Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies
Abstract
:1. Background
2. Microbiome-Immune Interactions in UC
2.1. Immune System Perturbations in UC
2.1.1. Physical Barrier
2.1.2. Immunoglobulin A
2.1.3. Innate and Adaptive Immunity
2.2. Intestinal Microbiota Composition in Ulcerative Colitis
3. Therapeutic Implications of Modifying the Intestinal Microbiome in the Treatment of Ulcerative Colitis
3.1. Prebiotics
3.2. Probiotics
3.3. Synbiotics
3.4. Antibiotics
3.5. Fecal Microbiota Transplantation
4. Microbial Influence on Progression to Colitis-Associated Cancer
4.1. Gut Dysbiosis and CAC
4.2. Intestinal Microbiota as an Emerging Target for the Treatment of Colitis-Associated Cancer
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto-Furusho, J.K.; Martínez-Benítez, B.; Sánchez-Morales, G.E. Histopathologic Parameters at Diagnosis as Early Predictors of Histologic Remission along the Course of Ulcerative Colitis. Gastroenterol. Res. Pract. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Jairath, V.; Feagan, B.G. Global Burden of Inflammatory Bowel Disease. Lancet Gastroenterol. Hepatol. 2020, 5, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.D.; McGovern, D.P.B. Genetic Variation in IBD: Progress, Clues to Pathogenesis and Possible Clinical Utility. Expert Rev. Clin. Immunol. 2016, 12, 1091–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigneur, B.; Ruemmele, F.M. Nutritional Interventions for the Treatment of IBD: Current Evidence and Controversies. Ther. Adv. Gastroenterol. 2019, 12, 175628481989053. [Google Scholar] [CrossRef]
- Saidel-Odes, L.; Odes, S. Hygiene Hypothesis in Inflammatory Bowel Disease. Ann. Gastroenterol. 2014, 27, 189–190. [Google Scholar]
- Troelsen, F.S.; Jick, S. Antibiotic Use in Childhood and Adolescence and Risk of Inflammatory Bowel Disease: A Case-Control Study in the UK Clinical Practice Research Datalink. Inflamm. Bowel Dis. 2020, 26, 440–447. [Google Scholar] [CrossRef]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The Risk of Colorectal Cancer in Ulcerative Colitis: A Meta-Analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Yashiro, M. Ulcerative Colitis-Associated Colorectal Cancer. World J. Gastroenterol. 2014, 20, 16389–16397. [Google Scholar] [CrossRef]
- Kinugasa, T.; Akagi, Y. Status of Colitis-Associated Cancer in Ulcerative Colitis. World J. Gastrointest. Oncol. 2016, 8, 351. [Google Scholar] [CrossRef]
- Greuter, T.; Rieder, F.; Kucharzik, T.; Peyrin-Biroulet, L.; Schoepfer, A.M.; Rubin, D.T.; Vavricka, S.R. Emerging Treatment Options for Extraintestinal Manifestations in IBD. Gut 2021, 70, 796–802. [Google Scholar] [CrossRef]
- Olén, O.; Erichsen, R.; Sachs, M.C.; Pedersen, L.; Halfvarson, J.; Askling, J.; Ekbom, A.; Sørensen, H.T.; Ludvigsson, J.F. Colorectal Cancer in Ulcerative Colitis: A Scandinavian Population-Based Cohort Study. Lancet 2020, 395, 123–131. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Roselli, M.; Finamore, A. Use of Synbiotics for Ulcerative Colitis Treatment. Curr. Clin. Pharmacol. 2019, 15, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Fricke, W.F.; Ravel, J. Microbiome or No Microbiome: Are We Looking at the Prenatal Environment through the Right Lens? Microbiome 2021, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Wopereis, H.; Oozeer, R.; Knipping, K.; Belzer, C.; Knol, J. The First Thousand Days - Intestinal Microbiology of Early Life: Establishing a Symbiosis. Pediatr. Allergy Immunol. 2014, 25, 428–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BioRender. Available online: www.biorender.com (accessed on 1 August 2021).
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental Triggers in IBD: A Review of Progress and Evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Sabino, J.; Frias-Gomes, C.; Hillenbrand, C.M.; Soudant, C.; Axelrad, J.E.; Shah, S.C.; Ribeiro-Mourão, F.; Lambin, T.; Peter, I.; et al. Early Life Exposures and the Risk of Inflammatory Bowel Disease: Systematic Review and Meta-Analyses. EClinicalMedicine 2021, 36, 100884. [Google Scholar] [CrossRef]
- Torun, A.; Hupalowska, A.; Trzonkowski, P.; Kierkus, J.; Pyrzynska, B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [Green Version]
- MacPherson, A.J.; Slack, E.; Geuking, M.B.; McCoy, K.D. The Mucosal Firewalls against Commensal Intestinal Microbes. Semin. Immunopathol. 2009, 31, 145–149. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Holmén Larsson, J.M.; Hansson, G.C. The Two Mucus Layers of Colon Are Organized by the MUC2 Mucin, Whereas the Outer Layer Is a Legislator of Host-Microbial Interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 4659–4665. [Google Scholar] [CrossRef] [Green Version]
- Selma-Royo, M.; Calatayud Arroyo, M.; García-Mantrana, I.; Parra-Llorca, A.; Escuriet, R.; Martínez-Costa, C.; Collado, M.C. Perinatal Environment Shapes Microbiota Colonization and Infant Growth: Impact on Host Response and Intestinal Function. Microbiome 2020, 8. [Google Scholar] [CrossRef]
- Alipour, M.; Zaidi, D.; Valcheva, R.; Jovel, J.; Martínez, I.; Sergi, C.; Walter, J.; Mason, A.L.; Ka-Shu Wong, G.; Dieleman, L.A.; et al. Mucosal Barrier Depletion and Loss of Bacterial Diversity Are Primary Abnormalities in Paediatric Ulcerative Colitis. J. Crohn’s Colitis 2016, 10, 462–471. [Google Scholar] [CrossRef]
- Pothuraju, R.; Krishn, S.R.; Gautam, S.K.; Pai, P.; Ganguly, K.; Chaudhary, S.; Rachagani, S.; Kaur, S.; Batra, S.K. Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers 2020, 12, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, E.C.; Neumann, M.; Desai, M.S. Interactions of Commensal and Pathogenic Microorganisms with the Intestinal Mucosal Barrier. Nat. Rev. Microbiol. 2018, 16, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Altenbach, D.; Robatzek, S. Pattern Recognition Receptors: From the Cell Surface to Intracellular Dynamics. Mol. Plant-Microbe Interact. 2007, 20, 1031–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specian, R.D.; Oliver, M.G. Functional Biology of Intestinal Goblet Cells. Am. J. Physiol.-Cell Physiol. 1991, 260. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2015, 14, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuckin, M.A.; Lindén, S.K.; Sutton, P.; Florin, T.H. Mucin Dynamics and Enteric Pathogens. Nat. Rev. Microbiol. 2011, 9, 265–278. [Google Scholar] [CrossRef]
- Vanhooren, V.; Vandenbroucke, R.E.; Dewaele, S.; Van Hamme, E.; Haigh, J.J.; Hochepied, T.; Libert, C. Mice Overexpressing β-1,4-Galactosyltransferase i Are Resistant to TNF-Induced Inflammation and DSS-Induced Colitis. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Dorofeyev, A.E.; Vasilenko, I.V.; Rassokhina, O.A.; Kondratiuk, R.B. Mucosal Barrier in Ulcerative Colitis and Crohn’s Disease. Gastroenterol. Res. Pract. 2013, 2013, 431231. [Google Scholar] [CrossRef]
- Yamamoto-Furusho, J.K.; Ascaño-Gutiérrez, I.; Furuzawa-Carballeda, J.; Fonseca-Camarillo, G. Differential Expression of MUC12, MUC16, and MUC20 in Patients with Active and Remission Ulcerative Colitis. Mediat. Inflamm. 2015, 2015, 659018. [Google Scholar] [CrossRef] [Green Version]
- Longman, R.J.; Poulsom, R.; Corfield, A.P.; Warren, B.F.; Wright, N.A.; Thomas, M.G. Alterations in the Composition of the Supramucosal Defense Barrier in Relation to Disease Severity of Ulcerative Colitis. J. Histochem. Cytochem. 2006, 54, 1335–1348. [Google Scholar] [CrossRef] [Green Version]
- Grondin, J.A.; Kwon, Y.H.; Far, P.M.; Haq, S.; Khan, W.I. Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancamelbeke, M.; Vermeire, S. The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Howell, K.J.; Kraiczy, J.; Nayak, K.M.; Gasparetto, M.; Ross, A.; Lee, C.; Mak, T.N.; Koo, B.K.; Kumar, N.; Lawley, T.; et al. DNA Methylation and Transcription Patterns in Intestinal Epithelial Cells from Pediatric Patients with Inflammatory Bowel Diseases Differentiate Disease Subtypes and Associate With Outcome. Gastroenterology 2018, 154, 585–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, A.; Nagata, S.; Anzai, S.; Takahashi, J.; Kawai, M.; Hama, M.; Nogawa, D.; Yamamoto, K.; Kuno, R.; Suzuki, K.; et al. Ubiquitin D Is Upregulated by Synergy of Notch Signalling and TNF-α in the Inflamed Intestinal Epithelia of IBD Patients. J. Crohn’s Colitis 2019, 13, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Blander, J.M. Death in the Intestinal Epithelium—Basic Biology and Implications for Inflammatory Bowel Disease. FEBS J. 2016, 2720–2730. [Google Scholar] [CrossRef] [PubMed]
