An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease
Abstract
:1. Introduction
2. Neutrophils and NETs in Sterile Inflammation
3. Neutrophils and NETs in Autoinflammatory Diseases
3.1. Familial Mediterranean Fever
3.2. Gout
3.3. Inflammatory Bowel Diseases
4. Neutrophils in SJIA and AOSD
5. NETs in SJIA and AOSD
6. Clinical Values as Biomarkers Related to Neutrophils for Monitoring and Prognosis in SJIA and AOSD
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silvestre-Roig, C.; Fridlender, Z.G.; Glogauer, M.; Scapini, P. Neutrophil diversity in health and disease. Trends Immunol. 2019, 40, 565–583. [Google Scholar] [CrossRef]
- Kobayashi, S.D.; Malachowa, N.; De Leo, F.R. Neutrophils and bacterial immune evasion. J. Innate Immun. 2018, 10, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Fousert, E.; Toes, R.; Desai, J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses. Cells 2020, 9, 915. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowska, D.; Jabłońska, E.; Garley, M.; Ratajczak-Wrona, W.; Iwaniuk, A. New aspects of the biology of neutrophil extracellular traps. Scand. J. Immunol. 2016, 84, 317–322. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, M.; Khan, M.A.; Palaniyar, N. Neutrophil extracellular trap formation: Physiology, pathology, and pharmacology. Biomolecules 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.G.; Ostuni, R.; Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 2019, 19, 255–265. [Google Scholar] [CrossRef]
- Grieshaber-Bouyer, R.; Nigrovic, P.A. Neutrophil heterogeneity as therapeutic opportunity in immune-mediated disease. Front. Immunol. 2019, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Granger, V.; Peyneau, M.; Chollet-Martin, S.; De Chaisemartin, L. Neutrophil extracellular traps in autoimmunity and allergy: Immune complexes at work. Front. Immunol. 2019, 10, 2824. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, D.; Kudo, T. Novel therapeutic strategy based on neutrophil subset and its function in autoimmune disease. Front. Pharmacol. 2021, 12, 684886. [Google Scholar] [CrossRef] [PubMed]
- Petretto, A.; Bruschi, M.; Pratesi, F.; Croia, C.; Candiano, G.; Ghiggeri, G.; Migliorini, P. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS ONE 2019, 14, e0218946. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, D.; Segelmark, M. Neutrophil extracellular traps in ANCA-associated vasculitis. Front. Immunol. 2016, 7, 256. [Google Scholar] [CrossRef]
- Lee, K.H.; Kronbichler, A.; Park, D.D.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun. Rev. 2017, 16, 1160–1173. [Google Scholar] [CrossRef]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [Green Version]
- Spengler, J.; Lugonja, B.; Ytterberg, A.J.; Zubarev, R.A.; Creese, A.J.; Pearson, M.J.; Grant, M.M.; Milward, M.; Lundberg, K.; Buckley, C.D.; et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015, 67, 3135–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, D.L.; Aksentijevich, I.; Goldbach-Mansky, R. Autoinflammatory disease reloaded: A clinical perspective. Cell 2010, 140, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pay, S.; Türkçapar, N.; Kalyoncu, M.; Simşek, I.; Beyan, E.; Ertenli, I.; Oztürk, M.A.; Düzgün, N.; Erdem, H.; Ozbalkan, Z.; et al. A multicenter study of patients with adult-onset still’s disease compared with systemic juvenile idiopathic arthritis. Clin. Rheumatol. 2006, 25, 639–644. [Google Scholar]
- Inoue, N.; Shimizu, M.; Tsunoda, S.; Kawano, M.; Matsumura, M.; Yachie, A. Cytokine profile in adult-onset still’s disease: Comparison with systemic juvenile idiopathic arthritis. Clin. Immunol. 2016, 169, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Jamilloux, Y.; Gerfaud-Valentin, M.; Martinon, F.; Belot, A.; Henry, T.; Sève, P. Pathogenesis of adult-onset still’s disease: New insights from the juvenile counterpart. Immunol. Res. 2015, 61, 53–62. [Google Scholar] [CrossRef]
- Pardeo, M.; Bracaglia, C.; De Benedetti, F. Systemic juvenile idiopathic arthritis: New insights into pathogenesis and cytokine directed therapies. Best Pract. Res. Clin. Rheumatol. 2017, 31, 505–516. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ohta, A.; Tsunematsu, T.; Kasukawa, R.; Mizushima, Y.; Kashiwagi, H.; Kashiwazaki, S.; Tanimoto, K.; Matsumoto, Y.; Ota, T.; et al. Preliminary criteria for classification of adult still’s disease. J. Rheumatol. 1992, 19, 424–430. [Google Scholar] [PubMed]
