Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk
Abstract
:1. Introduction
2. Platelet Activation
3. Antiplatelet Therapy and Bleeding Risk
4. Bioactive Extracts with Antiplatelet Activity
5. Compounds That Inhibit Platelet Activation without Affecting Bleeding Time
5.1. Protein Disulfide Isomerase
5.2. Mitogen-Activated Protein Kinases
5.3. Mitochondrial Function
5.4. Cyclic Adenosine Monophosphate
5.5. Akt Pathway
5.6. Shear Stress-Induced Platelet Aggregation
6. Potential and Pitfalls of the Therapeutic Use of Antiplatelet Bioactive Compounds
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McManus, D.D.; Freedman, J.E. MicroRNAs in platelet function and cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 711–717. [Google Scholar] [CrossRef]
- Khodadi, E. Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovasc. Toxicol. 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- MacKeigan, D.T.; Ni, T.; Shen, C.; Stratton, T.W.; Ma, W.; Zhu, G.; Bhoria, P.; Ni, H. Updated understanding of platelets in thrombosis and hemostasis: The roles of integrin PSI domains and their potential as therapeutic targets. Cardiovasc. Hematol. Disord. Targets 2021, 20, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Gregg, D.; Goldschmidt-Clermont, P.J. Platelets and cardiovascular disease. Circulation 2003, 108, e88–e90. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.P.; Nesbitt, W.; Westein, E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 2009, 7, 17–20. [Google Scholar] [CrossRef]
- Rivera, J.; Lozano, M.L.; Navarro-Nuñez, L.; Vicente, V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009, 94, 700–711. [Google Scholar] [CrossRef]
- Grimaldi-Bensouda, L.; Danchin, N.; Dallongeville, J.; Falissard, B.; Furber, A.; Cottin, Y.; Bonello, L.; Morel, O.; Leclercq, F.; Puymirat, E.; et al. Effectiveness of new antiplatelets in the prevention of recurrent myocardial infarction. Heart 2018, 104, 1583–1592. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Schaff, M.; Peter, K. Current and future antiplatelet therapies: Emphasis on preserving haemostasis. Nat. Rev. Cardiol. 2018, 15, 181–191. [Google Scholar] [CrossRef]
- Nording, H.; Baron, L.; Langer, H.F. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020, 307, 97–108. [Google Scholar] [CrossRef]
- Berger, P.B.; Bhatt, D.L.; Fuster, V.; Steg, P.G.; Fox, K.A.; Shao, M.; Brennan, D.M.; Hacke, W.; Montalescot, G.; Steinhubl, S.R.; et al. Bleeding complications with dual antiplatelet therapy among patients with stable vascular disease or risk factors for vascular disease: Results from the Clopidogrel for high atherothrombotic risk and ischemic stabilization, management, and avoidance (CHARISMA) trial. Circulation 2010, 121, 2575–2583. [Google Scholar] [PubMed] [Green Version]
- Alañón, M.E.; Palomo, I.; Rodríguez, L.; Fuentes, E.; Arráez-Román, D.; Segura-Carretero, A. Antiplatelet activity of natural bioactive extracts from Mango (Mangifera indica L.) and its by-products. Antioxidants 2019, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.; Trostchansky, A.; Wood, I.; Mastrogiovanni, M.; Vogel, H.; González, B.; Junior, M.M.; Fuentes, E.; Palomo, I. Antiplatelet activity and chemical analysis of leaf and fruit extracts from Aristotelia chilensis. PLoS ONE 2021, 16, e0250852. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Garbanzo, C.; Rodríguez, L.; Pérez, A.M.; Mayorga-Gross, A.L.; Vásquez-Chaves, V.; Fuentes, E.; Palomo, I. Anti-platelet activity and chemical characterization by UPLC-DAD-ESI-QTOF-MS of the main polyphenols in extracts from Psidium leaves and fruits. Food Res. Int. 2020, 141, 110070. [Google Scholar] [CrossRef] [PubMed]
- Concha-Meyer, A.; Palomo, I.; Plaza, A.; Tarone, A.G.; Junior, M.M.; Sáyago-Ayerdi, S.; Fuentes, E. Platelet anti-aggregant activity and bioactive compounds of ultrasound-assisted extracts from whole and seedless tomato pomace. Foods 2020, 9, 1564. [Google Scholar] [CrossRef] [PubMed]
- Isas, A.S.; Mariotti Celis, M.S.; Perez Correa, J.R.; Fuentes, E.; Rodriguez, L.; Palomo, I.; Mozzi, F.; Van Nieuwenhove, C. Functional fermented cherimoya (Annona cherimola mill.) juice using autochthonous lactic acid bacteria. Food Res. Int. 2020, 138, 109729. [Google Scholar] [CrossRef]