- Ruder, B.; Atreya, R.; Becker, C. Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int. J. Mol. Sci. 2019, 20, 1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaujoux, R.; Starosvetsky, E.; Maimon, N.; Vallania, F.; Bar-Yoseph, H.; Pressman, S.; Weisshof, R.; Goren, I.; Rabinowitz, K.; Waterman, M.; et al. Cell-Centred Meta-Analysis Reveals Baseline Predictors of Anti-TNFα Non-Response in Biopsy and Blood of Patients with IBD. Gut 2019, 68, 604–614. [Google Scholar] [CrossRef]
- Brandtzaeg, P.; Johansen, F.E. Mucosal B Cells: Phenotypic Characteristics, Transcriptional Regulation, and Homing Properties. Immunol. Rev. 2005, 206, 32–63. [Google Scholar] [CrossRef]
- Gommerman, J.L.; Rojas, O.L.; Fritz, J.H. Re-Thinking the Functions of IgA+plasma Cells. Gut Microbes 2015, 5, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Pabst, O.; Cerovic, V.; Hornef, M. Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends Immunol. 2016, 37, 287–296. [Google Scholar] [CrossRef]
- Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular Analysis of Commensal Host-Microbial Relationships in the Intestine. Science 2001, 291, 881–884. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.E.C.; Rogier, E.W.; Frantz, A.L.; Stefka, A.T.; Thompson, S.N.; Kaetzel, C.S. Regulation of the Polymeric Immunoglobulin Receptor in Intestinal Epithelial Cells by Enterobacteriaceae: Implications for Mucosal Homeostasis. Immunol. Investig. 2010, 39, 356–382. [Google Scholar] [CrossRef]
- Wei, H.; Wang, J.Y. Role of Polymeric Immunoglobulin Receptor in Iga and Igm Transcytosis. Int. J. Mol. Sci. 2021, 22, 2284. [Google Scholar] [CrossRef] [PubMed]
- Johansen, F.E.; Kaetzel, C.S. Regulation of the Polymeric Immunoglobulin Receptor and IgA Transport: New Advances in Environmental Factors That Stimulate PIgR Expression and Its Role in Mucosal Immunity. Mucosal Immunol. 2011, 4, 598–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Steen, L.; Tuk, C.W.; Bakema, J.E.; Kooij, G.; Reijerkerk, A.; Vidarsson, G.; Bouma, G.; Kraal, G.; de Vries, H.E.; Beelen, R.H.J.; et al. Immunoglobulin A: FcαRI Interactions Induce Neutrophil Migration Through Release of Leukotriene B4. Gastroenterology 2009, 137. [Google Scholar] [CrossRef]
- Traicoff, J.L.; De Marchis, L.; Ginsburg, B.L.; Zamora, R.E.; Khattar, N.H.; Blanch, V.J.; Plummer, S.; Bargo, S.A.; Templeton, D.J.; Casey, G.; et al. Characterization of the Human Polymeric Immunoglobulin Receptor (PIGR) 3′UTR and Differential Expression of PIGR MRNA during Colon Tumorigenesis. J. Biomed. Sci. 2003, 10, 792–804. [Google Scholar] [CrossRef]
- Hurtado, C.G.; Wan, F.; Housseau, F.; Sears, C.L. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018, 155, 1706–1715. [Google Scholar] [CrossRef]
- Caputi, V.; Popov, J.; Giron, M.C.; O’Mahony, S. Gut Microbiota as a Mediator of Host Neuro-Immune Interactions: Implications in Neuroinflammatory Disorders. Mod. Trends Psychiatry 2021, 32, 40–57. [Google Scholar] [CrossRef]
- Rescigno, M. CCR6+ Dendritic Cells: The Gut Tactical-Response Unit. Immunity 2006, 24, 508–510. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Nguyen, A.; Gommerman, J.L. Dendritic Cell Subsets in Intestinal Immunity and Inflammation. J. Immunol. 2020, 204, 1075–1083. [Google Scholar] [CrossRef]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Philip Schumm, L.; Sharma, Y.; Anderson, C.A.; et al. Host-Microbe Interactions Have Shaped the Genetic Architecture of Inflammatory Bowel Disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbach, E.C.; Plevy, S.E. The Role of Macrophages and Dendritic Cells in the Initiation of Inflammation in IBD. Inflamm. Bowel Dis. 2014, 20, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, A.L.; Al-Hassi, H.O.; Rigby, R.J.; Bell, S.J.; Emmanuel, A.V.; Knight, S.C.; Kamm, M.A.; Stagg, A.J. Characteristics of Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Gastroenterology 2005, 129, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Verstockt, B.; Ferrante, M.; Vermeire, S.; Van Assche, G. New Treatment Options for Inflammatory Bowel Diseases. J. Gastroenterol. 2018, 53, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Heller, F.; Fromm, A.; Gitter, A.H.; Mankertz, J.; Schulzke, J.D. Epithelial Apoptosis Is a Prominent Feature of the Epithelial Barrier Disturbance in Intestinal Inflammation: Effect of pro-Inflammatory Interleukin-13 on Epithelial Cell Function. Mucosal Immunol. 2008, 1, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.G.; Sefik, E.; Geva-Zatorsky, N.; Kua, L.; Naskar, D.; Teng, F.; Pasman, L.; Ortiz-Lopez, A.; Jupp, R.; Wu, H.J.J.; et al. Identifying Species of Symbiont Bacteria from the Human Gut That, Alone, Can Induce Intestinal Th17 Cells in Mice. Proc. Natl. Acad. Sci. USA 2016, 113, E8141–E8150. [Google Scholar] [CrossRef] [Green Version]
- Erturk-Hasdemir, D.; Oh, S.F.; Okan, N.A.; Stefanetti, G.; Gazzaniga, F.S.; Seeberger, P.H.; Plevy, S.E.; Kasper, D.L. Symbionts Exploit Complex Signaling to Educate the Immune System. Proc. Natl. Acad. Sci. USA 2019, 116, 26157–26166. [Google Scholar] [CrossRef]
- Zhao, F.; Qu, J.; Wang, W.; Li, S.; Xu, S. The Imbalance of Th1/Th2 Triggers an Inflammatory Response in Chicken Spleens after Ammonia Exposure. Poult. Sci. 2020, 99, 3817–3822. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananthakrishnan, A.N. Epidemiology and Risk Factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 205–217. [Google Scholar] [CrossRef]
- Lyte, J.M. Eating for 3.8 × 1013: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis through the Lens of Microbial Endocrinology. Front. Endocrinol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, L.Y.; Ke, Y.S.; Zhao, H.H.; Wang, L.; Jia, C.; Liu, W.Z.; Fu, Q.H.; Shi, M.N.; Cui, J.; Li, S.C. Role of Colonic Microbiota in the Pathogenesis of Ulcerative Colitis. BMC Gastroenterol. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal Microbiota Dysbiosis in IBD. Gut 2017, 66, 1039–1048. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Liu, C.; Jiang, S.; Qian, D.; Duan, J. Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis. Infect. Immun. 2021, 89. [Google Scholar] [CrossRef]
- Pavel, F.M.; Vesa, C.M.; Gheorghe, G.; Diaconu, C.C.; Stoicescu, M.; Munteanu, M.A.; Babes, E.E.; Tit, D.M.; Toma, M.M.; Bungau, S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics 2021, 11, 1090. [Google Scholar] [CrossRef]
- Frank, D.N.; St., Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.L.; Dai, Y.C.; Zheng, L.; Chen, Y.L.; Zhang, Y.L.; Tang, Z.P. Features of the Gut Microbiota in Ulcerative Colitis Patients with Depression: A Pilot Study. Medicine 2021, 100, e24845. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Bai, X.; Cao, X.; Yue, W.; Jiang, W.; Yu, Z. Changes in Intestinal Microbiota and Correlation with TLRs in Ulcerative Colitis in the Coastal Area of Northern China. Microb. Pathog. 2021, 150. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Macsharry, J.; Darby, T.; Fanning, A.; Shanahan, F.; Houston, A.; Brint, E. Differential Expression of Key Regulators of Toll-like Receptors in Ulcerative Colitis and Crohn’s Disease: A Role for Tollip and Peroxisome Proliferator-Activated Receptor Gamma? Clin. Exp. Immunol. 2016, 183, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchimont, D.; Vermeire, S.; El Housni, H.; Pierik, M.; Van Steen, K.; Gustot, T.; Quertinmont, E.; Abramowicz, M.; Van Gossum, A.; Devière, J.; et al. Deficient Host-Bacteria Interactions in Inflammatory Bowel Disease? The Toll-like Receptor (TLR)-4 Asp299gly Polymorphism Is Associated with Crohn’s Disease and Ulcerative Colitis. Gut 2004, 53, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galipeau, H.J.; Caminero, A.; Turpin, W.; Bermudez-Brito, M.; Santiago, A.; Libertucci, J.; Constante, M.; Raygoza Garay, J.A.; Rueda, G.; Armstrong, S.; et al. Novel Fecal Biomarkers That Precede Clinical Diagnosis of Ulcerative Colitis. Gastroenterology 2021, 160, 1532–1545. [Google Scholar] [CrossRef]
- Wiechers, C.; Zou, M.; Galvez, E.; Beckstette, M.; Ebel, M.; Strowig, T.; Huehn, J.; Pezoldt, J. The Microbiota Is Dispensable for the Early Stages of Peripheral Regulatory T Cell Induction within Mesenteric Lymph Nodes. Cell. Mol. Immunol. 2021, 18, 1211–1221. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg Induction by a Rationally Selected Mixture of Clostridia Strains from the Human Microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A Decrease of the Butyrate-Producing Species Roseburia Hominis and Faecalibacterium Prausnitzii Defines Dysbiosis in Patients with Ulcerative Colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef]
- Jiang, P.; Wu, S.; Luo, Q.; Zhao, X.; Chen, W.-H. Metagenomic Analysis of Common Intestinal Diseases Reveals Relationships among Microbial Signatures and Powers Multidisease Diagnostic Models. mSystems 2021, 6. [Google Scholar] [CrossRef]
