (Alveolata: Dinophyceae): Response to Salinity Examined by 454 Sequencing. BMC Genom. 2011, 12, 519. [Google Scholar] [CrossRef] [Green Version]
- Kandori, H. History and Perspectives of Ion-Transporting Rhodopsins. Adv. Exp. Med. Biol. 2021, 1293, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Kandori, H. Ion-Pumping Microbial Rhodopsins. Front. Mol. Biosci. 2015, 2, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slamovits, C.H.; Okamoto, N.; Burri, L.; James, E.R.; Keeling, P.J. A Bacterial Proteorhodopsin Proton Pump in Marine Eukaryotes. Nat. Commun. 2011, 2, 183. [Google Scholar] [CrossRef]
- Janke, C.; Scholz, F.; Becker-Baldus, J.; Glaubitz, C.; Wood, P.G.; Bamberg, E.; Wachtveitl, J.; Bamann, C. Photocycle and Vectorial Proton Transfer in a Rhodopsin from the Eukaryote Oxyrrhis Marina. Biochemistry 2013, 52, 2750–2763. [Google Scholar] [CrossRef]
- Sineshchekov, O.A.; Jung, K.-H.; Spudich, J.L. Two Rhodopsins Mediate Phototaxis to Low- and High-Intensity Light in Chlamydomonas Reinhardtii. Proc. Natl. Acad. Sci. USA 2002, 99, 8689–8694. [Google Scholar] [CrossRef] [Green Version]
- Brunelle, S.A.; Hazard, E.S.; Sotka, E.E.; Dolah, F.M.V. Characterization of a Dinoflagellate Cryptochrome Blue-Light Receptor with a Possible Role in Circadian Control of the Cell Cycle1. J. Phycol. 2007, 43, 509–518. [Google Scholar] [CrossRef]
- Rockwell, N.C.; Lagarias, J.C. Phytochrome Diversification in Cyanobacteria and Eukaryotic Algae. Curr. Opin. Plant. Biol. 2017, 37, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehenberger, E.; Burki, F.; Kolisko, M.; Keeling, P.J. Functional Relationship between a Dinoflagellate Host and Its Diatom Endosymbiont. Mol. Biol. Evol. 2016, 33, 2376–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greuet, C. [Ultrastructural organization of the ocelloide of Nematodinium. Phylogenetic aspect of the evolution of Warnowiidae Lindemann dinoflagellates photoreceptor (author’s transl)]. Cytobiologie 1978, 17, 114–136. [Google Scholar]
- Jékely, G. Origin and Early Evolution of Neural Circuits for the Control of Ciliary Locomotion. Proc. Biol. Sci. 2011, 278, 914–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baluska, F.; Mancuso, S. Deep Evolutionary Origins of Neurobiology: Turning the Essence of “neural” Upside-Down. Commun. Integr. Biol. 2009, 2, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.Y.; Jékely, G. Origins of Eukaryotic Excitability. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20190758. [Google Scholar] [CrossRef]
- Kigundu, G.; Cooper, J.L.; Smith, S.M.E. Hv 1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence? J. Eukaryot. Microbiol. 2018, 65, 928–933. [Google Scholar] [CrossRef]
- Bray, D. Molecular Networks: The Top-down View. Science 2003, 301, 1864–1865. [Google Scholar] [CrossRef] [Green Version]
- Smayda, T.J. Adaptations and Selection of Harmful and Other Dinoflagellate Species in Upwelling Systems. 2. Motility and Migratory Behaviour. Progress Oceanogr. 2010, 85, 71–91. [Google Scholar] [CrossRef]
- Gómez, F. A Quantitative Review of the Lifestyle, Habitat and Trophic Diversity of Dinoflagellates (Dinoflagellata, Alveolata). Syst. Biodivers. 2012, 10, 267–275. [Google Scholar] [CrossRef]
- Gavelis, G.S.; Wakeman, K.C.; Tillmann, U.; Ripken, C.; Mitarai, S.; Herranz, M.; Özbek, S.; Holstein, T.; Keeling, P.J.; Leander, B.S. Microbial Arms Race: Ballistic “Nematocysts” in Dinoflagellates Represent a New Extreme in Organelle Complexity. Sci. Adv. 2017, 3, e1602552. [Google Scholar] [CrossRef] [Green Version]