- Alarcón, M.; Bustos, M.; Mendez, D.; Fuentes, E.; Palomo, I.; Lutz, M. In vitro assay of Quinoa (Chenopodium quinoa willd.) and Lupin (Lupinus spp.) extracts on human platelet aggregation. Plant Foods Hum. Nutr. 2020, 75, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Badimon, L.; Méndez, D.; Padró, T.; Vilahur, G.; Peña, E.; Carrasco, B.; Vogel, H.; Palomo, I.; Fuentes, E. Antiplatelet activity of isorhamnetin via mitochondrial regulation. Antioxidants 2021, 10, 666. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Trostchansky, A.; Reguengo, L.M.; Marostica, M.R.; Palomo, I. Antiplatelet effects of bioactive compounds present in tomato pomace. Curr. Drug Targets 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Sawardekar, S.B.; Patel, T.C.; Uchil, D. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study. Indian J. Pharmacol. 2016, 48, 26–31. [Google Scholar] [CrossRef]
- Fuentes, F.; Alarcon, M.; Badimon, L.; Fuentes, M.; Klotz, K.N.; Vilahur, G.; Kachler, S.; Padro, T.; Palomo, I.; Fuentes, E. Guanosine exerts antiplatelet and antithrombotic properties through an adenosine-related cAMP-PKA signaling. Int. J. Cardiol. 2017, 248, 294–300. [Google Scholar] [CrossRef]
- Rath, D.; Geisler, T. Optimal antiplatelet and anticoagulation strategies in acute coronary syndromes. Herz 2020, 45, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Tscharre, M.; Michelson, A.D.; Gremmel, T. Novel antiplatelet agents in cardiovascular disease. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.C.; Sexton, T.; Smyth, S.S. Translational implications of platelets as vascular first responders. Circ. Res. 2018, 122, 506–522. [Google Scholar] [CrossRef]
- Tomaiuolo, M.; Brass, L.F.; Stalker, T.J. Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis. Interv. Cardiol. Clin. 2017, 6, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBas, H.; Yahiaoui, K.; Martos, R.; Boulaftali, Y. Platelets are at the nexus of vascular diseases. Front. Cardiovasc. Med. 2019, 6, 1–19. [Google Scholar] [CrossRef]
- Li, L.; Geraghty, O.C.; Mehta, Z.; Rothwell, P.M. Age-specific risks, severity, time course, and outcome of bleeding on long-term antiplatelet treatment after vascular events: A population-based cohort study. Lancet 2017, 390, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Roe, M.T.; Goodman, S.G.; Ohman, E.M.; Stevens, S.R.; Hochman, J.S.; Gottlieb, S.; Martinez, F.; Dalby, A.J.; Boden, W.E.; White, H.D.; et al. Elderly patients with acute coronary syndromes managed without revascularization: Insights into the safety of long-term dual antiplatelet therapy with reduced-dose prasugrel versus standard-dose clopidogrel. Circulation 2013, 128, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Crimi, G.; Morici, N.; Ferrario, M.; Ferri, L.A.; Piatti, L.; Grosseto, D.; Cacucci, M.; Mirizzi, A.M.; Toso, A.; Piscione, F.; et al. Time course of ischemic and bleeding burden in elderly patients with acute coronary syndromes randomized to low-dose prasugrel or clopidogrel. J. Am. Heart Assoc. 2019, 8, e010956. [Google Scholar] [CrossRef] [Green Version]
- McNeil, J.J.; Wolfe, R.; Woods, R.L.; Tonkin, A.M.; Donnan, G.A.; Nelson, M.R.; Reid, C.M.; Lockery, J.E.; Kirpach, B.; Storey, E.; et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef]
- Berger, J.; Bhatt, D.L.; Steg, P.G.; Steinhubl, S.R.; Montalescot, G.; Shao, M.; Hacke, W.; Fox, K.; Berger, P.B.; Topol, E.; et al. Bleeding, mortality, and antiplatelet therapy: Results from the Clopidogrel for high atherothrombotic risk and ischemic stabilization, management, and avoidance (CHARISMA) trial. Am. Heart J. 2011, 162, 98–105.e1. [Google Scholar] [CrossRef]
- Majithia, A.; Bhatt, D.L. Novel antiplatelet therapies for atherothrombotic diseases. Arter. Thromb. Vasc. Biol. 2019, 39, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Michelson, A.D. Antiplatelet therapies for the treatment of cardiovascular disease. Nat. Rev. Drug Discov. 2010, 9, 154–169. [Google Scholar] [CrossRef]