- Ryan, F.J.; Ahern, A.M.; Fitzgerald, R.S.; Laserna-Mendieta, E.J.; Power, E.M.; Clooney, A.G.; O’Donoghue, K.W.; McMurdie, P.J.; Iwai, S.; Crits-Christoph, A.; et al. Colonic Microbiota Is Associated with Inflammation and Host Epigenomic Alterations in Inflammatory Bowel Disease. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Ohkusa, T.; Yoshida, T.; Sato, N.; Watanabe, S.; Tajiri, H.; Okayasu, I. Commensal Bacteria Can Enter Colonic Epithelial Cells and Induce Proinflammatory Cytokine Secretion: A Possible Pathogenic Mechanism of Ulcerative Colitis. J. Med. Microbiol. 2009, 58, 535–545. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.J.-P.; Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [Green Version]
- Nishihara, Y.; Ogino, H.; Tanaka, M.; Ihara, E.; Fukaura, K.; Nishioka, K.; Chinen, T.; Tanaka, Y.; Nakayama, J.; Kang, D.; et al. Mucosa-Associated Gut Microbiota Reflects Clinical Course of Ulcerative Colitis. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Kedia, S.; Ghosh, T.S.; Jain, S.; Desigamani, A.; Kumar, A.; Gupta, V.; Bopanna, S.; Yadav, D.P.; Goyal, S.; Makharia, G.; et al. Gut Microbiome Diversity in Acute Severe Colitis Is Distinct from Mild to Moderate Ulcerative Colitis. J. Gastroenterol. Hepatol. 2021, 36, 731–739. [Google Scholar] [CrossRef]
- Qiu, X.; Ma, J.; Jiao, C.; Mao, X.; Zhao, X.; Lu, M.; Wang, K.; Zhang, H. Alterations in the Mucosa-Associated Fungal Microbiota in Patients with Ulcerative Colitis. Oncotarget 2017, 8, 107577–107588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoarau, G.; Mukherjee, P.K.; Gower-Rousseau, C.; Hager, C.; Chandra, J.; Retuerto, M.A.; Neut, C.; Vermeire, S.; Clemente, J.; Colombel, J.F.; et al. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease. MBio 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, T.; Lu, X.J.; Zhang, Y.; Cheung, C.P.; Lam, S.; Zhang, F.; Tang, W.; Ching, J.Y.L.; Zhao, R.; Chan, P.K.S.; et al. Gut Mucosal Virome Alterations in Ulcerative Colitis. Gut 2019, 68, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Gogokhia, L.; Buhrke, K.; Bell, R.; Hoffman, B.; Brown, D.G.; Hanke-Gogokhia, C.; Ajami, N.J.; Wong, M.C.; Ghazaryan, A.; Valentine, J.F.; et al. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe 2019, 25, 285–299.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friswell, M.; Campbell, B.; Rhodes, J. The Role of Bacteria in the Pathogenesis of Inflammatory Bowel Disease. Gut Liver 2010, 4, 295–306. [Google Scholar] [CrossRef]
- Norman, J.M.; Handley, S.A.; Baldridge, M.T.; Droit, L.; Liu, C.Y.; Keller, B.C.; Kambal, A.; Monaco, C.L.; Zhao, G.; Fleshner, P.; et al. Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell 2015, 160, 447–460. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, A.; Sokol, H. Gut Microbiota-Derived Metabolites as Key Actors in Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef]
- Sinopoulou, V.; Gordon, M.; Dovey, T.M.; Akobeng, A.K. Interventions for the Management of Abdominal Pain in Ulcerative Colitis. Cochrane Database Syst. Rev. 2021, 2021. [Google Scholar] [CrossRef]
- Gyawali, R.; Nwamaioha, N.; Fiagbor, R.; Zimmerman, T.; Newman, R.H.; Ibrahim, S.A. The Role of Prebiotics in Disease Prevention and Health Promotion. In Dietary Interventions in Gastrointestinal Diseases: Foods, Nutrients, and Dietary Supplements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–167. ISBN 9780128144695. [Google Scholar]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priyadarshini, M.; Kotlo, K.U.; Dudeja, P.K.; Layden, B.T. Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr. Physiol. 2018, 8, 1065–1090. [Google Scholar] [CrossRef]
- Kanauchi, O.; Matsumoto, Y.; Matsumura, M.; Fukuoka, M.; Bamba, T. The Beneficial Effects of Microflora, Especially Obligate Anaerobes, and Their Products on the Colonic Environment in Inflammatory Bowel Disease. Curr. Pharm. Des. 2005, 11, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Venegas, D.P.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.M.; Faber, K.N.; Hermoso, M.A.; Parada Venegas, D.; et al. Short Chain Fatty Acids (SCFAs)Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Faghfoori, Z.; Navai, L.; Shakerhosseini, R.; Somi, M.H.; Nikniaz, Z.; Norouzi, M.F. Effects of an Oral Supplementation of Germinated Barley Foodstuff on Serum Tumour Necrosis Factor-α, Interleukin-6 and -8 in Patients with Ulcerative Colitis. Ann. Clin. Biochem. 2011, 48, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casellas, F.; Borruel, N.; Torrejón, A.; Varela, E.; Antolin, M.; Guarner, F.; Malagelada, J.R. Oral Oligofructose-Enriched Inulin Supplementation in Acute Ulcerative Colitis Is Well Tolerated and Associated with Lowered Faecal Calprotectin. Aliment. Pharmacol. Ther. 2007, 25, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, F.A.; Di Marzo, V. The Gut Microbiome, Endocannabinoids and Metabolic Disorders. J. Endocrinol. 2021, 248, R83–R97. [Google Scholar] [CrossRef] [PubMed]
- Chibbar, R.; Dieleman, L.A. The Gut Microbiota in Celiac Disease and Probiotics. Nutrients 2019, 11, 2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellavia, M.; Tomasello, G.; Romeo, M.; Damiani, P.; Lo Monte, A.I.; Lozio, L.; Campanella, C.; Gammazza, A.M.; Rappa, F.; Zummo, G.; et al. Gut Microbiota Imbalance and Chaperoning System Malfunction Are Central to Ulcerative Colitis Pathogenesis and Can Be Counteracted with Specifically Designed Probiotics: A Working Hypothesis. Med. Microbiol. Immunol. 2013, 202, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iheozor-Ejiofor, Z.; Kaur, L.; Gordon, M.; Baines, P.A.; Sinopoulou, V.; Akobeng, A.K. Probiotics for Maintenance of Remission in Ulcerative Colitis. Cochrane Database Syst. Rev. 2020, 2020, CD007443. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Gomez-Llorente, C.; Abadia-Molina, F.; Saez-Lara, M.J.; Campaña-Martin, L.; Muñoz-Quezada, S.; Romero, F.; Gil, A.; Fontana, L. Effects of Lactobacillus Paracasei CNCM I-4034, Bifidobacterium Breve CNCM I-4035 and Lactobacillus Rhamnosus CNCM I-4036 on Hepatic Steatosis in Zucker Rats. PLoS ONE 2014, 9, e98401. [Google Scholar] [CrossRef]
- Hering, L.; Katkeviciute, E.; Schwarzfischer, M.; Busenhart, P.; Gottier, C.; Mrdjen, D.; Komuczki, J.; Wawrzyniak, M.; Lang, S.; Atrott, K.; et al. Protein Tyrosine Phosphatase Non-Receptor Type 2 Function in Dendritic Cells Is Crucial to Maintain Tissue Tolerance. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Nougayrède, J.P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.; Oswald, E. Escherichia Coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science 2006, 313, 848–851. [Google Scholar] [CrossRef]
- De Vrese, M.; Marteau, P.R. Probiotics and Prebiotics: Effects on Diarrhea. J. Nutr. 2007, 137. [Google Scholar] [CrossRef] [Green Version]
- Fujimori, S.; Gudis, K.; Mitsui, K.; Seo, T.; Yonezawa, M.; Tanaka, S.; Tatsuguchi, A.; Sakamoto, C. A Randomized Controlled Trial on the Efficacy of Synbiotic versus Probiotic or Prebiotic Treatment to Improve the Quality of Life in Patients with Ulcerative Colitis. Nutrition 2009, 25, 520–525. [Google Scholar] [CrossRef]
- Mawdsley, J.E.D. Synbiotic Therapy for Ulcerative Colitis. Gut 2005, 54, 1346. [Google Scholar] [CrossRef] [Green Version]
- Federico, A.; Tuccillo, C.; Grossi, E.; Abbiati, R.; Garbagna, N.; Romano, M.; Tiso, A.; Del Vecchio Blanco, C.; Loguercio, C. The Effect of a New Symbiotic Formulation on Plasma Levels and Peripheral Blood Mononuclear Cell Expression of Some Pro-Inflammatory Cytokines in Patients with Ulcerative Colitis: A Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 285–293. [Google Scholar]
- Malathi, K.; Nandini, R.; Kr, D.; Bn, S. Journal of Hepatology and A Randomized Open Label Study to Evaluate the Efficacy and Tolerability of Synbiotic in the Treatment of Ulcerative Colitis. J. Hepatol. Gastrointest. Disord. 2019, 5, 1–4. [Google Scholar]
- Ledder, O. Antibiotics in Inflammatory Bowel Diseases: Do We Know What We’re Doing? Transl. Pediatr. 2019, 8, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.; Quigley, E.M.M. Antibiotics and Probiotics in Inflammatory Bowel Disease: When to Use Them? Frontline Gastroenterol. 2020, 11, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, Y.; Sato, N.; Tsukinaga, S.; Uchiyama, K.; Koido, S.; Ishikawa, D.; Ohkusa, T. Long-Term Outcomes of Antibiotic Combination Therapy for Ulcerative Colitis. Ther. Adv. Chronic Dis. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Levine, A.; Escher, J.C.; Griffiths, A.M.; Russell, R.K.; Dignass, A.; Dias, J.A.; Bronsky, J.; Braegger, C.P.; Cucchiara, S.; et al. Management of Pediatric Ulcerative Colitis: Joint ECCO and ESPGHAN Evidence-Based Consensus Guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 340–361. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Bishai, J.; Reshef, L.; Abitbol, G.; Focht, G.; Marcus, D.; Ledder, O.; Lev-Tzion, R.; Orlanski-Meyer, E.; Yerushalmi, B.; et al. Antibiotic Cocktail for Pediatric Acute Severe Colitis and the Microbiome: The PRASCO Randomized Controlled Trial. Inflamm. Bowel Dis. 2020, 26, 1733–1742. [Google Scholar] [CrossRef]