- Stires, J.C.; Latz, M.I. Contribution of the Cytoskeleton to Mechanosensitivity Reported by Dinoflagellate Bioluminescence. Cytoskeleton 2018, 75, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Van Haastert, P.J.; Janssens, P.M.; Erneux, C. Sensory Transduction in Eukaryotes. A Comparison between Dictyostelium and Vertebrate Cells. Eur. J. Biochem. 1991, 195, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.T.; Leick, V.; Rasmussen, L.; Wheatley, D.N. Signaling in Unicellular Eukaryotes. Int. Rev. Cytol. 1998, 177, 181–253. [Google Scholar] [CrossRef]
- Van Duijn, M. Phylogenetic Origins of Biological Cognition: Convergent Patterns in the Early Evolution of Learning. Interface Focus 2017, 7, 20160158. [Google Scholar] [CrossRef] [Green Version]
- Forward, R.B. Effects of Neurochemicals upon a Dinoflagellate Photoresponse. J. Protozool. 1977, 24, 401–405. [Google Scholar] [CrossRef]
- Jin, K.; Klima, J.C.; Deane, G.; Stokes, M.D.; Latz, M.I. Pharmacological Investigation of the Bioluminescence Signaling Pathway of the Dinoflagellate Lingulodinium Polyedrum: Evidence for the Role of Stretch-Activated Ion Channels. J. Phycol. 2013, 49, 733–745. [Google Scholar] [CrossRef]
- Li, S.-W.; Lin, P.-H.; Ho, T.-Y.; Hsieh, C.-H.; Sun, C.-L. Change in Rheotactic Behavior Patterns of Dinoflagellates in Response to Different Microfluidic Environments. Sci. Rep. 2021, 11, 11105. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Carrara, F.; Stocker, R. Phytoplankton Can Actively Diversify Their Migration Strategy in Response to Turbulent Cues. Nature 2017, 543, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Lovecchio, S.; Climent, E.; Stocker, R.; Durham, W.M. Chain Formation Can Enhance the Vertical Migration of Phytoplankton through Turbulence. Sci. Adv. 2019, 5, eaaw7879. [Google Scholar] [CrossRef] [Green Version]
- Brosnahan, M.L.; Velo-Suárez, L.; Ralston, D.K.; Fox, S.E.; Sehein, T.R.; Shalapyonok, A.; Sosik, H.M.; Olson, R.J.; Anderson, D.M. Rapid Growth and Concerted Sexual Transitions by a Bloom of the Harmful Dinoflagellate Alexandrium Fundyense (Dinophyceae). Limnol. Oceanogr. 2015, 60, 2059–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, G.B.; Norén, F.; Selander, E.; Pavia, H. Marine Dinoflagellates Show Induced Life-History Shifts to Escape Parasite Infection in Response to Water-Borne Signals. Proc. Biol. Sci. 2004, 271, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Wootton, E.C.; Zubkov, M.V.; Jones, D.H.; Jones, R.H.; Martel, C.M.; Thornton, C.A.; Roberts, E.C. Biochemical Prey Recognition by Planktonic Protozoa. Environ. Microbiol. 2007, 9, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, H.; Liu, S.; Lin, S. Biology of the Marine Heterotrophic Dinoflagellate Oxyrrhis Marina: Current Status and Future Directions. Microorganisms 2013, 1, 33–57. [Google Scholar] [CrossRef]
- Coesel, S.N.; Durham, B.P.; Groussman, R.D.; Hu, S.K.; Caron, D.A.; Morales, R.L.; Ribalet, F.; Armbrust, E.V. Diel Transcriptional Oscillations of Light-Sensitive Regulatory Elements in Open-Ocean Eukaryotic Plankton Communities. Proc. Natl. Acad. Sci. USA 2021, 118, e2011038118. [Google Scholar] [CrossRef]
- Colepicolo, P.; Roenneberg, T.; Morse, D.; Taylor, W.R.; Hastings, J.W. Circadian Regulation of Bioluminescence in the Dinoflagellate Pyrocystis Lunula1. J. Phycol. 1993, 29, 173–179. [Google Scholar] [CrossRef]