- Feist, E.; Mitrovic, S.; Fautrel, B. Mechanisms, biomarkers and targets for adult-onset still’s disease. Nat. Rev. Rheumatol. 2018, 14, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, R.; Ruscitti, P.; Shoenfeld, Y. A comprehensive review on adult onset still’s disease. J. Autoimmun. 2018, 93, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Giaglis, S.; Hahn, S.; Hasler, P. “The NET outcome”: Are neutrophil extracellular traps of any relevance to the pathophysiology of autoimmune disorders in childhood? Front. Pediatr. 2016, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Gerfaud-Valentin, M.; Jamilloux, Y.; Iwaz, J.; Sève, P. Adult-onset still’s disease. Autoimmun. Rev. 2014, 13, 708–722. [Google Scholar] [CrossRef] [Green Version]
- Cimaz, R. Systemic-onset juvenile idiopathic arthritis. Autoimmun. Rev. 2016, 15, 931–934. [Google Scholar] [CrossRef]
- Ahn, M.H.; Han, J.H.; Chwae, Y.J.; Jung, J.Y.; Suh, C.H.; Kwon, J.E.; Kim, H.A. Neutrophil Extracellular Traps May Contribute to the Pathogenesis in Adult-Onset Still Disease. J. Rheumatol. 2019, 46, 1560–1569. [Google Scholar] [CrossRef]
- Hu, Q.; Shi, H.; Zeng, T.; Liu, H.; Su, Y.; Cheng, X.; Ye, J.; Yin, Y.; Liu, M.; Zheng, H.; et al. Increased Neutrophil Extracellular Traps Activate NLRP3 and Inflammatory Macrophages in Adult-Onset Still’s Disease. Arthritis Res. Ther. 2019, 21, 9. [Google Scholar] [CrossRef] [Green Version]
- Liew, P.X.; Kubes, P. The Neutrophil’s Role during Health and Disease. Physiol. Rev. 2019, 99, 1223–1248. [Google Scholar] [CrossRef]
- Metzemaekers, M.; Gouwy, M.; Proost, P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords. Cell. Mol. Immunol. 2020, 17, 433–450. [Google Scholar] [CrossRef]
- Abdolmaleki, F.; Kovanen, P.T.; Mardani, R.; Gheibi-Hayat, S.M.; Bo, S.; Sahebkar, A. Resolvins: Emerging Players in Autoimmune and Inflammatory Diseases. Clin. Rev. Allergy Immunol. 2020, 58, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, J.; Margraf, A.; Zarbock, A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front. Immunol. 2018, 9, 2712. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid Mediators in the Resolution of Inflammation. Cold Spring Harb. Perspect. Biol. 2014, 7, a016311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales, C. Neutrophils at the Crossroads of Innate and Adaptive Immunity. J. Leukoc. Biol. 2020, 108, 377–396. [Google Scholar] [CrossRef]
- Greenlee-Wacker, M.C. Clearance of Apoptotic Neutrophils and Resolution of Inflammation. Immunol. Rev. 2016, 273, 357–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, J.; Knopf, J.; Maueröder, C.; Kienhöfer, D.; Leppkes, M.; Herrmann, M. Neutrophils and Neutrophil Extracellular Traps Orchestrate Initiation and Resolution of Inflammation. Clin. Exp. Rheumatol. 2016, 34, 6–8. [Google Scholar]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Hakkim, A.; Fuchs, T.A.; Martinez, N.E.; Hess, S.; Prinz, H.; Zychlinsky, A.; Waldmann, H. Activation of the Raf-MEK-ERK Pathway Is Required for Neutrophil Extracellular Trap Formation. Nat. Chem. Biol. 2011, 7, 75–77. [Google Scholar] [CrossRef]
- Van Avondt, K.; Hartl, D. Mechanisms and Disease Relevance of Neutrophil Extracellular Trap Formation. Eur. J. Clin. Investig. 2018, 48, e12919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yipp, B.G.; Kubes, P. NETosis: How Vital Is It? Blood 2013, 122, 2784–2794. [Google Scholar] [CrossRef] [PubMed]
- Mulay, S.R.; Anders, H.-J. Neutrophils and Neutrophil Extracellular Traps Regulate Immune Responses in Health and Disease. Cells 2020, 9, 2130. [Google Scholar] [CrossRef]
- Rubartelli, A.; Lotze, M.T.; Latz, E.; Manfredi, A.A. Mechanisms of Sterile Inflammation. Front. Immunol. 2013, 4, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossaint, J.; Herter, J.M.; Van Aken, H.; Napirei, M.; Döring, Y.; Weber, C.; Soehnlein, O.; Zarbock, A. Synchronized Integrin Engagement and Chemokine Activation Is Crucial in Neutrophil Extracellular Trap–Mediated Sterile Inflammation. Blood 2014, 123, 2573–2584. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Rock, K.L.; Latz, E.; Ontiveros, F.; Kono, H. The Sterile Inflammatory Response. Annu. Rev. Immunol. 2010, 28, 321–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil Function: From Mechanisms to Disease. Annu. Rev. Immunol. 2012, 30, 459–489. [Google Scholar] [CrossRef]
- De Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil Migration in Infection and Wound Repair: Going Forward in Reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.F.; Aksentijevich, I.; Galon, J.; McDermott, E.M.; Ogunkolade, B.W.; Centola, M.; Mansfield, E.; Gadina, M.; Karenko, L.; Pettersson, T.; et al. Germline Mutations in the Extracellular Domains of the 55 kDa TNF Receptor, TNFR1, Define a Family of Dominantly Inherited Autoinflammatory Syndromes. Cell 1999, 97, 133–144. [Google Scholar] [CrossRef]
- Savic, S.; Dickie, L.J.; Wittmann, M.; McDermott, M.F. Autoinflammatory Syndromes and Cellular Responses to Stress: Pathophysiology, Diagnosis and New Treatment Perspectives. Best Pract. Res. Clin. Rheumatol. 2012, 26, 505–533. [Google Scholar] [CrossRef]