- Turner, D.; Levine, A.; Kolho, K.L.; Shaoul, R.; Ledder, O. Combination of Oral Antibiotics May Be Effective in Severe Pediatric Ulcerative Colitis: A Preliminary Report. J. Crohn’s Colitis 2014, 8, 1464–1470. [Google Scholar] [CrossRef] [Green Version]
- Rafii, F.; Ruseler-van Embden, J.G.H.; Van Lieshout, L.M.C. Changes in Bacterial Enzymes and PCR Profiles of Fecal Bacteria from a Patient with Ulcerative Colitis before and after Antimicrobial Treatments. Dig. Dis. Sci. 1999, 44, 637–642. [Google Scholar] [CrossRef]
- Esposito, G.; Nobile, N.; Gigli, S.; Seguella, L.; Pesce, M.; d’Alessandro, A.; Bruzzese, E.; Capoccia, E.; Steardo, L.; Cuomo, R.; et al. Rifaximin Improves Clostridium Difficile Toxin A-Induced Toxicity in Caco-2 Cells by the PXR-Dependent TLR4/MyD88/NF-ΚB Pathway. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Chen, H.; Yang, J.; Fang, X.; Niu, W.; Zhang, M.; Li, J.; Pan, X.; Ren, Z.; Sun, J.; et al. Combinatory Antibiotic Treatment Protects against Experimental Acute Pancreatitis by Suppressing Gut Bacterial Translocation to Pancreas and Inhibiting NLRP3 Inflammasome Pathway. Innate Immun. 2020, 26, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hviid, A.; Svanström, H.; Frisch, M. Antibiotic Use and Inflammatory Bowel Diseases in Childhood. Gut 2011, 60, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kronman, M.P.; Zaoutis, T.E.; Haynes, K.; Feng, R.; Coffin, S.E. Antibiotic Exposure and IBD Development Among Children: A Population-Based Cohort Study. Pediatrics 2012, 130, e794–e803. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.-D.; Jenq, R.R.; Ajami, N.J.; Petrosino, J.F.; Alexander, A.A.; Ke, S.; Iqbal, T.; DuPont, A.W.; Muldrew, K.; Shi, Y.; et al. Safety and Preliminary Efficacy of Orally Administered Lyophilized Fecal Microbiota Product Compared with Frozen Product given by Enema for Recurrent Clostridium Difficile Infection: A Randomized Clinical Trial. PLoS ONE 2018, 13, e0205064. [Google Scholar] [CrossRef] [PubMed]
- Zellmer, C.; De Wolfe, T.J.; Van Hoof, S.; Blakney, R.; Safdar, N. Patient Perspectives on Fecal Microbiota Transplantation for Clostridium Difficile Infection. Infect. Dis. Ther. 2016, 5, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Kassam, Z.; Lee, C.H.; Yuan, Y.; Hunt, R.H. Fecal Microbiota Transplantation for Clostridium Difficile Infection: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2013, 108, 500–508. [Google Scholar] [CrossRef]
- Moayyedi, P.; Yuan, Y.; Baharith, H.; Ford, A.C. Faecal Microbiota Transplantation for Clostridium Difficile -associated Diarrhoea: A Systematic Review of Randomised Controlled Trials. Med. J. Aust. 2017, 207, 166–172. [Google Scholar] [CrossRef]
- Pai, N.; Popov, J.; Hill, L.; Hartung, E.; Grzywacz, K.; Moayyedi, P. Results of the First Pilot Randomized Controlled Trial of Fecal Microbiota Transplant in Pediatric Ulcerative Colitis: Lessons, Limitations, and Future Prospects. Gastroenterology 2021. [Google Scholar] [CrossRef]
- Moayyedi, P.; Surette, M.G.; Kim, P.T.; Libertucci, J.; Wolfe, M.; Onischi, C.; Armstrong, D.; Marshall, J.K.; Kassam, Z.; Reinisch, W.; et al. Fecal Microbiota Transplantation Induces Remission in Patients with Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015, 149, 102–109.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossen, N.G.; Fuentes, S.; van der Spek, M.J.; Tijssen, J.G.; Hartman, J.H.A.; Duflou, A.; Löwenberg, M.; van den Brink, G.R.; Mathus-Vliegen, E.M.H.; de Vos, W.M.; et al. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients with Ulcerative Colitis. Gastroenterology 2015, 149, 110–118.e4. [Google Scholar] [CrossRef] [PubMed]
- Paramsothy, S.; Kamm, M.A.; Kaakoush, N.O.; Walsh, A.J.; van den Bogaerde, J.; Samuel, D.; Leong, R.W.L.L.; Connor, S.; Ng, W.; Paramsothy, R.; et al. Multidonor Intensive Faecal Microbiota Transplantation for Active Ulcerative Colitis: A Randomised Placebo-Controlled Trial. Lancet 2017, 389, 1218–1228. [Google Scholar] [CrossRef]
- Costello, S.P.; Soo, W.; Bryant, R.V.; Jairath, V.; Hart, A.L.; Andrews, J.M. Systematic Review with Meta-Analysis: Faecal Microbiota Transplantation for the Induction of Remission for Active Ulcerative Colitis. Aliment. Pharmacol. Ther. 2017, 46, 213–224. [Google Scholar] [CrossRef]
- Narula, N.; Kassam, Z.; Yuan, Y.; Colombel, J.-F.; Ponsioen, C.; Reinisch, W.; Moayyedi, P. Systematic Review and Meta-Analysis: Fecal Microbiota Transplantation for Treatment of Active Ulcerative Colitis. Inflamm. Bowel Dis. 2017, 23, 1702–1709. [Google Scholar] [CrossRef]
- Popov, J.; Hartung, E.; Hill, L.; Chauhan, U.; Pai, N. Pediatric Patient and Parent Perceptions of Fecal Microbiota Transplantation for the Treatment of Ulcerative Colitis. J. Pediatr. Gastroenterol. Nutr. 2020. [Google Scholar] [CrossRef]
- Chauhan, U.; Popov, J.; Farbod, Y.; Kalantar, M.; Wolfe, M.; Moayyedi, P.; Marshall, J.K.; Halder, S.; Kaasalainen, S. Fecal Microbiota Transplantation for the Treatment of Ulcerative Colitis: A Qualitative Assessment of Patient Perceptions and Experiences. J. Can. Assoc. Gastroenterol. 2021. [Google Scholar] [CrossRef]
- Abdali, Z.I.; Roberts, T.E.; Barton, P.; Hawkey, P.M. Economic Evaluation of Faecal Microbiota Transplantation Compared to Antibiotics for the Treatment of Recurrent Clostridioides Difficile Infection. EClinicalMedicine 2020, 24, 100420. [Google Scholar] [CrossRef] [PubMed]
- Costello, S.P.; Hughes, P.A.; Waters, O.; Bryant, R.V.; Vincent, A.D.; Blatchford, P.; Katsikeros, R.; Makanyanga, J.; Campaniello, M.A.; Mavrangelos, C.; et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients with Ulcerative Colitis. JAMA 2019, 321, 156. [Google Scholar] [CrossRef] [Green Version]
- Kellermayer, R.; Nagy-Szakal, D.; Harris, R.A.; Luna, R.A.; Pitashny, M.; Schady, D.; Mir, S.A.V.; Lopez, M.E.; Gilger, M.A.; Belmont, J.; et al. Serial Fecal Microbiota Transplantation Alters Mucosal Gene Expression in Pediatric Ulcerative Colitis. Am. J. Gastroenterol. 2015, 110, 604–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunde, S.; Pham, A.; Bonczyk, S.; Crumb, T.; Duba, M.; Conrad, H.; Cloney, D.; Kugathasan, S. Safety, Tolerability, and Clinical Response after Fecal Transplantation in Children and Young Adults with Ulcerative Colitis. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Suskind, D.L.; Singh, N.; Nielson, H.; Wahbeh, G. Fecal Microbial Transplant via Nasogastric Tube for Active Pediatric Ulcerative Colitis. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 27–29. [Google Scholar] [CrossRef]
- Paramsothy, S.; Nielsen, S.; Kamm, M.A.; Deshpande, N.P.; Faith, J.J.; Clemente, J.C.; Paramsothy, R.; Walsh, A.J.; van den Bogaerde, J.; Samuel, D.; et al. Specific Bacteria and Metabolites Associated with Response to Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Gastroenterology 2019, 156, 1440–1454.e2. [Google Scholar] [CrossRef] [Green Version]
- Pai, N.; Popov, J.; Hill, L.; Hartung, E. Protocol for a Double-Blind, Randomised, Placebo-Controlled Pilot Study for Assessing the Feasibility and Efficacy of Faecal Microbiota Transplant in a Paediatric Crohn’s Disease Population: PediCRaFT Trial. BMJ Open 2019, 9, e030120. [Google Scholar] [CrossRef] [PubMed]
- Verdier, C.; Denis, S.; Gasc, C.; Boucinha, L.; Uriot, O.; Delmas, D.; Dore, J.; Le Camus, C.; Schwintner, C.; Blanquet-diot, S. An Oral Fmt Capsule as Efficient as an Enema for Microbiota Reconstruction Following Disruption by Antibiotics, as Assessed in an in Vitro Human Gut Model. Microorganisms 2021, 9, 358. [Google Scholar] [CrossRef] [PubMed]
- Youngster, I.; Mahabamunuge, J.; Systrom, H.K.; Sauk, J.; Khalili, H.; Levin, J.; Kaplan, J.L.; Hohmann, E.L. Oral, Frozen Fecal Microbiota Transplant (FMT) Capsules for Recurrent Clostridium Difficile Infection. BMC Med. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.-J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of Oral Capsule– vs. Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium Difficile Infection. JAMA 2017, 318, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.H.R.; Al Bakir, I.; Ding, N.S.J.; Lee, G.H.; Askari, A.; Warusavitarne, J.; Moorghen, M.; Humphries, A.; Ignjatovic-Wilson, A.; Thomas-Gibson, S.; et al. Cumulative Burden of Inflammation Predicts Colorectal Neoplasia Risk in Ulcerative Colitis: A Large Single-Centre Study. Gut 2019, 68, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Malki, A.; Elruz, R.A.; Gupta, I.; Allouch, A.; Vranic, S.; Al Moustafa, A.E. Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int. J. Mol. Sci. 2021, 22, 130. [Google Scholar] [CrossRef]