- Gremmel, T.; Michelson, A.D.; Frelinger, A.L.; Bhatt, D.L. Novel aspects of antiplatelet therapy in cardiovascular disease. Res. Pract. Thromb. Haemost. 2018, 2, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.-J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaca, M.P.; Bhatt, D.L.; Cohen, M.; Steg, P.G.; Storey, R.; Jensen, E.C.; Magnani, G.; Bansilal, S.; Fish, M.P.; Im, K.; et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N. Engl. J. Med. 2015, 372, 1791–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.L.; Roddick, A.J. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: A systematic review and meta-analysis. JAMA 2019, 321, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.L.; Flather, M.D.; Hacke, W.; Berger, P.B.; Black, H.R.; Boden, W.E.; Cacoub, P.; Cohen, E.A.; Creager, M.A.; Easton, J.D.; et al. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the Charisma trial. J. Am. Coll. Cardiol. 2007, 49, 1982–1988. [Google Scholar] [CrossRef]
- Morrow, D.A.; Braunwald, E.; Bonaca, M.P.; Ameriso, S.F.; Dalby, A.J.; Fish, M.P.; Fox, K.; Lipka, L.J.; Liu, X.; Nicolau, J.; et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 2012, 366, 1404–1413. [Google Scholar] [CrossRef]
- Alexander, J.H.; Lopes, R.D.; James, S.; Kilaru, R.; Zadionchenko, V.; Mohan, P.; Bhatt, D.L.; Goodman, S.; Verheugt, F.W.; Flather, M.; et al. Apixaban with antiplatelet therapy after acute coronary syndrome. N. Engl. J. Med. 2011, 365, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef]
- Capodanno, D.; Angiolillo, D.J. Management of antiplatelet therapy in patients with coronary artery disease requiring cardiac and noncardiac surgery. Circulation 2013, 128, 2785–2798. [Google Scholar] [CrossRef]
- Micucci, M.; Malaguti, M.; Toschi, T.G.; Di Lecce, G.; Aldini, R.; Angeletti, A.; Chiarini, A. Cardiac and vascular synergic protective effect of Olea europea L. leaves and Hibiscus sabdariffa L. flower extracts. Oxidative Med. Cell. Longev. 2015, 2015, 318125. [Google Scholar] [CrossRef] [Green Version]
- Behl, T.; Bungau, S.; Kumar, K.; Zengin, G.; Khan, F.; Kumar, A.; Kaur, R.; Venkatachalam, T.; Tit, D.M.; Vesa, C.M.; et al. Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother. 2020, 130, 110714. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Y. Chinese herbal medicine on cardiovascular diseases and the mechanisms of action. Front. Pharmacol. 2016, 7, 469. [Google Scholar] [CrossRef] [Green Version]
- Palomo, I.; Concha-Meyer, A.; Lutz, M.; Said, M.; Sáez, B.; Vásquez, A.; Fuentes, E. Chemical characterization and antiplatelet potential of bioactive extract from tomato pomace (byproduct of tomato paste). Nutrients 2019, 11, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paes, A.M.D.A.; Gaspar, R.S.; Fuentes, E.; Wehinger, S.; Palomo, I.; Trostchansky, A. Lipid metabolism and signaling in platelet function. Single Mol. Single Cell Seq. 2019, 1127, 97–115. [Google Scholar]
- Olas, B.; Hamed, A.I.; Oleszek, W.; Stochmal, A. Extracts from Tribulus species may modulate platelet adhesion by interfering with arachidonic acid metabolism. Platelets 2015, 26, 87–92. [Google Scholar] [CrossRef]
- Yamamoto, J.; Taka, T.; Yamada, K.; Ijiri, Y.; Murakami, M.; Hirata, Y.; Naemura, A.; Hashimoto, M.; Yamashita, T.; Oiwa, K. Tomatoes have natural anti-thrombotic effects. Br. J. Nutr. 2003, 90, 1031–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Azúa, R.; Treuer, A.; Moore-Carrasco, R.; Cortacáns, D.; Gutiérrez, M.; Astudillo, L.; Fuentes, E.; Palomo, I. Effect of tomato industrial processing (different hybrids, paste, and pomace) on inhibition of platelet function in vitro, ex vivo, and in vivo. J. Med. Food 2014, 17, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta-Roy, A.K.; Crosbie, L.; Gordon, M.J. Effects of tomato extract on human platelet aggregation in vitro. Platelets 2001, 12, 218–227. [Google Scholar] [PubMed]
- Pu, Z.-H.; Liu, J.; Peng, C.; Luo, M.; Zhou, Q.-M.; Xie, X.-F.; Chen, M.-H.; Xiong, L. Nucleoside alkaloids with anti-platelet aggregation activity from the rhizomes of Ligusticum striatum. Nat. Prod. Res. 2017, 33, 1399–1405. [Google Scholar] [CrossRef]