- Ciccarelli, F.; De Martinis, M.; Ginaldi, L. An Update on Autoinflammatory Diseases. Curr. Med. Chem. 2014, 21, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, D.B.; Aksentijevich, I. Biochemistry of Autoinflammatory Diseases: Catalyzing Monogenic Disease. Front. Immunol. 2019, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Krainer, J.; Siebenhandl, S.; Weinhäusel, A. Systemic Autoinflammatory Diseases. J. Autoimmun. 2020, 109, 102421. [Google Scholar] [CrossRef]
- Navallas, M.; Inarejos Clemente, E.J.; Iglesias, E.; Rebollo-Polo, M.; Hernández, J.C.; Navarro, O.M. Autoinflammatory Diseases in Childhood, part 2: Polygenic Syndromes. Pediatr. Radiol. 2020, 50, 431–444. [Google Scholar] [CrossRef]
- Arakelyan, A.; Nersisyan, L.; Poghosyan, D.; Khondkaryan, L.; Hakobyan, A.; Löffler-Wirth, H.; Melanitou, E.; Binder, H. Autoimmunity and Autoinflammation: A Systems View on Signaling Pathway Dysregulation Profiles. PLoS ONE 2017, 12, e0187572. [Google Scholar]
- Ozen, S.; Bilginer, Y. A Clinical Guide to Autoinflammatory Diseases: Familial Mediterranean Fever and Next-of-Kin. Nat. Rev. Rheumatol. 2014, 10, 135–147. [Google Scholar] [CrossRef]
- Shohat, M.; Halpern, G.J. Familial Mediterranean Fever—A Review. Genet. Med. 2011, 13, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Manukyan, G.; Petrek, M.; Kriegova, E.; Ghazaryan, K.; Fillerova, R.; Boyajyan, A. Activated Phenotype of Circulating Neutrophils in Familial Mediterranean Fever. Immunobiology 2013, 218, 892–898. [Google Scholar] [CrossRef]
- Skendros, P.; Papagoras, C.; Mitroulis, I.; Ritis, K. Autoinflammation: Lessons from the Study of Familial Mediterranean Fever. J. Autoimmun. 2019, 104, 102305. [Google Scholar] [CrossRef]
- Kimura, T.; Jain, A.; Choi, S.W.; Mandell, M.A.; Schroder, K.; Johansen, T.; Deretic, V. TRIM-Mediated Precision Autophagy Targets Cytoplasmic Regulators of Innate Immunity. J. Cell Biol. 2015, 210, 973–989. [Google Scholar] [CrossRef] [Green Version]
- Gohar, F.; Orak, B.; Kallinich, T.; Jeske, M.; Lieber, M.; Von Bernuth, H.; Giese, A.; Weissbarth-Riedel, E.; Haas, J.P.; Dressler, F.; et al. Correlation of Secretory Activity of Neutrophils With Genotype in Patients With Familial Mediterranean Fever. Arthritis Rheumatol. 2016, 68, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Chae, J.J.; Cho, Y.H.; Lee, G.S.; Cheng, J.; Liu, P.P.; Feigenbaum, L.; Katz, S.I.; Kastner, D.L. Gain-of-Function Pyrin Mutations Induce NLRP3 Protein-Independent Interleukin-1β Activation and Severe Autoinflammation in Mice. Immunity 2011, 34, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Apostolidou, E.; Skendros, P.; Kambas, K.; Mitroulis, I.; Konstantinidis, T.; Chrysanthopoulou, A.; Nakos, K.; Tsironidou, V.; Koffa, M.; Boumpas, D.T.; et al. Neutrophil Extracellular Traps Regulate IL-1β-Mediated Inflammation in Familial Mediterranean Fever. Ann. Rheum. Dis. 2016, 75, 269–277. [Google Scholar] [CrossRef]
- Skendros, P.; Chrysanthopoulou, A.; Rousset, F.; Kambas, K.; Arampatzioglou, A.; Mitsios, A.; Bocly, V.; Konstantinidis, T.; Pellet, P.; Angelidou, I.; et al. Regulated in Development and DNA Damage responses 1 (REDD1) Links Stress With IL-1β–Mediated Familial Mediterranean Fever Attack Through Autophagy-Driven Neutrophil Extracellular Traps. J. Allergy Clin. Immunol. 2017, 140, 1378–1387.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliviero, F.; Bindoli, S.; Scanu, A.; Feist, E.; Doria, A.; Galozzi, P.; Sfriso, P. Autoinflammatory Mechanisms in Crystal-Induced Arthritis. Front. Med. (Lausanne). 2020, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Malawista, S.E.; de Boisfleury, A.C.; Naccache, P.H. Inflammatory Gout: Observations over a Half-Century. FASEB J. 2011, 25, 4073–4078. [Google Scholar] [CrossRef] [Green Version]
- Mitroulis, I.; Kambas, K.; Ritis, K. Neutrophils, IL-1β, and Gout: Is There a Link? Semin. Immunopathol. 2013, 35, 501–512. [Google Scholar] [CrossRef]
- Busso, N.; So, A. Gout. Mechanisms of Inflammation in Gout. Arthritis Res. Ther. 2010, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mitroulis, I.; Kambas, K.; Chrysanthopoulou, A.; Skendros, P.; Apostolidou, E.; Kourtzelis, I.; Drosos, G.I.; Boumpas, D.T.; Ritis, K. Neutrophil Extracellular Trap Formation Is Associated With IL-1β and Autophagy-Related Signaling in Gout. PLoS ONE 2011, 6, e29318. [Google Scholar] [CrossRef]
- Jeong, J.H.; Choi, S.J.; Ahn, S.M.; Oh, J.S.; Kim, Y.G.; Lee, C.K.; Yoo, B.; Hong, S. Neutrophil Extracellular Trap Clearance by Synovial Macrophages in Gout. Arthritis Res. Ther. 2021, 23, 88. [Google Scholar] [CrossRef]
