Mouse Breast Carcinoma Monocytic/Macrophagic Myeloid-Derived Suppressor Cell Infiltration as a Consequence of Endothelial Dysfunction in Shb-Deficient Endothelial Cells Increases Tumor Lung Metastasis
Abstract
:1. Introduction
2. Results
2.1. Tumor Growth and Metastatic Lung Colonization
2.2. Tumor Vasculature
2.3. Tumor Immune Responses
2.4. Tumor CD45+ Gene Expression
3. Discussion
4. Materials and Methods
4.1. Mice and Cells
4.2. In Vivo Experiments
4.3. Tumor Morphology
4.4. Flow Cytometry
4.5. Gene Expression
4.6. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scully, O.J.; Bay, B.H.; Yip, G.; Yu, Y. Breast cancer metastasis. Cancer Genom. Proteom. 2012, 9, 311–320. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Roman, J.; Zentella-Dehesa, A. Vascular permeability changes involved in tumor metastasis. Cancer Lett. 2013, 335, 259–269. [Google Scholar] [CrossRef]
- Xian, X.; Hakansson, J.; Stahlberg, A.; Lindblom, P.; Betsholtz, C.; Gerhardt, H.; Semb, H. Pericytes limit tumor cell metastasis. J. Clin. Investig. 2006, 116, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Claesson-Welsh, L. Vascular permeability—The essentials. Ups. J. Med. Sci. 2015, 120, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004, 25, 581–611. [Google Scholar] [CrossRef] [PubMed]
- Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol. Med. 2021, 27, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Lanitis, E.; Irving, M.; Coukos, G. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 2015, 33, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Bagaev, A.; Kotlov, N.; Nomie, K.; Svekolkin, V.; Gafurov, A.; Isaeva, O.; Osokin, N.; Kozlov, I.; Frenkel, F.; Gancharova, O.; et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 2021, 39, 845–865. [Google Scholar] [CrossRef]
- Hamidinia, M.; Ghafourian Boroujerdnia, M.; Talaiezadeh, A.; Solgi, G.; Roshani, R.; Iranprast, S.; Khodadadi, A. Increased P-35, EBI3 Transcripts and Other Treg Markers in Peripheral Blood Mononuclear Cells of Breast Cancer Patients with Different clinical Stages. Adv. Pharm. Bull. 2015, 5, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Plitas, G.; Konopacki, C.; Wu, K.; Bos, P.D.; Morrow, M.; Putintseva, E.V.; Chudakov, D.M.; Rudensky, A.Y. Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity 2016, 45, 1122–1134. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Chen, X.; Hao, S.; Jia, R.; Wang, N.; Chen, S.; Li, M.; Wang, C.; Mao, H. Increased interleukin-35 expression in tumor-infiltrating lymphocytes correlates with poor prognosis in patients with breast cancer. Cytokine 2017, 89, 76–81. [Google Scholar] [CrossRef]
- Goedegebuure, P.; Mitchem, J.B.; Porembka, M.R.; Tan, M.C.; Belt, B.A.; Wang-Gillam, A.; Gillanders, W.E.; Hawkins, W.G.; Linehan, D.C. Myeloid-derived suppressor cells: General characteristics and relevance to clinical management of pancreatic cancer. Curr. Cancer Drug Targ. 2011, 11, 734–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, M.; Jamalpour, M.; Zang, G.; Akerblom, B. The role of the Src Homology-2 domain containing protein B (SHB) in beta cells. J. Mol. Endocrinol 2016, 56, 21–31. [Google Scholar] [CrossRef]