- Fuentes, E.; Castro, R.; Astudillo, L.; Carrasco, G.; Alarcón, M.; Gutiérrez, M.; Palomo, I. Bioassay-guided isolation and HPLC determination of bioactive compound that relate to the antiplatelet activity (adhesion, secretion, and aggregation) from solanum lycopersicum. Evid.-Based Complement. Altern. Med. 2012, 2012, 147031. [Google Scholar] [CrossRef] [PubMed]
- Chagas, V.T.; Coelho, R.M.R.D.S.; Gaspar, R.S.; Da Silva, S.A.; Mastrogiovanni, M.; Mendonça, C.D.J.; Ribeiro, M.N.; Paes, A.M.D.A.; Trostchansky, A. Protective effects of a polyphenol-rich extract from Syzygium cumini (L.) skeels leaf on oxidative stress-induced diabetic rats. Oxidative Med. Cell. Longev. 2018, 2018, 5386079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagas, V.T.; França, L.M.; Malik, S.; Paes, A.M.D.A. Syzygium cumini (L.) skeels: A prominent source of bioactive molecules against cardiometabolic diseases. Front. Pharmacol. 2015, 6, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayyanar, M.; Subash-Babu, P. Syzygium cumini (L.) skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed. 2012, 2, 240–246. [Google Scholar] [CrossRef] [Green Version]
- De Bona, K.S.; Belle, L.P.; Sari, M.H.; Thome, G.; Schetinger, M.R.; Morsch, V.M.; Boligon, A.; Athayde, M.L.; Pigatto, A.S.; Moretto, M.B. Syzygium cumini extract decrease adenosine deaminase, 5′nucleotidase activities and oxidative damage in platelets of diabetic patients. Cell. Physiol. Biochem. 2010, 26, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R.S.; Da Silva, S.A.; Stapleton, J.; Fontelles, J.L.D.L.; Sousa, H.R.; Chagas, V.T.; Alsufyani, S.; Trostchansky, A.; Gibbins, J.; Paes, A.M.D.A. Myricetin, the main flavonoid in syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5. Front. Pharmacol. 2020, 10, 1678. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.-S.; Chung, K.-H.; Chung, J.-H.; Lee, J.-Y.; Park, J.-B.; Zhang, Y.-H.; Yoo, H.-S.; Yun, Y.-P. Antiplatelet activity of green tea catechins is mediated by inhibition of cytoplasmic calcium increase. J. Cardiovasc. Pharmacol. 2001, 38, 875–884. [Google Scholar] [CrossRef]
- Vogel, H.; Peñailillo, P.; Doll, U.; Contreras, G.; Catenacci, G.; González, B. Maqui (Aristotelia chilensis): Morpho-phenological characterization to design high-yielding cultivation techniques. J. Appl. Res. Med. Aromat. Plants 2014, 1, 123–133. [Google Scholar] [CrossRef]
- Ooh, T.W.; Do, H.J.; Jeon, J.-H.; Kim, K. Quercitrin inhibits platelet activation in arterial thrombosis. Phytomedicine 2020, 80, 153363. [Google Scholar] [CrossRef]
- Ren, L.; You, T.; Li, Q.; Chen, G.; Liu, Z.; Zhao, X.; Wang, Y.; Wang, L.; Wu, Y.; Tang, C.; et al. Molecular docking-assisted screening reveals tannic acid as a natural protein disulphide isomerase inhibitor with antiplatelet and antithrombotic activities. J. Cell. Mol. Med. 2020, 24, 14257–14269. [Google Scholar] [CrossRef]
- Kao, C.-C.; Kung, P.-H.; Tai, C.-J.; Tsai, M.-C.; Cheng, Y.-B.; Wu, C.-C. Juglone prevents human platelet aggregation through inhibiting Akt and protein disulfide isomerase. Phytomedicine 2020, 82, 153449. [Google Scholar] [CrossRef]
- Chen, S.; Lv, K.; Sharda, A.; Deng, J.; Zeng, W.; Zhang, C.; Hu, Q.; Jin, P.; Yao, G.; Xu, X.; et al. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol. Res. 2021, 167, 105540. [Google Scholar] [CrossRef]
- Irfan, M.; Jeong, D.; Kwon, H.-W.; Shin, J.-H.; Park, S.-J.; Kwak, D.; Kim, T.-H.; Lee, D.-H.; Park, H.-J.; Rhee, M.H. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vasc. Pharmacol. 2018, 109, 45–55. [Google Scholar] [CrossRef]
- Xin, G.; Wei, Z.; Ji, C.; Zheng, H.; Gu, J.; Ma, L.; Huang, W.; Morris-Natschke, S.L.; Yeh, J.-L.; Zhang, R.; et al. Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release. Free Radic. Biol. Med. 2017, 108, 247–250. [Google Scholar] [CrossRef]
- Nayak, M.; Dhanesha, N.; Doddapattar, P.; Rodriguez, O.; Sonkar, V.K.; Dayal, S.; Chauhan, A.K. Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Adv. 2018, 2, 2029–2038. [Google Scholar] [CrossRef]
- Nayak, M.; Dhanesha, N.; Sonkar, V.; Dayal, S.; Chauhan, A. Pyruvate dehydrogenase kinase modulates platelet function and thrombosis. Blood 2017, 130, 2389. [Google Scholar]
