Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms
Abstract
:1. Introduction
2. Genetic Trait of Autoimmune Hepatitis
2.1. Human Leukocyte Antigen Associations
2.2. Non-Human Leukocyte Antigen
3. Monogenic Syndromes including Autoimmune Hepatitis
3.1. Autoimmune Lymphoproliferative Syndrome and FAS/FAS Ligand
3.2. Regulatory T Cell Deficiency and Immunodysregulation Polyendocrinopathy Enteropathy X-Linked Syndrome
3.3. Cytotoxic T Lymphocyte Antigen 4 Mutations
3.4. Autoimmune Regulator Mutations and the Autoimmune Polyendocrine Syndrome
3.5. GATA-Binding Factor Type 2 Dysfunction
4. Infectious and Environmental Triggers
4.1. Viral Triggers
4.2. Environmental Exposures
5. Specific Cell Types in AIH
5.1. CD4+ T Cells
5.2. Regulatory T Cells
5.3. CD8+ T Cells
5.4. γδ. T Cells
5.5. Natural Killer Cells
5.6. B Cells and Plasma Cells
5.7. Monocytes
6. Unanswered Questions in Autoimmune Hepatitis
7. Future Directions in Autoimmune Hepatitis Therapy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mieli-Vergani, G.; Vergani, D.; Baumann, U.; Czubkowski, P.; Debray, D.; Dezsofi, A.; Fischler, B.; Gupte, G.; Hierro, L.; Indolfi, G.; et al. Diagnosis and Management of Pediatric Autoimmune Liver Disease: ESPGHAN Hepatology Committee Position Statement. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 345–360. [Google Scholar] [CrossRef]
- Waldenstrom, J. Leber, Blutproteine und Nahrungseiweiss. Dtsch. Gesellsch. Verd. Stoffw. 1950, 15, 113–119. [Google Scholar]
- Grønbæk, L.; Otete, H.; Ban, L.; Crooks, C.; Card, T.; Jepsen, P.; West, J. Incidence, prevalence and mortality of autoimmune hepatitis in England 1997–2015. A population-based cohort study. Liver Int. 2020, 40, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Sebode, M.; Kloppenburg, A.; Aigner, A.; Lohse, A.W.; Schramm, C.; Linder, R. Population-based study of autoimmune hepatitis and primary biliary cholangitis in Germany: Rising prevalences based on ICD codes, yet deficits in medical treatment. Z. Gastroenterol. 2020, 58, 431–438. [Google Scholar] [CrossRef]
- Oettinger, R.; Brunnberg, A.; Gerner, P.; Wintermeyer, P.; Jenke, A.; Wirth, S. Clinical features and biochemical data of Caucasian children at diagnosis of autoimmune hepatitis. J. Autoimmun. 2005, 24, 79–84. [Google Scholar] [CrossRef]
- Gregorio, G.V.; Portmann, B.; Reid, F.; Donaldson, P.T.; Doherty, D.G.; McCartney, M.; Mowat, A.P.; Vergani, D.; Mieli-Vergani, G. Autoimmune hepatitis in childhood: A 20-year experience. Hepatology 1997, 25, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.-W.; Yeong, T.; Lawrence, D.; Yeoman, A.D.; Verma, S.; Heneghan, M.A. Concurrent extrahepatic autoimmunity in autoimmune hepatitis: Implications for diagnosis, clinical course and long-term outcomes. Liver Int. 2017, 37, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Rivera, C.; Ling, S.; Ahmed, N.; Yap, J.; Aglipay, M.; Barrowman, N.; Graitson, S.; Critch, J.; Rashid, M.; Ng, V.L.; et al. Incidence and Characteristics of Autoimmune Hepatitis. Pediatrics 2015, 136, e1237–e1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassin, S.; de Lacy, R.; Pillay, K.; Goddard, E. Characteristics and Outcomes of Autoimmune Hepatitis from a Tertiary Paediatric Centre, Cape Town, South Africa. J. Trop. Pediatr. 2020, 66, 448–457. [Google Scholar] [CrossRef]
- Di Giorgio, A.; Bravi, M.; Bonanomi, E.; Alessio, G.; Sonzogni, A.; Zen, Y.; Colledan, M.; D’Antiga, L. Fulminant Hepatic Failure of Autoimmune Aetiology in Children. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Grama, A.; Aldea, C.O.; Burac, L.; Delean, D.; Bulata, B.; Sirbe, C.; Duca, E.; Boghitoiu, D.; Coroleuca, A.; Pop, T.L. Etiology and Outcome of Acute Liver Failure in Children—The Experience of a Single Tertiary Care Hospital from Romania. Children 2020, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Brissos, J.; Carrusca, C.; Correia, M.; Cabral, J. Autoimmune hepatitis: Trust in transaminases. BMJ Case Rep. 2014, 2014, bcr2014203869. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, G.V.; Portmann, B.; Karani, J.; Harrison, P.; Donaldson, P.T.; Vergani, D.; Mieli-Vergani, G. Autoimmune Hepati-tis/Sclerosing Cholangitis Overlap Syndrome in Childhood: A 16-Year Prospective Study. Hepatology 2001, 33, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Aljumah, A.A.; Al-Ashgar, H.; Fallatah, H.; Albenmousa, A. Acute onset autoimmune hepatitis: Clinical presentation and treatment outcomes. Ann. Hepatol. 2019, 18, 439–444. [Google Scholar] [CrossRef]