- Funa, N.S.; Kriz, V.; Zang, G.; Calounova, G.; Akerblom, B.; Mares, J.; Larsson, E.; Sun, Y.; Betsholtz, C.; Welsh, M. Dysfunctional microvasculature as a consequence of shb gene inactivation causes impaired tumor growth. Cancer Res. 2009, 69, 2141–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerblom, B.; Zang, G.; Zhuang, Z.W.; Calounova, G.; Simons, M.; Welsh, M. Heterogeneity among RIP-Tag2 insulinomas allows vascular endothelial growth factor-A independent tumor expansion as revealed by studies in Shb mutant mice: Implications for tumor angiogenesis. Mol. Oncol. 2012, 6, 333–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoffersson, G.; Zang, G.; Zhuang, Z.W.; Vagesjo, E.; Simons, M.; Phillipson, M.; Welsh, M. Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency. Angiogenesis 2012, 15, 469–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Li, X.; He, L.; Li, Y.; Betsholtz, C.; Welsh, M. Pericyte dysfunction due to Shb gene deficiency increases B16F10 melanoma lung metastasis. Int. J. Cancer 2020, 147, 2634–2644. [Google Scholar] [CrossRef]
- Zang, G.; Gustafsson, K.; Jamalpour, M.; Hong, J.; Genove, G.; Welsh, M. Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer 2015, 15, 234. [Google Scholar] [CrossRef] [Green Version]
- Nikpour, M.; Gustafsson, K.; Vagesjo, E.; Seignez, C.; Giraud, A.; Phillipson, M.; Welsh, M. Shb deficiency in endothelium but not in leucocytes is responsible for impaired vascular performance during hindlimb ischaemia. Acta Physiol. (Oxf.) 2015, 214, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Singh, K.; Luo, Z.; Mejia-Cordova, M.; Jamalpour, M.; Lindahl, B.; Zhang, G.; Sandler, S.; Welsh, M. Pro-tumoral immune cell alterations in wild type and Shb-deficient mice in response to 4T1 breast carcinomas. Oncotarget 2018, 9, 18720–18733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Li, X.; Singh, K.; Luo, Z.; Meija-Cordova, M.; Jamalpour, M.; Lindahl, B.; Kriz, V.; Vuolteenaho, R.; Ulvmar, M.; et al. The Cdh5-CreERT2 transgene causes conditional Shb gene deletion in hematopoietic cells with consequences for immune cell responses to tumors. Sci. Rep. 2019, 9, 7548. [Google Scholar] [CrossRef]
- Spinner, C.A.; Lazarevic, V. Transcriptional regulation of adaptive and innate lymphoid lineage specification. Immunol. Rev. 2021, 300, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, R.; Cai, T.; Chen, Z.; Lan, M.; Zou, T.; Wang, B.; Wang, Q.; Zhao, Y.; Cai, Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int. Immunopharmacol. 2020, 88, 106939. [Google Scholar] [CrossRef] [PubMed]
- Li, B.H.; Garstka, M.A.; Li, Z.F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol. Immunol. 2020, 117, 201–215. [Google Scholar] [CrossRef]
- Susek, K.H.; Karvouni, M.; Alici, E.; Lundqvist, A. The Role of CXC Chemokine Receptors 1–4 on Immune Cells in the Tumor Microenvironment. Front. Immunol. 2018, 9, 2159. [Google Scholar] [CrossRef]
- Gustafsson, K.; Calounova, G.; Hjelm, F.; Kriz, V.; Heyman, B.; Gronvik, K.O.; Mostoslavsky, G.; Welsh, M. Shb deficient mice display an augmented TH2 response in peripheral CD4+ T cells. BMC Immunol. 2011, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, K.; Willebrand, E.; Welsh, M. Absence of the adaptor protein Shb potentiates the T helper type 2 response in a mouse model of atopic dermatitis. Immunology 2014, 143, 33–41. [Google Scholar] [CrossRef]