- Endale, M.; Lee, W.M.; Kamruzzaman, S.; Kim, S.D.; Park, J.Y.; Park, M.H.; Park, T.-Y.; Park, H.J.; Cho, J.Y.; Rhee, M.H. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br. J. Pharmacol. 2012, 167, 109–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Li, Q.; Liu, Y.-Y.; Sun, K.; Fan, J.-Y.; Wang, C.-S.; Han, J.-Y. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci. Rep. 2015, 5, 13824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.L.; Su, W.; Wang, Y.; Wang, Y.H.; Ming, X.; Kong, Y. The pyrrolidinoindoline alkaloid Psm2 inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling. Acta Pharmacol. Sin. 2016, 37, 1208–12017. [Google Scholar] [CrossRef] [Green Version]
- Su, X.L.; Su, W.; He, Z.L.; Ming, X.; Kong, Y. Tripeptide SQL inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling. J. Cardiovasc. Pharmacol. 2015, 66, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Jeong, D.; Saba, E.; Kwon, H.-W.; Shin, J.-H.; Jeon, B.-R.; Kim, S.; Kim, S.-D.; Lee, D.-H.; Nah, S.-Y.; et al. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 2018, 30, 589–598. [Google Scholar] [CrossRef]
- Hsia, C.W.; Lin, K.C.; Lee, T.Y.; Hsia, C.H.; Chou, D.S.; Jayakumar, T.; Velusamy, M.; Chang, C.-C.; Sheu, J.-R. Esculetin, a coumarin derivative, prevents thrombosis: Inhibitory signaling on PLCγ2-PKC-AKT activation in human platelets. Int. J. Mol. Sci. 2019, 20, 2731. [Google Scholar] [CrossRef] [Green Version]
- Chuang, W.-Y.; Kung, P.-H.; Kuo, C.-Y.; Wu, C.-C. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway. Thromb. Haemost. 2013, 109, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.-W.; Wu, M.-P.; Velusamy, M.; Chou, D.-S.; Tsai, C.-L.; Hsu, C.-Y.; Jayakumar, T.; Chung, C.-L.; Sheu, J.-R.; Hsia, C.-H. Novel therapeutic agent against platelet activation in vitro and arterial thrombosis in vivo by morin hydrate. Int. J. Mol. Sci. 2018, 19, 2386. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-P.; Zhou, Y.-J.; Song, W.; Yin, Z.; He, A.-D.; Ming, Z.-Y. Pharmacological actions of neferine in the modulation of human platelet function. Eur. J. Pharmacol. 2019, 862, 1–8. [Google Scholar] [CrossRef]
- Zhou, Y.-J.; Xiang, J.-Z.; Yuan, H.; Liu, H.; Tang, Q.; Hao, H.-Z.; Yin, Z.; Wang, J.; Ming, Z. Neferine exerts its antithrombotic effect by inhibiting platelet aggregation and promoting dissociation of platelet aggregates. Thromb. Res. 2013, 132, 202–210. [Google Scholar] [CrossRef]
- Lien, L.M.; Lin, K.H.; Huang, L.T.; Tseng, M.F.; Chiu, H.C.; Chen, R.J.; Lu, W.J. Licochalcone A prevents platelet activation and thrombus formation through the inhibition of PLCγ2-PKC, Akt, and MAPK pathways. Int. J. Mol. Sci. 2017, 18, 1500. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Bae, O.-N.; Lim, K.-M.; Noh, J.-Y.; Kang, S.; Chung, K.Y.; Chung, J.-H. Novel antiplatelet activity of protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation. J. Pharmacol. Exp. Ther. 2012, 343, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.; Kim, K.; Bian, Y.; Noh, H.; Lim, K.-M.; Chung, J.-H.; Bae, O.-N. Antithrombotic effects of paeoniflorin from paeonia suffruticosa by selective inhibition on shear stress-induced platelet aggregation. Int. J. Mol. Sci. 2019, 20, 5040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Chen, Y.; Adili, R.; McKeown, T.; Chen, P.; Zhu, G.; Li, D.; Ling, W.; Ni, H.; Yang, Y. Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein VI signaling and inhibits platelet activation and thrombus formation. J. Nutr. 2017, 147, 1917–1925. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shi, Z.; Reheman, A.; Jin, J.W.; Li, C.; Wang, Y.; Andrews, M.C.; Chen, P.; Zhu, G.; Ling, W.; et al. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: Novel protective roles against cardiovascular diseases. PLoS ONE 2012, 7, e37323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Handa, S.; Ikeda, Y.; Goto, S. Specific inhibiting characteristics of tetramethylpyrazine, one of the active ingredients of the Chinese herbal medicine ‘Chuanxiong’ on platelet thrombus formation under high shear rates. Thromb. Res. 2001, 104, 15–28. [Google Scholar] [CrossRef]