- Schauer, C.; Janko, C.; Munoz, L.E.; Zhao, Y.; Kienhöfer, D.; Frey, B.; Lell, M.; Manger, B.; Rech, J.; Naschberger, E.; et al. Aggregated Neutrophil Extracellular Traps Limit Inflammation by Degrading Cytokines and Chemokines. Nat. Med. 2014, 20, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.; Steiger, S.; Anders, H.J. Molecular Pathophysiology of Gout. Trends Mol. Med. 2017, 23, 756–768. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Smeekens, S.P.; Casagrande, A.; Iannitti, R.; Conway, K.L.; Gresnigt, M.S.; Begun, J.; Plantinga, T.S.; Joosten, L.A.; Van Der Meer, J.W.; et al. IL-1 Receptor Blockade Restores Autophagy and Reduces Inflammation in Chronic Granulomatous Disease in Mice and in Humans. Proc. Natl. Acad. Sci. USA 2014, 111, 3526–3531. [Google Scholar] [CrossRef] [Green Version]
- De Lange, K.M.; Barrett, J.C. Understanding Inflammatory Bowel Disease via Immunogenetics. J. Autoimmun. 2015, 64, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Z.; Li, Y.Y. Inflammatory Bowel Disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91–99. [Google Scholar] [CrossRef]
- Naito, Y.; Takagi, T.; Yoshikawa, T. Molecular Fingerprints of Neutrophil-Dependent Oxidative Stress in Inflammatory Bowel Disease. J. Gastroenterol. 2007, 42, 787–798. [Google Scholar] [CrossRef]
- Zhou, G.X.; Liu, Z.J. Potential Roles of Neutrophils in Regulating Intestinal Mucosal Inflammation of Inflammatory Bowel Disease. J. Dig. Dis. 2017, 18, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Biasi, F.; Leonarduzzi, G.; Oteiza, P.I.; Poli, G. Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets. Antioxid. Redox Signal. 2013, 19, 1711–1747. [Google Scholar] [CrossRef] [Green Version]
- Bennike, T.B.; Carlsen, T.G.; Ellingsen, T.; Bonderup, O.K.; Glerup, H.; Bøgsted, M.; Christiansen, G.; Birkelund, S.; Stensballe, A.; Andersen, V. Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies. Inflamm. Bowel Dis. 2015, 21, 2052–2067. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Si, Y.; Jiang, T.; Ma, R.; Zhang, Y.; Cao, M.; Li, T.; Yao, Z.; Zhao, L.; Fang, S.; et al. Phosphotidylserine Exposure and Neutrophil Extracellular Traps Enhance Procoagulant Activity in Patients With Inflammatory Bowel Disease. Thromb. Haemost. 2016, 115, 738–751. [Google Scholar]
- Cao, M.; Yu, M.; Zhang, Y.; Tong, D.; Guo, L.; Wang, C.; Li, T.; Yang, X.; Zhang, C.; Kou, J. Neutrophil Extracellular Traps Exacerbate Inflammatory Responses and Thrombotic Tendency in Both a Murine Colitis Model and Patients With Inflammatory Bowel Disease; American Society of Hematology: Washington, DC, USA, 2017. [Google Scholar]
- Angelidou, I.; Chrysanthopoulou, A.; Mitsios, A.; Arelaki, S.; Arampatzioglou, A.; Kambas, K.; Ritis, D.; Tsironidou, V.; Moschos, I.; Dalla, V.; et al. REDD1/autophagy Pathway Is Associated With Neutrophil-Driven IL-1β Inflammatory Response in Active Ulcerative Colitis. J. Immunol. 2018, 200, 3950–3961. [Google Scholar] [CrossRef]
- Drury, B.; Hardisty, G.; Gray, R.D.; Ho, G.T. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Suh, C.H.; Lee, Y.M.; Suh, Y.J.; Lee, S.K.; Kim, S.S.; Nahm, D.H.; Park, H.S. Serum Cytokine Profiles in Patients With Adult Onset Still’s Disease. J. Rheumatol. 2003, 30, 2422–2427. [Google Scholar] [PubMed]
- Kasama, T.; Furuya, H.; Yanai, R.; Ohtsuka, K.; Takahashi, R.; Yajima, N.; Miwa, Y.; Kobayashi, K. Correlation of Serum CX3CL1 Level With Disease Activity in Adult-Onset Still’s Disease and Significant Involvement in Hemophagocytic Syndrome. Clin. Rheumatol. 2012, 31, 853–860. [Google Scholar] [CrossRef]
- Chen, D.Y.; Lan, J.L.; Lin, F.J.; Hsieh, T.Y. Association of Intercellular Adhesion molecule-1 With Clinical Manifestations and Interleukin-18 in Patients With Active, Untreated Adult-Onset Still’s Disease. Arthritis Rheum. 2005, 53, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Komiya, A.; Matsui, T.; Nogi, S.; Iwata, K.; Futami, H.; Takaoka, H.; Arinuma, Y.; Hashimoto, A.; Shimada, K.; Ikenaka, T.; et al. Neutrophil CD64 Is Upregulated in Patients With Active Adult-Onset Still’s Disease. Scand. J. Rheumatol. 2012, 41, 156–158. [Google Scholar] [CrossRef]
- Chen, P.K.; Hsieh, S.L.; Lan, J.L.; Lin, C.C.; Chang, S.H.; Chen, D.Y. Elevated Expression of C-Type Lectin Domain family 5-Member A (CLEC5A) and Its Relation to Inflammatory Parameters and Disease Course in Adult-Onset Still’s Disease. J. Immunol. Res. 2020, 2020, 9473497. [Google Scholar] [CrossRef]