- Hastings, J.W. The Gonyaulax Clock at 50: Translational Control of Circadian Expression. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Deane, G.B.; Stokes, M.D.; Latz, M.I. Bubble Stimulation Efficiency of Dinoflagellate Bioluminescence. Luminescence 2016, 31, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Cussatlegras, A.-S.; Le Gal, P. Variability in the Bioluminescence Response of the Dinoflagellate Pyrocystis Lunula. J. Exp. Mar. Biol. Ecol. 2007, 343, 74–81. [Google Scholar] [CrossRef]
- Rohr, J.; Hyman, M.; Fallon, S.; Latz, M.I. Bioluminescence Flow Visualization in the Ocean: An Initial Strategy Based on Laboratory Experiments. Deep Sea Res. Part I Oceanogr. Res. Papers 2002, 49, 2009–2033. [Google Scholar] [CrossRef]
- Cussatlegras, A.-S.; Le Gal, P. Bioluminescence of the Dinoflagellate Pyrocystis Noctiluca Induced by Laminar and Turbulent Couette Flow. J. Exp. Mar. Biol. Ecol. 2004, 310, 227–246. [Google Scholar] [CrossRef]
- Jalaal, M.; Schramma, N.; Dode, A.; de Maleprade, H.; Raufaste, C.; Goldstein, R.E. Stress-Induced Dinoflagellate Bioluminescence at the Single Cell Level. Phys. Rev. Lett. 2020, 125, 028102. [Google Scholar] [CrossRef]
- Rosenthal, G.G.; Ryan, M.J. Visual and Acoustic Communication in Non-Human Animals: A Comparison. J. Biosci. 2000, 25, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, Y.L.; Templin, R.M.; How, M.J.; Marshall, N.J. Circularly Polarized Light as a Communication Signal in Mantis Shrimps. Curr. Biol. 2015, 25, 3074–3078. [Google Scholar] [CrossRef] [Green Version]
- Burford, B.P.; Robison, B.H. Bioluminescent Backlighting Illuminates the Complex Visual Signals of a Social Squid in the Deep Sea. Proc. Natl. Acad. Sci. USA 2020, 117, 8524–8531. [Google Scholar] [CrossRef]
- Stuart-Fox, D.; Ospina-Rozo, L.; Ng, L.; Franklin, A.M. The Paradox of Iridescent Signals. Trends Ecol. Evol. 2021, 36, 187–195. [Google Scholar] [CrossRef]
- Doucet, S.M.; Meadows, M.G. Iridescence: A Functional Perspective. J. R. Soc. Interface 2009, 6 (Suppl. 2), S115–S132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäthger, L.M.; Denton, E.J.; Marshall, N.J.; Hanlon, R.T. Mechanisms and Behavioural Functions of Structural Coloration in Cephalopods. J. R. Soc. Interface 2009, 6, S149–S163. [Google Scholar] [CrossRef] [Green Version]
- Macel, M.-L.; Ristoratore, F.; Locascio, A.; Spagnuolo, A.; Sordino, P.; D’Aniello, S. Sea as a Color Palette: The Ecology and Evolution of Fluorescence. Zool. Lett. 2020, 6, 9. [Google Scholar] [CrossRef]
- Hauser, F.E.; Chang, B.S. Insights into Visual Pigment Adaptation and Diversity from Model Ecological and Evolutionary Systems. Curr. Opin. Genet. Dev. 2017, 47, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P.; Figueroa, R.I.; Ramilo, I.; Bravo, I. The Life History of the Toxic Marine Dinoflagellate Protoceratium Reticulatum (Gonyaulacales) in Culture. Harmful Algae 2017, 68, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Chen, Y.; Bhattacharya, D.; Chan, C.X. Sex in Symbiodiniaceae Dinoflagellates: Genomic Evidence for Independent Loss of the Canonical Synaptonemal Complex. Sci. Rep. 2020, 10, 9792. [Google Scholar] [CrossRef]
- Figueroa, R.I.; Dapena, C.; Bravo, I.; Cuadrado, A. The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates. PLoS ONE 2015, 10, e0142667. [Google Scholar] [CrossRef] [Green Version]