- Tenca, A.; Farkkila, M.; Jalanko, H.; Vapalahti, K.; Arola, J.; Jaakkola, T.; Penagini, R.; Vapalahti, O.; Kolho, K.L. Environmental risk factors of pediatric-onset primary sclerosing cholangitis and autoimmune hepatitis. J. Pediatr. Gas Troenterol. Nutr. 2016, 62, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Liu, Y.; Shang, Y.; Han, Z.; Han, Y. Clinical characteristics and treatment outcomes of acute severe autoimmune hepatitis. BMC Gastroenterol. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Tanaka, A. Autoimmune Hepatitis: 2019 Update. Gut Liver 2020, 14, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Muratori, P.; Granito, A.; Quarneti, C.; Ferri, S.; Menichella, R.; Cassani, F.; Pappas, G.; Bianchi, F.B.; Lenzi, M.; Muratori, L. Autoimmune hepatitis in Italy: The Bologna experience. J. Hepatol. 2009, 50, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Mack, C.L.; Adams, D.; Assis, D.N.; Kerkar, N.; Manns, M.P.; Mayo, M.J.; Vierling, J.M.; Alsawas, M.; Murad, M.H.; Czaja, A.J. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines from the American Association for the Study of Liver Diseases. Hepatology 2020, 72, 671–722. [Google Scholar] [CrossRef]
- Granito, A.; Pascolini, S.; Ricci, C.; Ferronato, M.; Muratori, L.; Vasuri, F.; Franceschini, T.; Lenzi, M.; Muratori, P. Decompensated Cirrhosis as Presentation of LKM1/LC1 Positive Type 2 Autoimmune Hepatitis in Adulthood. A Rare Clinical Entity of Difficult Management. Gastroenterol. Insights 2021, 12, 67–75. [Google Scholar] [CrossRef]
- Alvarez, F.; Berg, P.; Bianchi, F.; Bianchi, L.; Burroughs, A.; Cancado, E.; Chapman, R.; Cooksley, W.; Czaja, A.; Desmet, V.; et al. International Autoimmune Hepatitis Group Report: Review of criteria for diagnosis of autoimmune hepatitis. J. Hepatol. 1999, 31, 929–938. [Google Scholar] [CrossRef]
- Hennes, E.M.; Zeniya, M.; Czaja, A.J.; Pares, A.; Dalekos, G.N.; Krawitt, E.L.; Bittencourt, P.L.; Porta, G.; Boberg, K.M.; Hofer, H.; et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008, 48, 169–176. [Google Scholar] [CrossRef]
- Ferri, P.M.; Ferreira, A.R.; Miranda, D.M.; Silva, A.C.S. Diagnostic criteria for autoimmune hepatitis in children: A challenge for pediatric hepatologists. World J. Gastroenterol. 2012, 18, 4470. [Google Scholar] [CrossRef] [PubMed]
- Vergani, D.; Alvarez, F.; Bianchi, F.B.; Cancado, E.; Mackay, I.R.; Manns, M.P.; Nishioka, M.; Penner, E. Liver autoimmune serology: A consensus statement from the committee for autoimmune serology of the International Autoimmune Hepatitis Group. J. Hepatol. 2004, 41, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Czaja, A.J. Performance parameters of the diagnostic scoring systems for autoimmune hepatitis. Hepatology 2008, 48, 1540–1548. [Google Scholar] [CrossRef]
- Niță, A.F.; Păcurar, D. Adequacy of scoring systems in diagnosing paediatric autoimmune hepatitis: Retrospective study using a control group children with Hepatitis B infection. Acta Paediatr. 2019, 108, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Association for the Study of the Liver, European. Corrigendum to ‘EASL Clinical Practice Guidelines: Autoimmune Hepatitis’. J. Hepatol. 2015, 63, 1543–1544. [Google Scholar]
- Pape, S.; Schramm, C.; Gevers, T.J. Clinical management of autoimmune hepatitis. United Eur. Gastroenterol. J. 2019, 7, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Seldin, M.F. The genetics of human autoimmune disease: A perspective on progress in the field and future directions. J. Autoimmun. 2015, 64, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dywicki, J.; Buitrago-Molina, L.E.; Pietrek, J.; Lieber, M.; Broering, R.; Khera, T.; Schlue, J.; Manns, M.P.; Wedemeyer, H.; Jaeckel, E.; et al. Autoimmune hepatitis induction can occur in the liver. Liver Int. 2020, 40, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Motawi, T.K.; El-Maraghy, S.A.; Sharaf, S.A.; Said, S.E. Association of CARD10 rs6000782 and TNF rs1799724 variants with paediatric-onset autoimmune hepatitis. J. Adv. Res. 2019, 15, 103–110. [Google Scholar] [CrossRef]