- Veettil, S.K.; Wong, T.Y.; Loo, Y.S.; Playdon, M.C.; Lai, N.M.; Giovannucci, E.L.; Chaiyakunapruk, N. Role of Diet in Colorectal Cancer Incidence: Umbrella Review of Meta-Analyses of Prospective Observational Studies. JAMA Netw. Open 2021, 4, e2037341. [Google Scholar] [CrossRef]
- Al Bakir, I.; Curtius, K.; Graham, T.A. From Colitis to Cancer: An Evolutionary Trajectory That Merges Maths and Biology. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Kang, M.; Martin, A. Microbiome and Colorectal Cancer: Unraveling Host-Microbiota Interactions in Colitis-Associated Colorectal Cancer Development. Semin. Immunol. 2017, 32, 3–13. [Google Scholar] [CrossRef]
- Ternes, D.; Karta, J.; Tsenkova, M.; Wilmes, P.; Haan, S.; Letellier, E. Microbiome in Colorectal Cancer: How to Get from Meta-Omics to Mechanism? Trends Microbiol. 2020, 28, 401–423. [Google Scholar] [CrossRef]
- Schmitt, M.; Greten, F.R. The Inflammatory Pathogenesis of Colorectal Cancer. Nat. Rev. Immunol. 2021. [Google Scholar] [CrossRef]
- Sears, C.L.; Pardoll, D.M. Perspective: Alpha-Bugs, Their Microbial Partners, and the Link to Colon Cancer. J. Infect. Dis. 2011, 203, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Tjalsma, H.; Boleij, A.; Marchesi, J.R.; Dutilh, B.E. A Bacterial Driver-Passenger Model for Colorectal Cancer: Beyond the Usual Suspects. Nat. Rev. Microbiol. 2012, 10, 575–582. [Google Scholar] [CrossRef]
- Yu, L.C.-H.H. Microbiota Dysbiosis and Barrier Dysfunction in Inflammatory Bowel Disease and Colorectal Cancers: Exploring a Common Ground Hypothesis. J. Biomed. Sci. 2018, 25, 79. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Luna, M.A.; López-Briones, S.; Luria-Pérez, R. The Four Horsemen in Colon Cancer. J. Oncol. 2019, 2019. [Google Scholar] [CrossRef]
- Chung, L.; Thiele Orberg, E.; Geis, A.L.; Chan, J.L.; Fu, K.; DeStefano Shields, C.E.; Dejea, C.M.; Fathi, P.; Chen, J.; Finard, B.B.; et al. Bacteroides Fragilis Toxin Coordinates a Pro-Carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells. Cell Host Microbe 2018, 23, 203–214.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejea, C.M.; Fathi, P.; Craig, J.M.; Boleij, A.; Taddese, R.; Geis, A.L.; Wu, X.; DeStefano Shields, C.E.; Hechenbleikner, E.M.; Huso, D.L.; et al. Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science 2018, 359, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.H.; Dejea, C.M.; Edler, D.; Hoang, L.T.; Santidrian, A.F.; Felding, B.H.; Ivanisevic, J.; Cho, K.; Wick, E.C.; Hechenbleikner, E.M.; et al. Metabolism Links Bacterial Biofilms and Colon Carcinogenesis. Cell Metab. 2015, 21, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Tomkovich, S.; Dejea, C.M.; Winglee, K.; Drewes, J.L.; Chung, L.; Housseau, F.; Pope, J.L.; Gauthier, J.; Sun, X.; Mühlbauer, M.; et al. Human Colon Mucosal Biofilms from Healthy or Colon Cancer Hosts Are Carcinogenic. J. Clin. Investig. 2019, 129, 1699–1712. [Google Scholar] [CrossRef]
- Chew, S.S.; Tan, L.T.H.; Law, J.W.F.; Pusparajah, P.; Goh, B.H.; Ab Mutalib, N.S.; Lee, L.H. Targeting Gut Microbial Biofilms—A Key to Hinder Colon Carcinogenesis? Cancers 2020, 12, 2272. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, M.; Salehi, R.; Haghjooy Javanmard, S.; Rafiee, L.; Faraji, H.; Jafarpor, S.; Ferns, G.A.; Ghayour-Mobarhan, M.; Manian, M.; Nedaeinia, R. The Dysbiosis Signature of Fusobacterium Nucleatum in Colorectal Cancer-Cause or Consequences? A Systematic Review. Cancer Cell Int. 2021, 21, 194. [Google Scholar] [CrossRef]
- Proença, M.A.; Biselli, J.M.; Succi, M.; Severino, F.E.; Berardinelli, G.N.; Caetano, A.; Reis, R.M.; Hughes, D.J.; Silva, A.E. Relationship between Fusobacterium Nucleatum, Inflammatory Mediators and MicroRNAs in Colorectal Carcinogenesis. World J. Gastroenterol. 2018, 24, 5351–5365. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahara, T.; Hirata, I.; Nakano, N.; Tahara, S.; Horiguchi, N.; Kawamura, T.; Okubo, M.; Ishizuka, T.; Yamada, H.; Yoshida, D.; et al. Potential Link between Fusobacterium Enrichment and DNA Methylation Accumulation in the Inflammatory Colonic Mucosa in Ulcerative Colitis. Oncotarget 2017, 8, 61917–61926. [Google Scholar] [CrossRef] [Green Version]
- Chiloeches, M.L.; Bergonzini, A.; Frisan, T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins 2021, 13, 426. [Google Scholar] [CrossRef]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Wong, C.C.; Tong, L.; Chu, E.S.H.; Ho Szeto, C.; Go, M.Y.Y.; Coker, O.O.; Chan, A.W.H.; Chan, F.K.L.; Sung, J.J.Y.; et al. Peptostreptococcus Anaerobius Promotes Colorectal Carcinogenesis and Modulates Tumour Immunity. Nat. Microbiol. 2019, 4, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hua, W.; Li, C.; Chang, H.; Liu, R.; Ni, Y.; Sun, H.; Li, Y.; Wang, X.; Hou, M.; et al. Protective Role of Fecal Microbiota Transplantation on Colitis and Colitis-Associated Colon Cancer in Mice Is Associated with Treg Cells. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, Y.; Li, X.; Liu, X.; Guo, M.; Tan, Y.; Qin, X.; Wang, X.; Jiang, M. Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along with Changes in Microbiota. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.L.; Liguori, G.; Lamas, B.; Brandi, G.; da Costa, G.; Hoffmann, T.W.; Pierluigi Di Simone, M.; Calabrese, C.; Poggioli, G.; Langella, P.; et al. Mucosa-Associated Microbiota Dysbiosis in Colitis Associated Cancer. Gut Microbes 2018, 9, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.W.; Du, L.T.; Li, W.; Yang, Y.M.; Zhang, Y.; Wang, C.X. Biodiversity and Richness Shifts of Mucosa-Associated Gut Microbiota with Progression of Colorectal Cancer. Res. Microbiol. 2020, 171, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Cleynen, I.; Boucher, G.; Jostins, L.; Schumm, L.P.; Zeissig, S.; Ahmad, T.; Andersen, V.; Andrews, J.M.; Annese, V.; Brand, S.; et al. Inherited Determinants of Crohn’s Disease and Ulcerative Colitis Phenotypes: A Genetic Association Study. Lancet 2016, 387, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Perillo, F.; Amoroso, C.; Strati, F.; Giuffrè, M.R.; Díaz-Basabe, A.; Lattanzi, G.; Facciotti, F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int. J. Mol. Sci. 2020, 21, 5389. [Google Scholar] [CrossRef]
- Fong, W.; Li, Q.; Yu, J. Gut Microbiota Modulation: A Novel Strategy for Prevention and Treatment of Colorectal Cancer. Oncogene 2020, 39, 4925–4943. [Google Scholar] [CrossRef]
- Chang, C.W.; Lee, H.C.; Li, L.H.; Chiau, J.S.C.; Wang, T.E.; Chuang, W.H.; Chen, M.J.; Wang, H.Y.; Shih, S.C.; Liu, C.Y.; et al. Fecal Microbiota Transplantation Prevents Intestinal Injury, Upregulation of Toll-like Receptors, and 5-Fluorouracil/Oxaliplatin-Induced Toxicity in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 386. [Google Scholar] [CrossRef] [Green Version]
Gut Microbiota Alterations in UC | Consequences for Mammalian Host Health | ||||
---|---|---|---|---|---|
Life Domain | Taxonomic Classification | Compositional Changes of Gut Microbiota | Functional Changes of Gut Microbiota | Impact on Host Immune Function | Impact on Host Intestinal Function |
Bacteria | Phyla | 16S ribosomal RNA gene sequencing ↓α- diversity in UC as compared with HC [70,78] ↑β-diversity in UC (UC bacteriome clusters differently form HC) [70,78] ↓relative abundance of Firmicutes and Bacteroidetes [20,70,71,74,81] | shotgun metagenomics sequencing ↑l-arginine biosynthesis (I, IV), biotin biosynthesis II, transfer RNA charging [78] Super pathway of polyamine biosynthesis in patients with risk factors for developing UC as compared with HC [78] ↑amino acid and protein metabolism (in UC as compared with HC): l-lysine fermentation to acetate and butanoate, creatinine degradation II, ketogenesis, protein N-glycosylation [77] ↑proteolytic and elastase activity in pre- and post-UC as compared with HC Correlated with the protease-producing bacterial species altered in UC- Proteobacteria and Bacteroides-↑elastase from B. vulgatus) [78] ↓glycerol and glycerophospholipids in UC as compared with HC Positive correlation between bacterial species and carbohydrate-degradation pathways [82] | Ruminococcus, Eubacterium, Roseburia, and Akkermansia, Anaerostipes hadrus ↓butyrate production = ↓Treg cells differentiation ↓maturation of Treg cells in the colonic epithelium increased levels of proinflammatory cytokines [71,72,78,79,83] Enterobacteriaceae ↑colonic epithelial cells invasion ↑levels of proinflammatory cytokine IL-8 and TNF-α [84] Fusobacteria ↑tumorigenesis in the colon [72] Faecalibacterium prausnitzii ↑production of IL-12, IFNγ and reduction of IL-10 levels in blood cells [85] Adlercreutzia ↓synthesis of isoflavones, phenolic compounds with antimicrobial and anti-inflammatory properties [78] | Ruminococcus bromii, Eubacterium rectale, Roseburia, and Akkermansia ↓butyrate production = impaired epithelial barrier function ↑epithelial permeability and commensals translocation [20,71,72] ↑colonic inflammation with crypt abscess [84] ↑of deciduous epithelial and/or blood cells in stools of patients with UC or CAC, gut barrier injury, impaired cell cycle [82] |