- Lescano, C.H.; De Lima, F.F.; Mendes-Silvério, C.B.; Justo, A.F.O.; Baldivia, D.D.S.; Vieira, C.P.; Argandoña, E.J.S.; Cardoso, C.A.L.; Mónica, F.Z.; De Oliveira, I.P. Effect of Polyphenols from campomanesia adamantium on platelet aggregation and inhibition of cyclooxygenases: Molecular docking and in vitro analysis. Front. Pharmacol. 2018, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Sousa, H.R.; Gaspar, R.; Sena, E.M.L.; Da Silva, S.A.; Fontelles, J.L.; Araujo, T.; Mastrogiovanni, M.; Fries, D.M.; Azevedo-Santos, A.P.; Laurindo, F.R.M.; et al. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: Evidence of covalent binding to the C-terminal CGHC redox motif. J. Thromb. Haemost. 2017, 15, 774–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, G.; Shan, L.; Guo, L.; Chu, I.K.; Li, G.; Quan, Q.; Zhao, Y.; Chong, C.M.; Zhang, Z.; Yu, P.; et al. Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy. Sci. Rep. 2015, 5, srep10353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Nunez, L.; Rivera, J.; Guerrero, J.A.; Martinez, C.; Vicente, V.; Lozano, M.L. Differential effects of quercetin, apigenin and genistein on signalling pathways of protease-activated receptors PAR(1) and PAR(4) in platelets. Br. J. Pharmacol. 2009, 158, 1548–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Hahm, E.; Li, J.; Holbrook, L.-M.; Sasikumar, P.; Stanley, R.G.; Ushio-Fukai, M.; Gibbins, J.; Cho, J. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood 2013, 122, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Flevaris, P.; Li, Z.; Zhang, G.; Zheng, Y.; Liu, J.; Du, X. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 2009, 113, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Ou, X.; Huang, Q.; Liu, H.; Song, Y. Antithrombotic effect of total flavonoids and monomeric compounds from ampelopsis grossedentala. Tradit. Chin. Drug Res. Clin. Pharmacol. 2013, 24, 33–36. [Google Scholar]
- Augereau, O.; Rossignol, R.; DeGiorgi, F.; Mazat, J.-P.; Letellier, T.; Dachary-Prigent, J. Apoptotic-like mitochondrial events associated to phosphatidylserine exposure in blood platelets induced by local anaesthetics. Thromb. Haemost. 2004, 92, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Van der Meijden, P.E.; Heemskerk, J.W. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179. [Google Scholar] [CrossRef]
- Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef]
- Hsu, Y.-Y.; Kao, T.-H. Evaluation of prenylflavonoids and hop bitter acids in surplus yeast. J. Food Sci. Technol. 2019, 56, 1939–1953. [Google Scholar] [CrossRef]
- Jiang, S.; Bendjelloul, F.; Ballerini, P.; D’Alimonte, I.; Nargi, E.; Jiang, C.; Huang, X.; Rathbone, M.P. Guanosine reduces apoptosis and inflammation associated with restoration of function in rats with acute spinal cord injury. Purinergic Signal. 2007, 3, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Rathbone, M.P.; Middlemiss, P.J.; DeLuca, B.; Jovetich, M. Extracellular guanosine increases astrocyte cAMP: Inhibition by adenosine A2 antagonists. Neuroreport 1991, 2, 661–664. [Google Scholar] [CrossRef]
- Liang, C.; Ju, W.; Pei, S.; Tang, Y.; Xiao, Y. Pharmacological activities and synthesis of esculetin and its derivatives: A mini-review. Molecules 2017, 22, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakumar, T.; Chen, W.-F.; Lu, W.-J.; Chou, D.-S.; Hsiao, G.; Hsu, C.Y.; Sheu, J.-R.; Hsieh, C.-Y. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: Ex vivo and in vivo studies. J. Nutr. Biochem. 2013, 24, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, L.; Immeyer, J.; Batzer, J.; Wensorra, U.; Dieck, K.T.; Mundt, C.; Wolber, R.; Stäb, F.; Schönrock, U.; Ceilley, R.I.; et al. Anti-inflammatory efficacy of Licochalcone A: Correlation of clinical potency and in vitro effects. Arch. Dermatol. Res. 2006, 298, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, T.; Panitch, A. Endothelial cells, neutrophils and platelets: Getting to the bottom of an inflammatory triangle. Open Biol. 2020, 10, 200161. [Google Scholar] [CrossRef]