- Kim, H.A.; Choi, B.; Suh, C.H.; Han, M.H.; Jung, J.Y.; Sayeed, H.M.; Kim, Y.W.; Sohn, S. Highly Expression of CD11b and CD32 on Peripheral Blood Mononuclear Cells From Patients With Adult-Onset Still’s Disease. Int. J. Mol. Sci. 2017, 18, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, K.; Glaser, A.; Lythgoe, H.; Ong, J.; Beresford, M.W.; Midgley, A.; Wright, H.L. Neutrophil Activation Signature in Juvenile Idiopathic Arthritis Indicates the Presence of Low-Density Granulocytes. Rheumatology 2018, 57, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xia, C.; Chen, J.; Fan, C.; He, J. Elevated Circulating Pro-Inflammatory Low-Density Granulocytes in Adult-Onset Still’s Disease. Rheumatology 2021, 60, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.; Henderlight, M.; Do, T.; Yasin, S.; Grom, A.A.; DeLay, M.; Thornton, S.; Schulert, G.S. Neutrophils From Children With Systemic Juvenile Idiopathic Arthritis Exhibit Persistent Proinflammatory Activation Despite Long-Standing Clinically Inactive Disease. Front. Immunol. 2018, 9, 2995. [Google Scholar] [CrossRef] [PubMed]
- De Benedetti, F.; Massa, M.; Robbioni, P.; Ravelli, A.; Burgio, G.R.; Martini, A. Correlation of Serum Interleukin-6 Levels With Joint Involvement and Thrombocytosis in Systemic Juvenile Rheumatoid Arthritis; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- De Jager, W.; Hoppenreijs, E.P.; Wulffraat, N.M.; Wedderburn, L.R.; Kuis, W.; Prakken, B.J. Blood and Synovial Fluid Cytokine Signatures in Patients with Juvenile Idiopathic Arthritis: A Cross-Sectional Study. Ann. Rheum. Dis. 2007, 66, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Pascual, V.; Allantaz, F.; Arce, E.; Punaro, M.; Banchereau, J. Role of Interleukin-1 (IL-1) in the Pathogenesis of Systemic Onset Juvenile Idiopathic Arthritis and Clinical Response to IL-1 Blockade. J. Exp. Med. 2005, 201, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Suh, C.H.; Jung, J.Y.; Nam, J.Y.; Kwon, J.E.; Yim, H.; Kim, H.A. Association of CXCL10 and CXCL13 Levels With Disease Activity and Cutaneous Manifestation in Active Adult-Onset Still’s Disease. Arthritis Res. Ther. 2015, 17, 260. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Ahn, M.H.; Jung, J.Y.; Suh, C.H.; Kwon, J.E.; Yim, H.; Kim, H.A. The Levels of CXCL12 and Its Receptor, CXCR4, as a Biomarker of Disease Activity and Cutaneous Manifestation in Adult-Onset Still’s Disease. Clin. Exp. Rheumatol. 2019, 37, 67–73. [Google Scholar]
- Ma, Y.; Meng, J.; Jia, J.; Wang, M.; Teng, J.; Zhu, D.; Yang, C.; Hu, Q. Current and Emerging Biological Therapy in Adult-Onset Still’s Disease. Rheumatology 2021, 60, 3986–4000. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Rivera, C.; Kaplan, M.J. Low-Density Granulocytes: A Distinct Class of Neutrophils in Systemic Autoimmunity. Semin. Immunopathol. 2013, 35, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V. Neutrophil Extracellular Traps in the Second Decade. J. Innate Immun. 2018, 10, 414–421. [Google Scholar] [CrossRef]
- Roth, J.; Goebeler, M.; Sorg, C. S100A8 and S100A9 in Inflammatory Diseases. Lancet 2001, 357, 1041. [Google Scholar] [CrossRef]
- Austermann, J.; Spiekermann, C.; Roth, J. S100 Proteins in Rheumatic Diseases. Nat. Rev. Rheumatol. 2018, 14, 528–541. [Google Scholar] [CrossRef]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in Inflammation. Front. Immunol. 2018, 9, 1298. [Google Scholar] [CrossRef] [PubMed]
- Frosch, M.; Ahlmann, M.; Vogl, T.; Wittkowski, H.; Wulffraat, N.; Foell, D.; Roth, J. The Myeloid-Related proteins 8 and 14 Complex, a Novel Ligand of Toll-Like Receptor 4, and Interleukin-1Beta Form a Positive Feedback Mechanism in Systemic-Onset Juvenile Idiopathic Arthritis. Arthritis Rheum. 2009, 60, 883–891. [Google Scholar] [CrossRef]
- Kim, H.A.; Han, J.H.; Kim, W.J.; Noh, H.J.; An, J.M.; Yim, H.; Jung, J.Y.; Kim, Y.S.; Suh, C.H. TLR4 Endogenous Ligand S100A8/A9 Levels in Adult-Onset Still’s Disease and Their Association With Disease Activity and Clinical Manifestations. Int. J. Mol. Sci. 2016, 17, 1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittkowski, H.; Frosch, M.; Wulffraat, N.; Goldbach-Mansky, R.; Kallinich, T.; Kuemmerle-Deschner, J.; Frühwald, M.C.; Dassmann, S.; Pham, T.H.; Roth, J.; et al. S100A12 Is a Novel Molecular Marker Differentiating Systemic-Onset Juvenile Idiopathic Arthritis From Other Causes of Fever of Unknown Origin. Arthritis Rheum. 2008, 58, 3924–3931. [Google Scholar] [CrossRef] [PubMed]
- Bae, C.B.; Suh, C.H.; An, J.M.; Jung, J.Y.; Jeon, J.Y.; Nam, J.Y.; Kim, H.A. Serum S100A12 May Be a Useful Biomarker of Disease Activity in Adult-Onset Still’s Disease. J. Rheumatol. 2014, 41, 2403–2408. [Google Scholar] [CrossRef] [PubMed]
- Backlund, M.; Venge, P.; Berntson, L. A Cross-Sectional Cohort Study of the Activity and Turnover of Neutrophil Granulocytes in Juvenile Idiopathic Arthritis. Pediatr. Rheumatol. Online J. 2021, 19, 102. [Google Scholar] [CrossRef]
