Characterization of Novel Pathogenic Variants Causing Pyridox(am)ine 5′-Phosphate Oxidase-Dependent Epilepsy
Abstract
:1. Introduction
2. Results
2.1. Physical Properties of PNPO Variants
2.2. Kinetic and Allosteric Properties of PNPO Variants
3. Discussion
4. Materials and Methods
4.1. Site-Directed Mutagenesis, Expression and Purification of PNPO Variants
4.2. Spectroscopic Measurements
4.3. Size Exclusion Chromatography
4.4. Differential Scanning Fluorimetry (DSF) Assays
4.5. PNPO Activity Assays
4.6. Analysis of PLP Binding Equilibrium
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wilson, M.P.; Plecko, B.; Mills, P.B.; Clayton, P.T. Disorders affecting vitamin B. J. Inherit. Metab. Dis. 2019, 42, 629–646. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci. 2012, 4, 897–913. [Google Scholar]
- Percudani, R.; Peracchi, A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 2003, 4, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Barile, A.; Nogués, I.; di Salvo, M.L.; Bunik, V.; Contestabile, R.; Tramonti, A. Molecular characterization of pyridoxine 5′-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy. Sci. Rep. 2020, 10, 13621. [Google Scholar] [CrossRef] [PubMed]
- Musayev, F.N.; Di Salvo, M.L.; Saavedra, M.A.; Contestabile, R.; Ghatge, M.S.; Haynes, A.; Schirch, V.; Safo, M.K. Molecular basis of reduced pyridoxine 5′-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J. Biol. Chem. 2009, 284, 30949–30956. [Google Scholar] [CrossRef] [Green Version]
- Ghatge, M.S.; Karve, S.S.; David, T.M.; Ahmed, M.H.; Musayev, F.N.; Cunningham, K.; Schirch, V.; Safo, M.K. Inactive mutants of human pyridoxine 5′-phosphate oxidase: A possible role for a noncatalytic pyridoxal 5’-phosphate tight binding site. FEBS Open Bio 2016, 6, 398–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Salvo, M.L.; Mastrangelo, M.; Nogués, I.; Tolve, M.; Paiardini, A.; Carducci, C.; Mei, D.; Montomoli, M.; Tramonti, A.; Guerrini, R.; et al. Pyridoxine-5′-phosphate oxidase (Pnpo) deficiency: Clinical and biochemical alterations associated with the C.347g > A (P.·Arg116gln) mutation. Mol. Genet. Metab. 2017, 122, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.; Bashiri, F.A.; Abdelhakim, M.; Adly, N.; Jamjoom, D.Z.; Sumaily, K.M.; Alghanem, B.; Arold, S.T. Phenotypic and molecular spectrum of pyridoxamine-5′-phosphate oxidase deficiency: A scoping review of 87 cases of pyridoxamine-5′-phosphate oxidase deficiency. Clin. Genet. 2021, 99, 99–110. [Google Scholar] [CrossRef]
- Di Salvo, M.; Yang, E.; Zhao, G.; Winkler, M.E.; Schirch, V. Expression, purification, and characterization of recombinant Escherichia coli pyridoxine 5′-phosphate oxidase. Protein Expr. Purif. 1998, 13, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Barile, A.; Tramonti, A.; di Salvo, M.L.; Nogues, I.; Nardella, C.; Malatesta, F.; Contestabile, R. Allosteric feedback inhibition of pyridoxine 5′-phosphate oxidase from Escherichia coli. J. Biol. Chem. 2019, 294, 15593–15603. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Fequiere, P.R.; McGrath, T.M.; Hyland, K. Seizures with decreased levels of pyridoxal phosphate in cerebrospinal fluid. Pediatr. Neurol. 2013, 48, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.B.; Camuzeaux, S.S.; Footitt, E.J.; Mills, K.A.; Gissen, P.; Fisher, L.; Das, K.B.; Varadkar, S.M.; Zuberi, S.; McWilliam, R.; et al. Epilepsy due to PNPO mutations: Genotype, environment and treatment affect presentation and outcome. Brain J. Neurol. 2014, 137, 1350–1360. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Chang, X.; Zhang, Y.; Yang, Z. Novel phenotypes of pyridox(am)ine-5′-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients. Metab. Brain. Dis. 2017, 32, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.B.; Surtees, R.A.; Champion, M.P.; Beesley, C.E.; Dalton, N.; Scambler, P.J.; Heales, S.J.; Briddon, A.; Scheimberg, I.; Hoffmann, G.F.; et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum. Mol. Genet. 2005, 14, 1077–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, B.; Abeling, N.G.; Salomons, G.S.; Struys, E.A.; Simas-Mendes, M.; Geukers, V.G.; Poll-The, B.T. Pyridoxine responsive epilepsy caused by a novel homozygous PNPO mutation. Mol. Genet. Metab. Rep. 2016, 6, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Hatch, J.; Coman, D.; Clayton, P.; Mills, P.; Calvert, S.; Webster, R.I.; Riney, K. Normal neurodevelopmental outcomes in PNPO deficiency: A case series and literature review. JIMD Rep. 2016, 26, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musayev, F.N.; Di Salvo, M.L.; Ko, T.P.; Schirch, V.; Safo, M.K. Structure and properties of recombinant human pyridoxine 5′-phosphate oxidase. Protein Sci. Publ. Protein Soc. 2003, 12, 1455–1463. [Google Scholar] [CrossRef]