↑Proteobacteria [20,70,71,72,75] | |||||
Families | ↓Clostridiaceae [71,72] ↑Enterobacteriaceae [86] | ||||
Genera | ↓Clostridium clusters IV, XIVa [72] ↓Ruminococcus, Eubacterium, Roseburia, Akkermansia [71,78] ↓Adlercreutzia, Bilophila, Bifidobacterium [78] ↓Bacteroides, Lachnospira, Phascolarctobacterium, Coprococcus, Odoribacter, Butyricimonas [75,86] | ||||
↑Escherichia-Shigella, Fusobacterium, Campylobacter, Helicobacter [71,75,78] ↑Actinobacillus [78] ↑Streptococcus, Anaerostipes Enterococcus, Actyinomyces, Lactobacillus, Acetobacter, Rothia, Pseudomonas, Collinsella [75] | |||||
Species | ↓Faecalibacterium prausnitzii [72,83,87] ↓Anaerostipes hadrus [79] ↑Flavonifractor plautii, Coprococcus catus, Parabacteroides merdae [78] | ||||
Fungi | Phyla | Stool ITS2 gene sequencing ↓α-diversity in UC (not in CD) [70] ↑β-diversity between UC in flare as compared with UC in remission and to HC [70] ↑ ratio of Basidiomycota/Ascomycota in UC in flare as compared with UC in remission and to HC [70] ↑correlation between fungi and bacteria in UC as compared with CD and HC [70] Colonic mucosa: ↓fungi load in UC as compared with HC No significant changes in α-diversity UC mycobiota clusters differently from HC No changes in the ratio of Basidiomycota/Ascomycota [88] | N/A | Saccharomyces cerevisiae and Candida Albicans = ↑IL-6 production [70] ↓Saccharomyces cerevisiae = ↓IL-10 production (anti-inflammatory cytokine) [70] Aspergillus ↑aflatoxin production, a carcinogenic mycotoxin [88] Positive correlation between Wickerhamomyces and Penicillium with the expression of TNF-α and IL-17A, respectively (in colonic mucosa) [88] Negative correlation between Sporobolomyces and IL-6 and between Trametes and IL-1β (in colonic mucosa) [88] | Aspergillus Potential for aspergillosis, with consequent abdominal pain and GI bleeding [88] |
Genera | ↓Saccharomyces in UC fecal samples [70] ↑Aspergillus in UC mucosa specimen [88] | ||||
Species | ↓Saccharomyces cerevisiae in UC fecal samples [70] ↑Candida albicans in UC fecal samples [70] Trend toward an increase in mucosal specimen [89] | ||||
Virus | Orders | Metagenomics sequencing of viral-like particles ↓α-diversity (virome species richness and evenness) in UC mucosal samples [90] ↑abundance Caudovirales bacteriophages in UC mucosal samples [90] ↑β-diversity; UC mucosal virome clusters differently from HC [90] ↑virome dissimilarity between UC subjects (not observed in HC subjects) [90] | ↓integral component of membrane, DNA binding, ATP-binding cassette (ABC) transporter and integrase core domain in UC as compared with HC [90] ↑Pathways related to the phage lysis of bacteria: DNA template negative regulation of transcription, beta-lactamase, glutamine amidotransferase, glycosal hydrolases, type II/IV secretion system and multicopper oxidase in UC as compared with HC [90] | ↑bacteriophage = ↑bacterial lysis, PAMPs production, TLRs overstimulation, ↑intestinal inflammation [90] ↑transfer of bacterial genetic material (i.e., antibiotic resistance genes) [90] ↑phages can stimulate IFN-γ via the nucleotide-sensing receptor TLR9 [91] | ↑bacteriophages = ↑bacterial lysis, ↑intestinal inflammation, potential implication in abdominal pain, diarrhea [90,91] |
Families | ↓Anelloviridae (eukaryotic virus) [90] ↑Microviridae (single-stranded DNA phage), Myoviridae, Podoviridae (double-stranded DNA phages) [90] Pneumoviridae (eukaryotic virus) [90] | ||||
Genera | ↓Coccolithovirus , Minivirus Orthopoxvirus (vertebrate-infecting virus) (all eukaryotic viruses) [90] ↑Phix174microvirus, P1virus, Lambdavirus, T4virus, P22virus (all Caudovirales bacteriophages) Orthopneumovirus [90] | ||||
Species | ↓α-diversity of Caudovirales species in UC mucosal samples [90] ↑Escherichia and Enterobacteria bacteriophages [90] Lactobacillus, Escherichia, and Bacteroides bacteriophages [91] |
Primary Author (Year) | Country | Study Type | Population | Study Characteristics: n, Sex, Years (Range) | Donor Characteristics; FMT Preparation | FMT Route of Administration | Methods: FMT, Outcomes | Pre-Administration Preparation | Outcomes: Primary, Secondary | Key Findings, Adverse Events | Strengths, Limitations |
---|---|---|---|---|---|---|---|---|---|---|---|
Adult Studies | |||||||||||
Costello et al. (2019) [141] | Australia | Multicenter, double-blind, placebo-controlled RCT | Adult UC patients (Mayo score = 3–10, endoscopic subscore ≥2) | Sample: n = 73 (38 dFMT; 35 aFMT) Sex: 40 males, 33 females Age: Treatment group = 38.5 (28–52); Control group = 35 (25–46) | Donors: 19 anonymous donors (age 18–65),pooled fecal matter from 3–4 donors Preparation: Stool frozen at −80 °C, thawed before administration | Colonoscopy | Administration: 200 mL fecal suspension of dFMT or 200 mL aFMT delivered to right colon, followed by 100 mL of dFMT/aFMT enema x 7 days Outcome Data: Recipient stool samples collected at baseline, 4, 8, 52 weeks Sent for microbiome, metabolome, fecal calprotectin assessment Mucosal biopsies via colonoscopy at Weeks 0 and 8At 8 weeks, open-label dFMT offered to control participants and followed × 12 months | 3 L polyethylene glycol evening before administration Loperamide 2 mg orally before colonoscopy | Primary: Steroid-free remission Mayo score ≤2, with endoscopic Mayo subscore ≤ 1 at Week 8 Secondary: Clinical response (≥ 3-point reduction in Mayo score at Weeks 8 and 12) Clinical remission (SCCAI ≤2 at Week 8 and 12 months) Participant perception, acceptance of FMT via survey at baseline and 12 months Adverse events via survey at 8 and 12 months | Primary: 12/38 (32%) dFMT group vs. 3/35 (9%) aFMT group5/12 Participants (42%) who achieved primary endpoint at 8 weeks from dFMT group maintained remission at 12 months Secondary: 21/38 (55%) dFMT group vs. 8/35 (23%) aFMT group achieved clinical response 18/38 (47%) dFMT group had clinical remission vs. 6/35 (17%) aFMT group4/38 (11%) dFMT group had endoscopic remission vs. 0/35 (0%) aFMT group72/73 (99%) received dFMT at 12 months Adverse Events: 3 SAEs dFMT group: 1 worsening colitis, 1 C. Difficile colitis requiring colectomy, 1 pneumonia 2 SAEs aFMT group: 2 worsening colitis | Strengths: Anaerobic stool processing of dFMT/aFMT, stool collections preserve obligate anaerobes Pooled fecal donors increase diversity of donor taxa Limitations: No prior antibiotic washout period 12-Month outcome data limited by open-label crossover study design, observational only Significant loss of follow-up at 12 months |
Moayyedi et al. (2015) [133] | Canada | Single center, double-blind, placebo-controlled RCT | Adult UC patients (Mayo score ≥4, endoscopic subscore ≥1) | Sample: n = 75 (38 dFMT; 37 placebo) Sex: 44 males, 31 females Age: Treatment group = 42.2; Control group = 35.8 | Donors: 5 anonymous donors, 1 family member (age 18–60), fecal matter from a single donor Preparation: Stool administered within 5 h of collection or frozen at −20 °C, thawed before administration | Retention Enema | Administration: 50 mL dFMT or 50 mL water administered × 6 weeks Outcome Data: Mayo clinic score, IBDQ, EQ-5D, flexible sigmoidoscopy at week 7 Rectal, sigmoid, descending colon biopsies via colonoscopy at baseline, Week 7 Stool sample collected weekly prior to enema administration Stools sent for 16s rRNA sequencing | No pre-FMT prep was done | Primary: Remission of UC (Mayo score ≤2) Complete healing of mucosa seen on flexible sigmoidoscopy at 7 weeks (endoscopic Mayo score of 0) Secondary: Improvement in UC Symptoms (≥3 improvement in full Mayo score) Change in Mayo, IBDQ, EQ-50 scores Adverse events | Primary: 9/38 (24%) dFMT group vs. 2/37 (5%) in the placebo group Secondary: Improvement in symptoms and quality of life scores were not statistically significant Immunosuppressant therapy had greater benefit from dFMT than those not on immunosuppressive therapy (5/11 (46%) vs. 4/27 (15%)) Participants with recent diagnosis of UC (≤ 1 yr) were more likely to respond to dFMT (3/4 (75%)) than those with longer disease duration (>1 year) (6/34 (18%)) Frozen stool had greater efficacy than fresh stool Adverse Events: 3 SAEs dFMT group: 2 colonic inflammation and rectal abscess formation, 1 worsening abdominal discomfort with C. Difficile diagnosed after study exit 2 SAEs placebo group: 1 worsening colitis with admission and emergency colectomy, 1 colonic inflammation and rectal abscess formation | Strengths: Large sample size as compared with previous studies Limitations: No bowel preparation Participants with extensive colitis could have active disease beyond visualization of sigmoidoscopy |