- Jia, J.; Yang, L.; Cao, Z.; Wang, M.; Ma, Y.; Ma, X.; Liu, Q.; Teng, J.; Shi, H.; Liu, H.; et al. Neutrophil-Derived lipocalin-2 in Adult-Onset Still’s Disease: A Novel Biomarker of Disease Activity and Liver Damage. Rheumatology 2021, 60, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.L.; Chen, Y.M.; Tang, K.T.; Chen, P.K.; Liu, H.J.; Chen, D.Y. MicroRNA-223 Inhibits Neutrophil Extracellular Traps Formation Through Regulating Calcium Influx and Small Extracellular Vesicles Transmission. Sci. Rep. 2021, 11, 15676. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Carrillo-Vázquez, D.A.; Tapia-Rodríguez, M.; Garcia-Galicia, J.A.; Alcocer-Varela, J.; Gómez-Martín, D. The Role of Low Density Granulocytes and NETosis in the Pathogenesis of Adult-Onset Still’s Disease. Clin. Exp. Rheumatol. 2019, 37, 74–82. [Google Scholar]
- Jung, J.Y.; Suh, C.H.; Sohn, S.; Nam, J.Y.; Kim, H.A. Elevated High-Mobility Group B1 Levels in Active Adult-Onset Still’s Disease Associated With Systemic Score and Skin Rash. Clin. Rheumatol. 2016, 35, 1937–1942. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Zhang, Z.Y.; Tang, X.M. Association Between High Mobility Group Box 1 Protein and Juvenile Idiopathic Arthritis: A Prospective Longitudinal Study. Pediatr. Rheumatol. Online J. 2021, 19, 112. [Google Scholar] [CrossRef]
- Bobek, D.; Grčević, D.; Kovačić, N.; Lukić, I.K.; Jelušić, M. The Presence of High Mobility Group box-1 and Soluble Receptor for Advanced Glycation End-Products in Juvenile Idiopathic Arthritis and Juvenile Systemic Lupus Erythematosus. Pediatr. Rheumatol. Online J. 2014, 12, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Wang, M.; Ma, Y.; Teng, J.; Shi, H.; Liu, H.; Sun, Y.; Su, Y.; Meng, J.; Chi, H.; et al. Circulating Neutrophil Extracellular Traps Signature for Identifying Organ Involvement and Response to Glucocorticoid in Adult-Onset Still’s Disease: A Machine Learning Study. Front. Immunol. 2020, 11, 563335. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, M.; Jia, J.; Shi, H.; Teng, J.; Liu, H.; Sun, Y.; Cheng, X.; Ye, J.; Su, Y.; et al. Association of the Leukocyte Immunoglobulin-Like Receptor A3 Gene With Neutrophil Activation and Disease Susceptibility in Adult-Onset Still’s Disease. Arthritis Rheumatol. 2021, 73, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xie, Q.; Mo, X.; Jin, Y. The Role of Extracellular Histones in Systemic-Onset Juvenile Idiopathic Arthritis. Ital. J. Pediatr. 2019, 45, 14. [Google Scholar] [CrossRef] [PubMed]
- Tsung, A.; Tohme, S.; Billiar, T.R. High-Mobility Group box-1 in Sterile Inflammation. J. Intern. Med. 2014, 276, 425–443. [Google Scholar] [CrossRef]
- Ge, Y.; Huang, M.; Yao, Y.M. The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021, 10, 1044. [Google Scholar] [CrossRef]
- Pahar, B.; Madonna, S.; Das, A.; Albanesi, C.; Girolomoni, G. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines 2020, 8, 517. [Google Scholar] [CrossRef] [PubMed]
- Illei, G.G.; Tackey, E.; Lapteva, L.; Lipsky, P.E. Biomarkers in Systemic Lupus Erythematosus. I. General Overview of Biomarkers and Their Applicability. Arthritis Rheum. 2004, 50, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Kendirli, S.G.; Altintas, D.; Bingöl, G.; Antmen, B. Cytokine Levels in Serum of Patients With Juvenile Rheumatoid Arthritis. Clin. Rheumatol. 2001, 20, 30–35. [Google Scholar] [CrossRef]
- De Benedetti, F.; Pignatti, P.; Bernasconi, S.; Gerloni, V.; Matsushima, K.; Caporali, R.; Montecucco, C.M.; Sozzani, S.; Fantini, F.; Martini, A. Interleukin 8 and Monocyte Chemoattractant protein-1 in Patients With Juvenile Rheumatoid Arthritis. Relation to Onset Types, Disease Activity, and Synovial Fluid Leukocytes. J. Rheumatol. 1999, 26, 425–431. [Google Scholar]
- Chen, D.Y.; Lan, J.L.; Lin, F.J.; Hsieh, T.Y. Proinflammatory Cytokine Profiles in Sera and Pathological Tissues of Patients With Active Untreated Adult Onset Still’s Disease. J. Rheumatol. 2004, 31, 2189–2198. [Google Scholar] [PubMed]
- Yasin, S.; Fall, N.; Brown, R.A.; Henderlight, M.; Canna, S.W.; Girard-Guyonvarc’h, C.; Gabay, C.; Grom, A.A.; Schulert, G.S. IL-18 as a Biomarker Linking Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome. Rheumatology 2020, 59, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Bracaglia, C.; De Graaf, K.; Pires Marafon, D.; Guilhot, F.; Ferlin, W.; Prencipe, G.; Caiello, I.; Davì, S.; Schulert, G.; Ravelli, A.; et al. Elevated Circulating Levels of Interferon-γ and Interferon-γ-Induced Chemokines Characterise Patients With Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis. Ann. Rheum. Dis. 2017, 76, 166–172. [Google Scholar] [CrossRef]