- Abrams, S.I.; Waight, J.D. Identification of a G-CSF-Granulocytic MDSC axis that promotes tumor progression. Oncoimmunology 2012, 1, 550–551. [Google Scholar] [CrossRef] [Green Version]
- Swierczak, A.; Cook, A.D.; Lenzo, J.C.; Restall, C.M.; Doherty, J.P.; Anderson, R.L.; Hamilton, J.A. The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol. Res. 2014, 2, 765–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouchemore, K.A.; Anderson, R.L.; Hamilton, J.A. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J. 2018, 285, 665–679. [Google Scholar] [CrossRef] [Green Version]
- Pietila, I.; Van Mourik, D.; Tamelander, A.; Kriz, V.; Claesson-Welsh, L.; Tengholm, A.; Welsh, M. Temporal Dynamics of VEGFA-Induced VEGFR2/FAK Co-Localization Depend on SHB. Cells 2019, 8, 1645. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Nam, J.O.; Jean, C.; Lawson, C.; Walsh, C.T.; Goka, E.; Lim, S.T.; Tomar, A.; Tancioni, I.; Uryu, S.; et al. VEGF-induced vascular permeability is mediated by FAK. Dev. Cell 2012, 22, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ramjiawan, R.R.; Reiberger, T.; Ng, M.R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E.C.; Reddy, T.P.; et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015, 61, 1591–1602. [Google Scholar] [CrossRef]
- Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 2017, 20, 185–204. [Google Scholar] [CrossRef]
- Ebos, J.M.; Lee, C.R.; Cruz-Munoz, W.; Bjarnason, G.A.; Christensen, J.G.; Kerbel, R.S. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009, 15, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestweber, D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann. N. Y. Acad. Sci. 2012, 1257, 184–192. [Google Scholar] [CrossRef]
- Di Pilato, M.; Kfuri-Rubens, R.; Pruessmann, J.N.; Ozga, A.J.; Messemaker, M.; Cadilha, B.L.; Sivakumar, R.; Cianciaruso, C.; Warner, R.D.; Marangoni, F.; et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 2021, 184, 4512–4530. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, I.; Adams, R.H.; Gossler, A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 2009, 113, 5680–5688. [Google Scholar] [CrossRef] [Green Version]
- Georgiades, P.; Ogilvy, S.; Duval, H.; Licence, D.R.; Charnock-Jones, D.S.; Smith, S.K.; Print, C.G. VavCre transgenic mice: A tool for mutagenesis in hematopoietic and endothelial lineages. Genesis 2002, 34, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, C.N.; Smith, Y.E.; Cao, Y.; Burrows, A.D.; Cross, R.S.; Ling, X.; Redvers, R.P.; Doherty, J.P.; Eckhardt, B.L.; Natoli, A.L.; et al. Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis. Model. Mech. 2015, 8, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Population | WT (Percent of Parental ± SEM) | KO (Percent of Parental ± SEM) |
---|---|---|
Lymph node CD11b | 4.9 ± 2.5 (10) | 2.2 ± 0.5 (6) |
Lymph node CD8 of CD11b | 54 ± 8.7 (6) | 50 ± 6.8 (4) |
Lymph node CD11c | 7.5 ± 1.9 (10) | 4.6 ± 0.1 (6) |
Lymph node CD8 of CD11c | 38 ± 3.2 (6) | 39 ± 2.0 (4) |
Lymph node nMDSC | 5.1 ± 1.2 (6) | 4.7 ± 1.1 (4) |
Lymph node mMDSC | 25 ± 2.7 (6) | 26 ± 3.3 (4) |
Tumor CD11b | 8.5 ± 0.5 (3) | 9.0 ± 0.6 (3) |
Tumor CD8 of CD11c | 32 ± 2.2 (3) | 28 ± 2.0 (3) |
Tumor CD11c | 1.5 ± 0.4 (6) | 2.1 ± 0.3 (5) |