Paramsothy et al. (2017) [135] | Australia | Multicenter, double-blind, placebo-controlled RCT | Adult UC patients (Mayo score = 4–10, endoscopic subscore ≥1, physician’s global assessment subscore ≤2) | Sample: n = 81 (41 dFMT; 40 placebo) Sex: 47 males, 34 females Age: Treatment group = 35.6 (27.8–48.9); Control group = 35.4 (27.7–45.6) | Donors: 14 anonymous donors, pooled fecal matter from 3–7 donors Preparation: Stool frozen at −80 °C, dispensed for home freezer storage at −20 °C | Colonoscopy + Enema | Administration: 150 mL dFMT or 150 mL isotonic saline 5 days per week × 8 weeks Outcome Data: Stooling frequency, haematochezia, miscellaneous gastrointestinal symptoms, medication changes At 8 weeks, open-label dFMT was offered to participants in the placebo group | Not specified | Primary Outcomes: Steroid-free clinical remission with endoscopic remission or response at Week 8 Mayo score ≤2, all subscores ≤1, ≥1 point reduction in endoscopy subscore Secondary Outcomes: Steroid-free clinical remission (combined Mayo subscore of ≤1 for rectal bleeding + stool frequency) Steroid-free clinical response (decrease of ≥3 on Mayo score OR ≥ 50% reduction from baseline combined with rectal bleeding + stool frequency Mayo subscore OR both) Steroid-free endoscopic subscore of ≤1 with a reduction ≥1 point from baseline Steroid-free endoscopic remission (Mayo endoscopy subscore of 0) Quality of life (IBDQ) Adverse events | Primary Outcomes: 11/41 (27%) dFMT group vs. 3/40 (8%) in the placebo group Endoscopic remission did not differ between study groups (steroid-free Mayo endoscopic subscore of 0) 3x greater endoscopic response in dFMT group (32% (13/41) vs. 10% (4/40)) Secondary Outcomes: 18/41 (44%) steroid-free clinical remission in the dFMT group vs. 8/40 (20%) in the placebo group 22/41 (54%) steroid-free clinical response in the FMT group vs. 9/40 (23%) in the placebo group 13/41 (32%) steroid-free endoscopic response in the FMT group vs. 4/40 (10%) in the placebo group, but no difference in endoscopic remission Adverse Events: 2 SAEs dFMT group: 1 clinical and endoscopic deterioration with colectomy, 1 unwell and admitted for intravenous corticosteroid therapy 1 SAE placebo group: hospitalisation, reason not stated | Strengths: Large sample size Intensive dosing schedule (40 infusions over 8 weeks) Multidonor dFMT had greater microbial diversity than single donor dFMT Limitations: Mandatory steroid-wean clinically demanding, resulted in many withdrawals from study Enema preparations challenging and inconvenient for self-administration Use of multidonor batches prevented analysis of dononspecific factors associated with therapeutic outcomes |
Rossen et al. (2015) [134] | Netherlands | Single center, double-blind, placebo-controlled RCT | Adult UC patients (Lennard-Jones Criteria, patient reported SCCAI ≥4 and ≤11) | Sample: n = 48 (23 dFMT; 25 aFMT) Sex: 22 males, 26 females Age: Treatment group = 40 (33–56); Control group = 41 (30–48) | Donors: 15 anonymous donors, 1 family member, fecal matter from a single donor Preparation: Stool administered within 6 h of preparation | Nasoduodenal Tube | Administration: 500 mL dFMT or aFMT administered at baseline, 3 weeks Outcome Data: Clinical, colonoscopic follow-up at 6 weeks and 12 weeksFecal samples at baseline and prior to each dFMT/aFMT treatment | 2 L macrogol solution (MoviPrep®) 2 L clear fluids evening before administration | Primary Outcomes: Clinical remission (SCCAI ≤2 and ≥1 point decrease in Mayo endoscopic score) at Week 12 Secondary Outcomes: Clinical response (reduction of ≥1.5 points on SCCAI) Clinical remission (SCCAI ≤2) Endoscopic response Change in median IBDQ score from baseline to Week 6 Microbiota composition by phylogenic microarray in fecal samples | Primary Outcomes: No statistically significant difference in clinical and endoscopic remission between study groups (trial was stopped early due to interim results suggesting the study would not lead to a statistically significant outcome) Secondary Outcomes: At 12 weeks, 11/23 (47.8%) dFMT participants and 13/25 (52%) aFMT participants had a clinical response 3 SAEs reported but treatment allocation group not specified for all: 1 was admitted to hospital and diagnosed with small bowel Crohn’s disease, 1 developed cytomegalovirus infection (aFMT group), 1 was admitted for abdominal pain | Limitations: Small sample size Low FMT dosing regimen (2 FMTs, 3 weeks apart) |
Pediatric Studies | |||||||||||
Pai et al. (2021) [132] | Canada | Multicentre, single-blind, placebo-controlled RCT | Pediatric UC patients with mild-severe disease (PUCAI ≥ 15 and elevated fecal calprotectin, or CRP) | Sample: n = 25 (13 FMT; 12 controls) Sex: 13 males, 12 females Age: 12.2 (4–17) | Donors: FMT products obtained from Rebiotix, Inc. Stool pooled from anonymous donors Administration: Stool frozen at −80 °C, then refrigerated (4 °C) for up to 3 days until administration | Enema | Administration: 150 mL FMT, or 150 mL normal saline 2×/week × 6 weeks Outcome Data: BloodworkPUCAI Fecal calprotectin, microbiome analyses (Above) measured 2×/week × 6 weeks, then, weeks 12/18/24/30 | No pre-FMT prep was done | Primary: Recruitment rate Secondary: Clinical remission = decrease in PUCAI to <10 Clinical response = decrease in PUCAI by ≥15 Biological improvement (decreased CRP, fecal calprotectin)Composite clinical response = reduction from baseline in FC, CRP, PUCAI score Changes in microbiota | Outcomes: Primary feasibility outcome (achieving recruitment target) not reached11/12 (92%) dFMT group had improvement in PUCAI, CRP, fecal calprotectin from baseline vs. control group (6/12 (50%)) at Week 69/12 (75%) maintained clinical response at 12 months Adverse Events: 5 SAEs dFMT group: 3 worsening colitis requiring hospitalization for intravenous corticosteroids, 2 C. Difficile diagnosed after study exit (not detected in dFMT sample) 1 SAE control group: 1 worsening colitis requiring hospitalization for intravenous corticosteroids | Strengths: First multi-center, placebo-controlled blinded RCT in pediatric UC Open-label study design offered to control group at completion Largest sample size as compared with previous pediatric studies Limitations: Lack of endoscopic outcomes Lack of investigator blinding |
Kellermayer et al. (2015) [142] | USA | Prospective, open-label case series | Pediatric UC patients (mild-severe) | Sample: n = 3 Sex: 2 males, 1 female Age: 15 (14–16) | Donors: Stool obtained from a single anonymous donor Administration: Stool frozen until administration | Colonoscopy + Enema | Administration: Tapering course (22–30 treatments) FMT over 6–12 weeks Outcome Data: Mucosal disease activity (colonoscopy), PUCAI, Mayo score, fecal microbiome at baseline, 2 weeks after FMT | Not specified | Mucosal disease activity before, 2 weeks after FMT treatments PUCAI Changes in microbiota | Outcomes: All participants in endoscopic and clinical remission 2 weeks after the last FMT Adverse Events: None | Limitations: Small sample size Lack of randomization |
Kunde et al. (2013) [143] | USA | Prospective, open-label case series | Pediatric UC patients (mild-moderate; PUCAI 15–65) | Sample:n = 10 Sex: 6 males, 4 females Age: 15.2 (7–20) | Donors: Stool obtained from family members or close friends Administration: Stool administered within 6 h of preparation | Retention Enema | Administration: FMT (administered over 1 h) daily × 5 days (60 mL administered every 15 min) Outcome Data: PUCAI, patient acceptance/tolerability at baseline, weekly × 4 weeks after FMT | No pre-FMT prep was done | Clinical response = decrease in PUCAI by >15 after FMTClinical remission = decrease in PUCAI to <10Clinical endpoint: clinical response at 1 month post FMTAdverse events | Outcomes: 7/9 (78%) showed clinical response within 1 week −6/9 (67%) maintained clinical response at 1 week 3/9 (33%) achieved clinical remission at 1 week and remained remission at 4 weeks Adverse Events: None | Limitations: Small sample size Children with mild-to-moderate disease |