- Han, J.H.; Suh, C.H.; Jung, J.Y.; Ahn, M.H.; Han, M.H.; Kwon, J.E.; Yim, H.; Kim, H.A. Elevated Circulating Levels of the Interferon-γ-Induced Chemokines Are Associated With Disease Activity and Cutaneous Manifestations in Adult-Onset Still’s Disease. Sci. Rep. 2017, 7, 46652. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yang, T.; Zhang, H.; Xu, Y.; Yang, Q.; Liu, Q.; Gao, Y.; Wu, J.; Shao, L.; Zhang, W. Biomarker Screening and Validation for the Differentiation of Bloodstream Infection From Adult-Onset Still’s Disease: A Prospective Cohort Study. Cytokine 2021, 146, 155642. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, D.; Frosch, M.; Kastrup, A.; Prince, F.H.; Otten, M.H.; Van Suijlekom-Smit, L.W.; Ten Cate, R.; Hoppenreijs, E.P.; Hansmann, S.; Moncrieffe, H.; et al. The Toll-Like Receptor 4 Agonist MRP8/14 Protein Complex Is a Sensitive Indicator for Disease Activity and Predicts Relapses in Systemic-Onset Juvenile Idiopathic Arthritis. Ann. Rheum. Dis. 2012, 71, 974–980. [Google Scholar] [CrossRef]
- Aljaberi, N.; Tronconi, E.; Schulert, G.; Grom, A.A.; Lovell, D.J.; Huggins, J.L.; Henrickson, M.; Brunner, H.I. The Use of S100 Proteins Testing in Juvenile Idiopathic Arthritis and Autoinflammatory Diseases in a Pediatric Clinical Setting: A Retrospective Analysis. Pediatr. Rheumatol. Online J. 2020, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zha, X.; Li, C.; Jia, Y.; Zhu, L.; Guo, J.; Su, Y. Serum Calprotectin--A Promising Diagnostic Marker for Adult-Onset Still’s Disease. Clin. Rheumatol. 2016, 35, 73–79. [Google Scholar] [CrossRef] [Green Version]
Study Population | Main Findings | Country | Author, Year [ref.] |
---|---|---|---|
Analysis of serum from 14 patients with AOSD | Overproduction of CXCL–8 may contribute to the pathogenic mechanism of AOSD. | South Korea | Choi J-H et al., 2003 [84] |
Analysis of serum from 19 patients with AOSD and 19 HCs | Serum CX3CL1 level may be used as a clinical marker to assess the disease activity of AOSD, and high serum CXCL–8 and ferritin reflected the presence of hemophagocytic syndrome. | Japan | Kasama T et al., 2012 [85] |
Analysis of serum from 50 patients with untreated AOSD, 20 with RA, and 20 HCs | Serum levels of ICAM–1 were significantly elevated in patients with active untreated AOSD compared with those with active RA and HCs. | Taiwan | Chen DY et al., 2005 [86] |
Analysis of serum from 10 patients with AOSD | Neutrophil CD64 is upregulated in patients with active AOSD | Japan | Komiya A et al., 2012 [87] |
Analysis of serum from 34 patients with AOSD and 12 HCs | C-type lectin domain family 5–member A is involved in the pathogenesis and may serve as an activity indicator of AOSD. | Taiwan | Chen P-K et al., 2020 [88] |
Analysis of serum from 13 patients with AOSD, 19 with RA, and 19 HCs | Significantly higher frequencies of cells presenting CD11b and CD32 from whole blood cells in patients with AOSD than in patients with RA or HC | Korea | Kim HA et al., 2017 [89] |
Analysis of serum from 16 patients with JIA (3 SJIA) and 19 HCs | Neutrophils from JIA patients have elevated transcription of genes encoding granule proteins, a major cause of inflammation. | UK | Ramanathan K et al., 2018 [90] |
Analysis of serum from 56 patients with AOSD (active 32 and inactive 24) and 26 HCs | Active AOSD is associated with elevated levels of low-density granulocytes that produce IL–6 | China | Liu Y et al., 2021 [91] |
Analysis of serum from 23 patients with active SJIA and 22 with inactive SJIA | Neutrophil activations, S100 alarmin release, and proinflammatory gene expression were seen in SJIA patients with both active disease and clinically inactive disease. | United States | Brown RA et al., 2018 [92] |
Analysis of serum from 39 patients with SJIA (active 25 and inactive 14) and 17 HCs | IL-6 plays a significant role in the pathogenesis of SJIA. | Italy | De Benedetti F et al., 1991 [93] |
Analysis of serum and synovial fluid from 65 patients with JIA (20 SJIA), 9 with type I diabetes, and 20 HCs | Several cytokines including IL18 may correspond to the activation status during inflammation in JIA | The Netherlands | De Jager W et al., 2007 [94] |
Analysis of serum from 23 patients with SJIA, and 12 HCs | IL-1 is a major mediator of the inflammatory cascade that underlies SJIA | United States | Pascual V et al., 2005 [95] |
Analysis of serum from 39 patients with active AOSD, 32 with RA, and 40 HCs | Serum CXCL10 and CXCL13 levels may serve as clinical markers for assessment of disease activity, especially skin manifestations, in AOSD | South Korea | Han JH et al., 2015 [96] |
Analysis of skin biopsy materials of 40 patients with AOSD, 10 with eczema, 10 with psoriasis, and 10 HCs | CXCR4 could be a clinical biomarker of evaluation for disease activity in AOSD. CXCR4/CXCL12 may influence skin manifestations of AOSD. | South Korea | Han JH et al., 2019 [97] |