- Scott, T.A.; Quintaneiro, L.M.; Norvaisas, P.; Lui, P.P.; Wilson, M.P.; Leung, K.Y.; Herrera-Dominguez, L.; Sudiwala, S.; Pessia, A.; Clayton, P.T.; et al. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 2017, 169, 442–456.e418. [Google Scholar] [CrossRef] [Green Version]
- Coman, D.; Lewindon, P.; Clayton, P.; Riney, K. PNPO deficiency and cirrhosis: Expanding the clinical phenotype? JIMD Rep. 2016, 25, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Salvo, M.L.; Mastrangelo, M.; Nogues, I.; Tolve, M.; Paiardini, A.; Carducci, C.; Mei, D.; Montomoli, M.; Tramonti, A.; Guerrini, R.; et al. Biochemical data from the characterization of a new pathogenic mutation of human pyridoxine-5′-phosphate oxidase (PNPO). Data Brief 2017, 15, 868–875. [Google Scholar] [CrossRef]
- Nardella, C.; Barile, A.; di Salvo, M.L.; Milano, T.; Pascarella, S.; Tramonti, A.; Contestabile, R. Interaction of Bacillus subtilis GabR with the gabTD promoter: Role of repeated sequences and effect of GABA in transcriptional activation. FEBS J. 2020, 287, 4952–4970. [Google Scholar] [CrossRef] [PubMed]
Kinetic Parameters | PLP Binding | |||
---|---|---|---|---|
Enzyme Form | KM (µM) | kCAT (min−1) | KD1 (µM) 1 | KD2 (µM) 1 |
WT 2 | 2.6 ± 0.2 | 3.72 ± 0.10 | 0.95 ± 0.01 | 3.2 ± 0.2 |
D33V | 10.3 ± 0.7 | 5.30 ± 0.32 | 1.00 ± 0.09 | 6.6 ± 1.3 |
E50K | 9.5 ± 0.6 | 3.70 ± 0.05 | 0.93 ± 0.04 | 2.2 ± 1.0 |
R161C | 894 ± 125 | 0.99 ± 0.07 | 0.53 ± 0.08 | ND |
P213S | 32.0 ± 2.0 | 4.72 ± 0.08 | 1.94 ± 0.10 | 2.4 ± 0.8 |
N | Variant (Inheritance) | Seizure on Set 1 | Seizure Response to PN 2 | Seizure Response to PLP 2 | Neurodevelopmental Outcome 3 | Reference |
---|---|---|---|---|---|---|
1 | D33V (Homozygote) | 4 weeks | − | + | Mild | P4 [11] |
2 | D33V (Homozygote) | 6 h | − | + | Mild | P2 [12] P3 [3] |
3 | D33V (Homozygote) | 3 weeks | + | Frequency increased compared to PN | Mild | P9 [12] |
4 | D33V; R116Q + R225C 3 (Compound Heterozygote) | 2 weeks | + | Not trialled | Mild | P12 [12] |
5 | D33V + c.264-21_264-1 delins C (Compound Heterozygote) | 3h | + | + | Severe | P11 [2] |
6 | D33V + Leu83Trpfs 4 17 (Compound Heterozygote) | 36 h | − | + | Normal | P3 [4] P4 [3] |
7 | D33V + E120K (Compound Heterozygote) | 2 months | + | Not trialled | Mild | P10 [12] |
8 | R95H; E50K + c.364−1G > A 5 (Compound Heterozygote) | 30 min | − | + | Severe | P1 [12] |
9 | E50K + R116Q (Compound Heterozygote) | 40 days | + | Not trialled | Severe | P4 [13] |
10 | E50K + c.364−1G > A (Homozygous for both) 6 | 2 h | Not trialled | Not trialled | Severe | J1 [14] |
11 | E50K + c.364-1G > A (Homozygous for both) 6 | 1 h | − | + | Severe | J2 [14] sibling of 10 |
12 | R161C (Homozygote) | 2 days | + | Not trialled | Normal | [15] |
13 | R161C+ p. Pro150ArgfsTer27 (Compoud Heterozygote) | 24 h | Reduction in seizure frequency | Reduction in seizure frequency | Severe | Twin P1 and P2 [5] |
14 | P213S (Homozygote) | 90 min | − | + | Normal | P3 [12,16] |
15 | P213S (Homozygote) | No seizures, treated during pregnancy and from birth | Not trialled | + | Normal | P4 [12,16] sibling of 14. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barile, A.; Mills, P.; di Salvo, M.L.; Graziani, C.; Bunik, V.; Clayton, P.; Contestabile, R.; Tramonti, A. Characterization of Novel Pathogenic Variants Causing Pyridox(am)ine 5′-Phosphate Oxidase-Dependent Epilepsy. Int. J. Mol. Sci. 2021, 22, 12013. https://doi.org/10.3390/ijms222112013
Barile A, Mills P, di Salvo ML, Graziani C, Bunik V, Clayton P, Contestabile R, Tramonti A. Characterization of Novel Pathogenic Variants Causing Pyridox(am)ine 5′-Phosphate Oxidase-Dependent Epilepsy. International Journal of Molecular Sciences. 2021; 22(21):12013. https://doi.org/10.3390/ijms222112013
Chicago/Turabian StyleBarile, Anna, Philippa Mills, Martino L. di Salvo, Claudio Graziani, Victoria Bunik, Peter Clayton, Roberto Contestabile, and Angela Tramonti. 2021. "Characterization of Novel Pathogenic Variants Causing Pyridox(am)ine 5′-Phosphate Oxidase-Dependent Epilepsy" International Journal of Molecular Sciences 22, no. 21: 12013. https://doi.org/10.3390/ijms222112013
APA StyleBarile, A., Mills, P., di Salvo, M. L., Graziani, C., Bunik, V., Clayton, P., Contestabile, R., & Tramonti, A. (2021). Characterization of Novel Pathogenic Variants Causing Pyridox(am)ine 5′-Phosphate Oxidase-Dependent Epilepsy. International Journal of Molecular Sciences, 22(21), 12013. https://doi.org/10.3390/ijms222112013