- Berdieva, M.; Kalinina, V.; Lomert, E.; Knyazev, N.; Skarlato, S. Life Cycle Stages and Evidence of Sexual Reproduction in the Marine Dinoflagellate Prorocentrum Minimum (Dinophyceae, Prorocentrales). J. Phycol. 2020, 56, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Moiseff, A.; Copeland, J. Firefly Synchrony: A Behavioral Strategy to Minimize Visual Clutter. Science 2010, 329, 181. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.M.; Cratsley, C.K. Flash Signal Evolution, Mate Choice, and Predation in Fireflies. Annu. Rev. Entomol. 2008, 53, 293–321. [Google Scholar] [CrossRef] [Green Version]
- Goodheart, J.A.; Minsky, G.; Brynjegard-Bialik, M.N.; Drummond, M.S.; Munoz, J.D.; Fallon, T.R.; Schultz, D.T.; Weng, J.-K.; Torres, E.; Oakley, T.H. Laboratory Culture of the California Sea Firefly Vargula Tsujii (Ostracoda: Cypridinidae): Developing a Model System for the Evolution of Marine Bioluminescence. Sci. Rep. 2020, 10, 10443. [Google Scholar] [CrossRef] [PubMed]
- Hensley, N.M.; Ellis, E.A.; Gerrish, G.A.; Torres, E.; Frawley, J.P.; Oakley, T.H.; Rivers, T.J. Phenotypic Evolution Shaped by Current Enzyme Function in the Bioluminescent Courtship Signals of Sea Fireflies. Proc. Biol. Sci. 2019, 286, 20182621. [Google Scholar] [CrossRef] [Green Version]
- Rivers, T.J.; Morin, J.G. The Relative Cost of Using Luminescence for Sex and Defense: Light Budgets in Cypridinid Ostracods. J. Exp. Biol. 2012, 215, 2860–2868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivers, T.J.; Morin, J.G. Complex Sexual Courtship Displays by Luminescent Male Marine Ostracods. J. Exp. Biol. 2008, 211, 2252–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herring, P.J. Species Abundance, Sexual Encounter and Bioluminescent Signalling in the Deep Sea. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Schweikert, L.E.; Davis, A.L.; Johnsen, S.; Bracken-Grissom, H.D. Visual Perception of Light Organ Patterns in Deep-Sea Shrimps and Implications for Conspecific Recognition. Ecol. Evol. 2020, 10, 9503–9513. [Google Scholar] [CrossRef] [PubMed]
- López-Palafox, T.; Macías-Ordóñez, R.; Cordero, C.R. The Size of Signal Detection and Emission Organs in a Synchronous Firefly: Sexual Dimorphism, Allometry and Assortative Mating. PeerJ 2020, 8, e10127. [Google Scholar] [CrossRef]
- Clark, K.B. Origins of Learned Reciprocity in Solitary Ciliates Searching Grouped “courting” Assurances at Quantum Efficiencies. Biosystems 2010, 99, 27–41. [Google Scholar] [CrossRef]
- Clark, K.B. Social Biases Determine Spatiotemporal Sparseness of Ciliate Mating Heuristics. Commun. Integr. Biol. 2012, 5, 3–11. [Google Scholar] [CrossRef]
- Görtz, H.D.; Kuhlmann, H.W.; Möllenbeck, M.; Tiedtke, A.; Kusch, J.; Schmidt, H.J.; Miyake, A. Intra- and Intercellular Communication Systems in Ciliates. Naturwissenschaften 1999, 86, 422–434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timsit, Y.; Lescot, M.; Valiadi, M.; Not, F. Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int. J. Mol. Sci. 2021, 22, 11311. https://doi.org/10.3390/ijms222111311
Timsit Y, Lescot M, Valiadi M, Not F. Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. International Journal of Molecular Sciences. 2021; 22(21):11311. https://doi.org/10.3390/ijms222111311
Chicago/Turabian StyleTimsit, Youri, Magali Lescot, Martha Valiadi, and Fabrice Not. 2021. "Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective" International Journal of Molecular Sciences 22, no. 21: 11311. https://doi.org/10.3390/ijms222111311
APA StyleTimsit, Y., Lescot, M., Valiadi, M., & Not, F. (2021). Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. International Journal of Molecular Sciences, 22(21), 11311. https://doi.org/10.3390/ijms222111311