Tumor CD8 of CD11c | 16 ± 3.4 (6) | 11 ± 1.2 (5) |
Tumor nMDSC | 0.4 ± 0.1 (6) | 0.2 ± 0.1 (5) |
Tumor CD11b+/Ly6G+ | 3.3 ± 0.6 (9) | 5.1 ± 1.0 (6) |
Gene | WT Ct ± SEM | KO Ct ± SEM | p Value |
---|---|---|---|
Shb | 9.8 ± 0.63 | 11.4 ± 0.24 | 0.04 |
Il4 | 16.5 ± 0.22 | 16.3 ± 0.37 | 0.73 |
Arg1 | 5.6 ± 0.22 | 6.4 ± 0.15 | 0.01 |
Il1b | 0.15 ± 0.32 | 0.0 ± 0.16 | 0.65 |
Il6 | 7.8 ± 0.19 | 8.3 ± 0.40 | 0.35 |
Tbx21 | 12.5 ± 0.80 | 13.2 ± 0.21 | 0.09 |
Il17a | 14.3 ± 0.33 | 14.4 ± 0.44 | 1.00 |
Il12a | 15.4 ± 0.35 | 14.7 ± 0.18 | 0.18 |
Tnf | 11.1 ± 0.55 | 10.9 ± 0.27 | 0.07 |
Nos2 | 7.6 ± 0.28 | 7.5 ± 0.25 | 0.78 |
Csf2 | 14.3 ± 0.43 | 14.7 ± 0.33 | 0.49 |
Csf1 | 9.4 ± 0.59 | 10.0 ± 0.26 | 0.34 |
Cd4 | 12.1 ± 0.62 | 12.6 ± 0.09 | 0.41 |
Cd8a | 12.9 ± 0.28 | 12.4 ± 0.27 | 0.27 |
Foxp3 | 8.4 ± 0.32 | 9.2 ± 0.24 | 0.07 |
Gzmb | 13.1 ± 0.22 | 12.6 ± 0.23 | 0.16 |
Pdcd1 (PD1) | 9.8 ± 0.10 | 10.3 ± 0.38 | 0.30 |
Itgam (CD11b) | 7.2 ± 0.19 | 7.0 ± 0.41 | 0.78 |
Adgre1 (F4/80) | 9.4 ± 0.19 | 8.8 ± 0.48 | 0.33 |
Itgax (CD11c) | 7.9 ± 0.21 | 7.8 ± 0.32 | 0.76 |
S100a9 | 15.2 ± 0.6 | 15.0 ± 0.32 | 0.76 |
Tgfb1 | 8.3 ± 0.18 | 7.8 ± 0.21 | 0.21 |
Tgfb2 | 11.2 ± 0.16 | 10.9 ± 0.28 | 0.47 |
Tgfb3 | 12.8 ± 0.27 | 12.1 ± 0.27 | 0.11 |
Cxcr4 | 6.2 ± 0.24 | 6.2 ± 0.23 | 0.91 |
Cxcl12 | 13.6 ± 0.22 | 13.7 ± 0.43 | 0.84 |
Cxcl9 | 10.4 ± 0.22 | 9.8 ± 0.48 | 0.30 |
Cxcl10 | 4.6 ± 0.49 | 4.5 ± 0.22 | 0.80 |
Cxcl11 | 9.0 ± 0.50 | 8.9 ± 0.21 | 0.84 |
Ccr7 | 7.0 ± 0.23 | 6.4 ± 0.44 | 0.31 |
Ccl3 | 7.3 ± 0.16 | 7.0 ± 0.20 | 0.32 |
Ccl4 | 6.6 ± 0.25 | 6.2 ± 0.29 | 0.37 |
Ccl20 | 19.0 ± 1.00 | 18.5 ± 0.26 | 0.56 |
Ccl21 | 20.7 ± 0.79 | 21.4 ± 1.26 | 0.27 |
Ccl22 | 12.5 ± 0.16 | 12.1 ± 0.16 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Jamalpour, M.; Bergquist, E.; Anderson, R.L.; Gustafsson, K.; Welsh, M. Mouse Breast Carcinoma Monocytic/Macrophagic Myeloid-Derived Suppressor Cell Infiltration as a Consequence of Endothelial Dysfunction in Shb-Deficient Endothelial Cells Increases Tumor Lung Metastasis. Int. J. Mol. Sci. 2021, 22, 11478. https://doi.org/10.3390/ijms222111478
He Q, Jamalpour M, Bergquist E, Anderson RL, Gustafsson K, Welsh M. Mouse Breast Carcinoma Monocytic/Macrophagic Myeloid-Derived Suppressor Cell Infiltration as a Consequence of Endothelial Dysfunction in Shb-Deficient Endothelial Cells Increases Tumor Lung Metastasis. International Journal of Molecular Sciences. 2021; 22(21):11478. https://doi.org/10.3390/ijms222111478
Chicago/Turabian StyleHe, Qi, Maria Jamalpour, Eric Bergquist, Robin L. Anderson, Karin Gustafsson, and Michael Welsh. 2021. "Mouse Breast Carcinoma Monocytic/Macrophagic Myeloid-Derived Suppressor Cell Infiltration as a Consequence of Endothelial Dysfunction in Shb-Deficient Endothelial Cells Increases Tumor Lung Metastasis" International Journal of Molecular Sciences 22, no. 21: 11478. https://doi.org/10.3390/ijms222111478
APA StyleHe, Q., Jamalpour, M., Bergquist, E., Anderson, R. L., Gustafsson, K., & Welsh, M. (2021). Mouse Breast Carcinoma Monocytic/Macrophagic Myeloid-Derived Suppressor Cell Infiltration as a Consequence of Endothelial Dysfunction in Shb-Deficient Endothelial Cells Increases Tumor Lung Metastasis. International Journal of Molecular Sciences, 22(21), 11478. https://doi.org/10.3390/ijms222111478