- Di Pietro, N.; Baldassarre, M.P.A.; Cichelli, A.; Pandolfi, A.; Formoso, G.; Pipino, C. Role of polyphenols and carotenoids in endothelial dysfunction: An overview from classic to innovative biomarkers. Oxid. Med. Cell. Longev. 2020, 2020, 6381380. [Google Scholar] [CrossRef]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A review of registered clinical trials on dietary (poly)phenols: Past efforts and possible future directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef]
- Nignpense, B.E.; Chinkwo, K.A.; Blanchard, C.L.; Santhakumar, A.B. Polyphenols: Modulators of platelet function and platelet microparticle generation? Int. J. Mol. Sci. 2019, 21, 146. [Google Scholar] [CrossRef] [Green Version]
- Stainer, A.R.; Sasikumar, P.; Bye, A.P.; Unsworth, A.J.; Holbrook, L.M.; Tindall, M.; Lovegrove, J.A.; Gibbins, J.M. The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. TH Open 2019, 3, e244–e258. [Google Scholar] [CrossRef] [PubMed]
- Basheer, L.; Kerem, Z. Interactions between CYP3A4 and dietary polyphenols. Oxid. Med. Cell. Longev. 2015, 2015, 854015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol. 2010, 48, 429–435. [Google Scholar] [CrossRef] [PubMed]
Compound | Natural Sources * | Effects and Proposed Mechanisms | In Vitro or In Vivo Effects | Concentration Ranges In Vitro | Effects on Bleeding | Reference |
---|---|---|---|---|---|---|
Myricetin (from Syzygium cumini leaf) | Syzygium cumini (L.) |
| In vitro (human platelet-rich plasma and washed platelet) In vivo (Mus musculus) | 10–100 µM | No changes in bleeding time were observed in mice supplemented with myricetin | [57] |
Quercitrin (comercial product) | As quercitrin (3-rhamnoside) in many fruit and vegetables: apples, honey, raspberries, onions, red grapes, cherries, citrus fruits |
| In vivo (Mus musculus) In vitro (thrombus formation on collagen-coated surfaces under arteriolar shear) | 10–30 µM | Without prolonging bleeding time | [64] |
Tannic acid (comercial product) | Aerial plant tissues, gall nuts |
| In vitro (isolated human platelets) In vivo (Mus musculus) | 1–100 µM | The administration did not change mouse jugular vein and tail bleeding time | [66] |
Juglone (comercial product) | Roots, leaves, and hulls of Juglandaceae plants |
| In vitro (collagen-coated flow chambers) | 1–5 µM | Nd. | [67] |
Dihydromyricetin (Comercial product) | The most abundant flavonoid in Ampelopsis grossedentata |
| In vitro (washed platelets and HUVEC cells) In vivo (C57BL/6j mice) Ex vivo (plasma coagulation) | 50–200 μg/mL | Supplementation did not affect prolonging ex vivo plasma coagulation or tail bleeding time | [70] |
Ginsenoside-Rp3 (reduced version of ginsenoside-Re from Panax ginseng C.A. Mayer) | Panax ginseng C.A. Mayer |
| In vitro (platelets of human and SD rats) In vivo (C57BL/6 J male mice) | 6.25–50 µM | Nd. | [69] |
Isorhamnetin (Comercial product) | Phaseolus vulgaris L. and leaves, flowers, and fruits of many plants (pears, olive oil, wine, tomato, parsley, green bell peppers, and dills) |
| In vitro (washed platelets) | 10–100 μM | Nd. | [17] |
Xanthohumol (from Humulus lupulus cones) | Humuluslupulus cones |
| In vivo (C57/BL6 mice, rats, and Sprague-Dawley) In vitro (washed platelets from rats) | 0.05–5 µM | Inhibited carotid arterial and inferior vena cava thrombosis without a significant risk of bleeding in mice | [76] |
Dichloroacetic acid (comercial product) | Asparagopsistaxiformis |
| In vitro (human and mouse washed platelets) In vivo (C57/BL6 mice) | 10–25 mM | Less susceptible to thrombosis in the FeCl3-induced carotid and laser injury-induced mesenteric artery thrombosis without altering hemostasis in mice | [77,78] |
Guanosine (comercial product) | Pancreas, clover, coffee beans, pollen from pines, sugar beets, yeast, and fish scales |
| In vitro (human washed platelets) In vivo (C57BL/6 mice) | 10–500 μmol/L | Significant reduction of thrombus formation both in vitro and in vivo without significantly affecting bleeding | [20] |
Ginsenoside-Rp1 (comercial product) | Panax ginseng C.A. Mayer |
| In vitro (washed platelets from rats) In vivo (Sprague–Dawley rats and C57BL/6J mice) | 2.5–20 μg/L | Without affecting tail bleeding time and coagulation time | [81] |