Suskind et al. (2015) [144] | USA | Prospective, open-label case series | Pediatric UC patients (mild-moderate) | Sample:n = 4 Sex: 4 males Age: 14.5 (13–16) | Donors: Further details not available Administration: Further details not available | Nasogastric Tube | Administration: 30 mg of donor stool mixed with 100 mL normal saline, infused over 3 min, ollowed by saline flush over 1 min Outcome Data: PUCAI, CRP, fecal calprotectin at baseline (Above) measured at week 2/6/12 | Rifaximin (200 mg three times daily × 3 days) 1 capful of MiraLAX® in water 3 times daily × 2 days) Omeprazole (1 mg/kg orally) on the day before, morning of procedure | Clinical remission = decrease in PUCAI to <10adverse events | Outcomes: None of the participants clinically improved No significant change in PUCAI scores, CRP, or stool calprotectin at 2 weeksNo significant changes to albumin or haematocrit Adverse Events: None | Limitations: Small sample sizeFMT via nasogastric tube may have altered microbiota diversity |
Primary Author (Year) | Microbial Changes | |||
---|---|---|---|---|
Adult Studies | ||||
Costello et al. (2019) [141] | Sequencing technique: 16S ribosomal RNA sequencing (V4 region of 16S ribosomal RNA gene) Effect of FMT on bacterial diversity: Baseline: Bacterial diversity was highest in blended donor stool, then individual donor stool and stool from UC patients Weeks 4 and 8: bacterial diversity of stool increased in dFMT vs. aFMT group, but no significant difference was reported Effect of FMT on bacterial taxa abundance: Increased relative abundance of bacterial taxa following dFMT (as compared with aFMT) up to 8 weeks | |||
Phyla | Families | Species | ||
↑Firmicutes | Peptococcaceae Erysipelotrichaceae Acidaminococcaceae Ruminococcaceae | Peptococcaceae Faecalicoccus pleomorphus Acidaminococcus intestini Clostridium methylpentosum | ||
↑Bacteroidetes | Prevotellaceae Rikenellaceae Porphyromonadaceae | Prevotella copri Alistipes indistinctus Odoribacter splanchnicus strain | ||
↑Actinobacteria | Coriobacteriaceae | Olsenella sp. Senegalimassilia anaerobia Slackia isoflavaniconvertens | ||
↑Euryarchaeota | Methanobacteriaceae | Methanobrevibacter smithii | ||
Decrease in relative abundance of bacterial taxa following dFMT (as compared with aFMT) up to 8 weeks: | ||||
Phyla | Families | Species | ||
↓Firmicutes | Lachnospiraceae | AnaerostipescaccaeClostridium aldenense | ||
↓Actinobacteria | Coriobacteriaceae | Gordonibacter pamelaeae | ||
Strong association between Anaerofilum pentosovorans (phylum Firmicutes) and Bacteroides coprophilus (phylum Bacteroidetes) with disease improvement after dFMT | ||||
Moayyedi et al. (2015) [133] | Sequencing technique: 16S ribosomal RNA sequencing (V3 region of 16S ribosomal RNA gene) Effect of FMT on bacterial diversity: Greater bacterial diversity in the dFMT as compared with a placebo group at Week 6 vs. baseline (p = 0.02, Mann–Whitney U test) dFMT group had more similarities in taxonomic profile to their donor than placebo group Effect of FMT on bacterial taxa abundance Two major donors (A and B) showed different bacterial composition Donor B: ↑Lachnospiraceae family and ↑Ruminococcus genera; Donor A: ↑Escherichia and Streptococcus genera Donor B was associated with successful FMT; the microbial profile of dFMT responders from Donor B was similar to that of Donor B, but did not match among non-responders | |||
Paramsothy et al. (2017, 2019) [135,145] | Sequencing technique: 16S ribosomal RNA sequencing (V4 region of 16S ribosomal RNA gene) (Paramsothy et al. 2017); shotgun metagenomics (Paramsothy et al. 2019) Effect of FMT on bacterial diversity: Increased phylogenetic diversity after 4 and 8 weeks of FMT as compared with the baseline Increased α-diversity after dFMT (as compared with a placebo), in both stool and mucosal biopsies Increased β-diversity after dFMT (as compared with the baseline and placebo), in both stool and mucosal biopsies dFMT patients who achieved primary outcome have higher fecal species richness than at baseline, during FMT therapy, and after therapy as compared with those who did not achieve primary outcome Effect of FMT on bacterial taxa abundance: Increased donor-derived Prevotella genus and a decrease in baseline patient-derived Bacteroides genus after 4 and 8 weeks of FMT Bacterial taxa associated with remission after double-blind FMT: Barnesiella spp, Parabacteroides spp, Clostridium cluster IV, and Ruminococcus spp Bacterial taxa associated with remission after open-label FMT: Blautia spp, Dorea spp, Ruminococcus 2, and Clostridium cluster XVIII Fusobacterium spp and Sutterella spp (phyla Fusobacteria and Proteobacteria) were associated consistently with no remission Patients in remission after FMT: ↑Eubacterium hallii, Roseburia inulivorans, Ruminococcus bromii (phylum Firmicutes), Eggerthella species (phylum Actinobacteria), ↑Oscillibacter, Clostridium XVIII, Roseburia (phylum Firmicutes) in stool and mucosa biopsies associated with primary outcomes Increased short-chain fatty acid biosynthesis and secondary bile acids Patients not in remission after FMT: ↑ Fusobacterium gonidia-formans, Sutterella wadsworthensis, Haemophilus, Escherichia species, Prevotella, Bilophila (phylum Proteobacteria) Pathways associated with a negative therapeutic outcome including heme, lipopolysaccharide, and peptidoglycan biosynthesis contribute to bacterial virulence and increased inflammation Streptococcus species (phylum Firmicutes), commonly implicated with the oral cavity, associated with lack of remission Other oral bacterial taxa such as Dialister, Veillonella, and Parvimonas (phylum Firmicutes) were associated with a negative patient outcome | |||
Rossen et al. (2015) [134] | Sequencing technique: 16S ribosomal RNA sequencing Effect of FMT on bacterial diversity: Baseline: stool bacterial composition of healthy donors is more stable than UC patients; no difference in α-diversity between healthy donors and UC patients 12 Weeks: increased bacterial richness and evenness in both dFMT and aFMT groups (responders); bacterial composition of dFMT responders more similar to healthy donors; aFMT composition is different from healthy donors and dFMT Effect of FMT on bacterial taxa abundance: | |||
UC patients before dFMT Phylum | Genus | |||
Firmicutes | ↓Clostridium cluster IV, XIVa, XVIII ↑Clostridium clusters IX, and XI; Bacillus | |||
↑Bacteroidetes ↑Proteobacteria | ||||
UC patients after dFMT: | ||||
Phylum | Genus | |||
Firmicutes | ↑Clostridium cluster IV, XIVa, XVIII | |||
↓Bacteroidetes | ||||
UC patients after aFMT: | ||||
Phylum | Genus | |||
Firmicutes ↑Bacteroidetes ↑Proteobacteria | ↑Bacillus | |||
Pediatric Studies | ||||
Pai et al. (2021) [132] | Sequencing technique: 16S ribosomal RNA sequencing (V3 region of 16S ribosomal RNA gene) Effect of FMT on bacterial diversity: Increased β-diversity observed in dFMT after 6 weeks from baseline as compared with a placebo group Effect of FMT on bacterial taxa abundance: | |||
Bacterial changes positively correlated with an increase in CRP, Fcal → improvement of colitis symptoms Phylum | Order | Family | Genus | |
↑Firmicutes | ↑Clostridiales | ↑Ruminococcaseae Lachnospiraceae Peptostreptococcaceae Erysipelotrichaceae | ↑Ruminococcaceae Coprococcus Romboutsia Erysipelotrichaceae | |
↑Bacteroidetes | ↑Bacteroidales | ↑Rikenellaceae | ↑Alistipes | |
Kellermayer et al. (2015) [142] | Sequencing technique: 16S ribosomal RNA sequencing (V3V5 regions of 16S ribosomal RNA gene) Effect of FMT on bacterial diversity: Increased bacterial richness and diversity in stool after FMT Effect of FMT on bacterial taxa abundance: | |||
Phylum | Family | Genus | ||
Firmicutes | ↑Lachnospiraceae | ↑Coprococcus | ||
Inversely correlated with UC disease activity Beneficial effect of Coprococcus (butyrate-producing bacteria) to the colonic epithelium of UC patients | ||||
Kunde et al. (2013) [143] | Not applicable | |||
Suskind et al. (2015) [144] | Not applicable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, J.; Caputi, V.; Nandeesha, N.; Rodriguez, D.A.; Pai, N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int. J. Mol. Sci. 2021, 22, 11365. https://doi.org/10.3390/ijms222111365
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. International Journal of Molecular Sciences. 2021; 22(21):11365. https://doi.org/10.3390/ijms222111365
Chicago/Turabian StylePopov, Jelena, Valentina Caputi, Nandini Nandeesha, David Avelar Rodriguez, and Nikhil Pai. 2021. "Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies" International Journal of Molecular Sciences 22, no. 21: 11365. https://doi.org/10.3390/ijms222111365
APA StylePopov, J., Caputi, V., Nandeesha, N., Rodriguez, D. A., & Pai, N. (2021). Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. International Journal of Molecular Sciences, 22(21), 11365. https://doi.org/10.3390/ijms222111365