Study Population | Main Findings | Country | Author, Year [ref.] |
---|---|---|---|
Analysis of serum from 60 patients with SJIA, 148 with other inflammatory disease, and 50 HCs | S100A9/S100A9 and IL–1β represent a novel positive feedback mechanism activating phagocytes during the pathogenesis of systemic-onset JIA. | Germany | Frosch M et al., 2009 [104] |
Analysis of serum from 20 patients with AOSD and 20 HCs | S100A8/A9 may be involved in the inflammatory response with induction of proinflammatory cytokines and may serve as a clinicopathological marker for disease activity in AOSD. | South Korea | Kim HA et al., 2016 [105] |
Analysis of serum from 240 patients (60 with SJIA, 17 with FMF, 18 with neonatal–onset multisystem inflammatory disease, 17 with Muckle–Wells syndrome, 45 with leukemia, 83 with systemic infection), and 45 HCs | S100A12, a marker of granulocyte activation, is highly overexpressed in patients with systemic-onset JIA or FMF. | Germany | Wittkowski H et al., 2008 [106] |
Analysis of serum from 37 patients with SLE and 38 HCs | S100A12 levels showed strong correlations with known disease activity markers. | South Korea | Bae C-B et al., 2014 [107] |
Analysis of serum from 35 patients with AOSD and 20 HCs | Serum levels of cell-free DNA, myeloperoxidase-DNA complex, and α-defensin were significantly increased in patients with AOSD compared to HCs. | South Korea | Ahn MH et al., 2019 [27] |
Analysis of serum from 37 SJIA patients without treatment, 32 with SJIA on treatment, and 16 HCs | Levels of neutrophil granulocytes in serum reflect underlying disease activities of JIA. | Sweden | Backlund M et al., 2021 [108] |
Analysis of 109 patients with AOSD (active 78 and inactive 31), 29 with SLE, 29 with RA, and 62 HCs | Neutrophils-derived lipocalin–22 is higher in plasma and liver tissue in AOSD patients than in healthy controls. | China | Jia J et al., 2021 [109] |
Analysis of serum from 38 patients with AOSD and 26 HCs | Fine-tuned mechanism between inflammatory (IL–18 induced NETs) and anti-inflammatory (microRNA–223) factors in AOSD | Taiwan | Liao T-L et al., 2021 [110] |
Analysis of 30 patients with AOSD | LDGs and NETs (HMGB–1 and LL–37) are increased in patients with active AOSD and correlate with cutaneous manifestations, arthritis and fever. | Mexico | Torres-Ruiz J et al., 2019 [111] |
Analysis of serum from 40 patients with AOSD and 40 HCs | Serum HMGB–1 levels were elevated in AOSD patients compared to the HCs and were correlated with CRP and systemic score. | South Korea | Jung J-Y et al., 2016 [112] |
Analysis of serum from 12 patients with SJIA and 28 with other JIA | Serum HMGB–1 can be associated with clinical disease activity in JIA and is particularly at the highest level at the time of diagnosis. | Taiwan | Xu D et al., 2021 [113] |
Analysis of serum and synovial fluids from 99 patients with SJIA, 19 with SLE, and 27 HCs | HMGB–1 and its soluble receptor RAGE in the blood and SF indicate that inflammation is triggered by alarmins in SJIA and SLE | Croatia | Bobek D et al., 2014 [114] |
Analysis of serum from 66 patients with AOSD and 40 HCs | Demonstrated a close association between the increased levels of circulating NETs and organic involvement, as well as glucocorticoid responses in AOSD patients. | China | Jia Jin et al., 2020 [115] |
Analysis of genotype from 164 patients with AOSD and 305 HCs | Functional LILRA3 is a novel genetic risk factor for the development of AOSD. | China | Wang M et al., 2021 [116] |
Analysis of serum from 26 patients with SJIA | The level of serum histones extracted from NETs released by activated neutrophils has a positive correlation with the activity of SJIA. | China | Hu X et al., 2019 [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-W.; Ahn, M.-H.; Jung, J.-Y.; Suh, C.-H.; Kim, H.-A. An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease. Int. J. Mol. Sci. 2021, 22, 13038. https://doi.org/10.3390/ijms222313038
Kim J-W, Ahn M-H, Jung J-Y, Suh C-H, Kim H-A. An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease. International Journal of Molecular Sciences. 2021; 22(23):13038. https://doi.org/10.3390/ijms222313038
Chicago/Turabian StyleKim, Ji-Won, Mi-Hyun Ahn, Ju-Yang Jung, Chang-Hee Suh, and Hyoun-Ah Kim. 2021. "An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease" International Journal of Molecular Sciences 22, no. 23: 13038. https://doi.org/10.3390/ijms222313038
APA StyleKim, J. -W., Ahn, M. -H., Jung, J. -Y., Suh, C. -H., & Kim, H. -A. (2021). An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease. International Journal of Molecular Sciences, 22(23), 13038. https://doi.org/10.3390/ijms222313038