Caffeic acid (comercial product) | In many fruit and vegetables: Salvia miltiorrhizae, olives, coffee beans, fruits, potatoes, carrots, and propolis |
| In vitro (mouse platelets) In vivo (C57BL/6J mice) | 25–100 μM | Did not significantly prolong the tail bleeding time in mice either | [82] |
Psm2 (from Selaginella moellendorffii) | Selaginella moellendorffii |
| In vivo (Sprague-Dawley and ICR mice) In vitro (EA.hy926 cells) Ex vivo (human and rat platelets) | 0.3–3 mg/mL | Produced only slight bleeding in a mouse tail cutting model | [83] |
Tripeptide SQL (H-Ser-Gln-Leu-OH) (synthesized by the author’s laboratory) | Scolopendra subspinipes mutilans |
| In vivo (ICR mice, Sprague Dawley rats, and New Zealand white rabbits) In vitro (human platelets) | 0.27 mg/mL | Did not prolong the bleeding time in mice | [84] |
Gintonin (from Panax ginseng) | Panax ginseng | - Impairment in GPVI signaling molecules, including SFK, Syk, PLCγ2, MAPK, and PI3K/Akt | In vitro (washed Sprague-Dawley rat platelets) In vivo (C57BL/6J mice) | 12.5–50 μg/mL | Modestly extended bleeding | [85] |
Esculetin (comercial product) | Artemisia capillaries, Cortex fraxini. |
| In vitro (human platelets) In vivo (ICR mice) | 10–80 μM | Did not prolong the bleeding time | [87] |
Sulforaphane (comercial product) | Cruciferous vegetables: Brassica oleracea var. italic, var. gemmifera, and var. Capitata. |
| In vitro (washed human platelets) | 10–200 μM | Nd. | [88] |
Morin hydrate (comercial product) | Chlorophora tinctoria, Maclura pomifera, Prunus dulcis, Chlorophora tinctoria, onion, apple, and other Moraceae. |
| In vitro (washed human platelets) In vitro (ICR mice) | 20–80 μM | Did not affect bleeding time in mice | [94] |
Neferine (from Nelumbo nucifera Gaertn) | Nelumbo nucifera. |
| In vitro (washed human and Kunming mouse) platelet) Ex vivo (Kunming mice | 0.3–3 μM | Nd. | [90,91] |
Licochalcone A (comercial product) | Glycyrrhiza spp. |
| In vitro (human washed platelets In vivo (ICR and C57BL/6 mice) | 2–10 μM | Did not increase bleeding times | [93] |
Protocatechuic acid (comercial product) | Lonicera flowers, Oryza sativa L., and Allium cepa L. |
| In vitro (isolated human platelets) In vivo (Sprague Dawley rats) Ex vivo (Sprague Dawley rats) | 1–25 μM | Did not increase bleeding times | [95] |
Paeoniflorin (comercial product) | Paeonia suffruticosa. |
| In vitro (washed human platelets In vivo (Sprague-Dawley rats) Ex vivo (rats-derived PRP) | 10–250 μM | Without prolonging bleeding time or blood clotting time in rats | [96] |
Cyanidin-3-glucoside (comercial product) | Fruits and vegetables: mulberries, grapes, blackberries, and red cabbage. |
| In vitro (washed human platelets) In vivo (C57BL/6J mice) | 0.5–50 μM | Without prolonging bleeding time in mice | [97] |
Delphinidin-3-glucoside (comercial product) | Fruit and vegetables: mulberries, grapes, blackberries, and red cabbage. |
| In vitro (gell-filtered human and murine platelets) In vivo (C57BL/6J mice) | 0.5–50 μM | Did not significantly affect bleeding time in mice | [98] |
Tetramethylpyrazine (comercial product) | Ligusticum chuanxiong, cacao beans, soybeans. |
| In vitro (PRP from humans) | 0.9–3.7 mM | Bleeding was not determined, but no significant influences were observed under relatively low shear rates | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, E.; Wehinger, S.; Trostchansky, A. Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. Int. J. Mol. Sci. 2021, 22, 12380. https://doi.org/10.3390/ijms222212380
Fuentes E, Wehinger S, Trostchansky A. Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. International Journal of Molecular Sciences. 2021; 22(22):12380. https://doi.org/10.3390/ijms222212380
Chicago/Turabian StyleFuentes, Eduardo, Sergio Wehinger, and Andrés Trostchansky. 2021. "Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk" International Journal of Molecular Sciences 22, no. 22: 12380. https://doi.org/10.3390/ijms222212380
APA StyleFuentes, E., Wehinger, S., & Trostchansky, A. (2021). Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. International Journal of Molecular Sciences, 22(22), 12380. https://doi.org/10.3390/ijms222212380