Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue “Molecular Mechanisms of Human Oogenesis and Early Embryogenesis”
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mastellari, E.; La Marca, A. Genetic conditions impairing female fertility. Panminerva Medica 2021, 62, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Chamani, I.J.; Keefe, D.L. Epigenetics and Female Reproductive Aging. Front. Endocrinol. 2019, 10, 473. [Google Scholar] [CrossRef] [Green Version]
- Telford, N.A.; Watson, A.J.; Schultz, G.A. Transition from maternal to embryonic control in early mammalian development: A comparison of several species. Mol. Reprod. Dev. 1990, 26, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Tesařík, J.; Kopečný, V.; Plachot, M.; Mandelbaum, J. Activation of nucleolar and extranucleolar RNA synthesis and changes in the ribosomal content of human embryos developing in vitro. J. Reprod. Fertil. 1986, 78, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Braude, P.; Bolton, V.; Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 1988, 332, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J.; Kopečný, V.; Plachot, M.; Mandelbaum, J. Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Dev. Biol. 1988, 128, 15–20. [Google Scholar] [CrossRef]
- Tesarik, J. Involvement of oocyte-coded message in cell differentiation control of early human embryos. Development 1989, 105, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Ortega, N.M.; Winblad, N.; Reyes, A.P.; Lanner, F. Functional genetics of early human development. Curr. Opin. Genet. Dev. 2018, 52, 1–6. [Google Scholar] [CrossRef]
- Xu, R.; Li, C.; Liu, X.; Gao, S. Insights into epigenetic patterns in mammalian early embryos. Protein Cell 2020, 12, 7–28. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, T. DNA Methylation Reprogramming during Mammalian Development. Genes 2019, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Xu, J.; Liu, B.; Yao, G.; Wang, P.; Lin, Z.; Huang, B.; Wang, X.; Li, T.; Shi, S.; et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 2018, 557, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.; Torres-Padilla, M.-E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 2019, 20, 535–550. [Google Scholar] [CrossRef]
- Koot, Y.; Teklenburg, G.; Salker, M.S.; Brosens, J.; Macklon, N. Molecular aspects of implantation failure. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1943–1950. [Google Scholar] [CrossRef] [Green Version]
- Tesarik, J.; Mendoza-Tesarik, R.; Mendoza, N. Virtual ultrasonographic hysteroscopy followed by conventional operative hysteroscopy, enabling pregnancy. Am. J. Obstet. Gynecol. 2016, 216, 188.e1. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Li, L.; Du, M.; Xu, H.; Gao, M.; Liu, X.; Wei, X.; Zhong, X. Key Gene and Functional Pathways Identified in Unexplained Recurrent Spontaneous Abortion Using Targeted RNA Sequencing and Clinical Analysis. Front. Immunol. 2021, 12, 717832. [Google Scholar] [CrossRef] [PubMed]
- Feyaerts, D.; Kuret, T.; Van Cranenbroek, B.; Van Der Zeeuw-Hingrez, S.; Van Der Heijden, O.W.H.; Van Der Meer, A.; Joosten, I.; Van Der Molen, R.G. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire. Hum. Reprod. 2018, 33, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Kermi, C.; Aze, A.; Maiorano, D. Preserving Genome Integrity during the Early Embryonic DNA Replication Cycles. Genes 2019, 10, 398. [Google Scholar] [CrossRef] [Green Version]
- Khokhlova, E.V.; Fesenko, Z.S.; Sopova, J.V.; Leonova, E.I. Features of DNA Repair in the Early Stages of Mammalian Embryonic Development. Genes 2020, 11, 1138. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Z.; Zhang, D.; Zhao, B.; Liu, L.; Xie, Z.; Yao, Y.; Zheng, P. KHDC3L mutation causes recurrent pregnancy loss by inducing genomic instability of human early embryonic cells. PLoS Biol. 2019, 17, e3000468. [Google Scholar] [CrossRef]
- Middelkamp, S.; van Tol, H.T.A.; Spierings, D.C.J.; Boymans, S.; Guryev, V.; Roelen, B.A.J.; Lansdorp, P.M.; Cuppen, E.; Kuijk, E.W. Sperm DNA damage causes genomic instability in early embryonic development. Sci. Adv. 2020, 6, eaaz7602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesarik, J.; Galán-Lázaro, M. Clinical scenarios of unexplained sperm DNA fragmentation and their management. Transl. Androl. Urol. 2017, 6 (Suppl. 4), S566–S569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntostis, P.; Iles, D.; Kokkali, G.; Vaxevanoglou, T.; Kanavakis, E.; Pantou, A.; Huntriss, J.; Pantos, K.; Picton, H.M. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes. Hum. Reprod. 2021, 10, deab226. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J.; Galán-Lázaro, M.; Mendoza-Tesarik, R. Ovarian Aging: Molecular Mechanisms and Medical Management. Int. J. Mol. Sci. 2021, 22, 1371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesarik, J. Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue “Molecular Mechanisms of Human Oogenesis and Early Embryogenesis”. Int. J. Mol. Sci. 2021, 22, 13517. https://doi.org/10.3390/ijms222413517
Tesarik J. Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue “Molecular Mechanisms of Human Oogenesis and Early Embryogenesis”. International Journal of Molecular Sciences. 2021; 22(24):13517. https://doi.org/10.3390/ijms222413517
Chicago/Turabian StyleTesarik, Jan. 2021. "Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue “Molecular Mechanisms of Human Oogenesis and Early Embryogenesis”" International Journal of Molecular Sciences 22, no. 24: 13517. https://doi.org/10.3390/ijms222413517
APA StyleTesarik, J. (2021). Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue “Molecular Mechanisms of Human Oogenesis and Early Embryogenesis”. International Journal of Molecular Sciences, 22(24), 13517. https://doi.org/10.3390/ijms222413517