- Mells, G.F.; Kaser, A.; Karlsen, T.H. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J. Autoimmun. 2013, 46, 41–56. [Google Scholar] [CrossRef] [PubMed]
- John, K.; Hardtke-Wolenski, M.; Jaeckel, E.; Manns, M.P.; Schulze-Osthoff, K.; Bantel, H. Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis. 2017, 8, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Béland, K.; Marceau, G.; Labardy, A.; Bourbonnais, S.; Alvarez, F. Depletion of B cells induces remission of autoimmune hepatitis in mice through reduced antigen presentation and help to T cells. Hepatology 2015, 62, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, Y.; Yan, L.; Sun, C.; Miao, Q.; Wang, Q.; Xiao, X.; Lian, M.; Li, B.; Chen, Y.; et al. Alterations of gut microbiome in autoimmune hepatitis. Gut 2020, 69, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Luo, Y.; Chang, C.; Wu, H.; Ding, Y.; Xiao, R. The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review. Front. Immunol. 2019, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Ronderos, P.; Montoya-Ortiz, G. Epigenetics and Autoimmune Diseases. Autoimmu. Dis. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- Toraño, E.G.; García, M.G.; Fernández-Morera, J.L.; Niño-García, P.; Fernández, A.F. The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BioMed Res. Int. 2016, 2016, 2568635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, B.; Faulk, C.; Svoboda, L.K.; Goodrich, J.M.; Dolinoy, D.C. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen. 2020, 61, 176–192. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, O.; Fernández, A.F.; Muñoz, A.; Fraga, M.F. Epigenetics and environment: A complex relationship. J. Appl. Physiol. 2010, 109, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Nan, X.; Meehan, R.R.; Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993, 21, 4886–4892. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [Green Version]
- Fuks, F.; Hurd, P.; Deplus, R.; Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003, 31, 2305–2312. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meda, F.; Folci, M.; Baccarelli, A.; Selmi, C. The epigenetics of autoimmunity. Cell. Mol. Immunol. 2011, 8, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and function. Thromb. Haemost. 2012, 107, 605–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Van Gerven, N.M.; Verwer, B.J.; Witte, B.I.; van Erpecum, K.J.; van Buuren, H.R.; Maijers, I.; Visscher, A.P.; Verschuren, E.C.; van Hoek, B.; Coenraad, M.J.; et al. Epidemiology and clinical characteristics of autoimmune hepatitis in the Netherlands. Scand. J. Gastroenterol. 2014, 49, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Webb, G.; Hirschfield, G. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J. Autoimmun. 2016, 66, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Fernando, M.M.A.; Stevens, C.R.; Walsh, E.C.; de Jager, P.L.; Goyette, P.; Plenge, R.M.; Vyse, T.J.; Rioux, J.D. Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis. PLoS Genet. 2008, 4, e1000024. [Google Scholar] [CrossRef]
- De Boer, Y.S.; van Gerven, N.M.; Zwiers, A.; Verwer, B.J.; van Hoek, B.; van Erpecum, K.J.; Beuers, U.; van Buuren, H.R.; Drenth, J.P.; Ouden, J.W.D.; et al. Genome-Wide Association Study Identifies Variants Associated with Autoimmune Hepatitis Type 1. Gastroenterology 2014, 147, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, P.T. Genetics in Autoimmune Hepatitis. Semin. Liver Dis. 2002, 22, 353–364. [Google Scholar] [CrossRef]
- Van Gerven, N.M.; de Boer, Y.S.; Zwiers, A.; Verwer, B.J.; Drenth, J.P.; van Hoek, B.; van Erpecum, K.J.; Beuers, U.; van Buuren, H.R.; den Ouden, J.W.; et al. Dutch Autoimmune Hepatitis Study Group. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015, 16, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Furumoto, Y.; Asano, T.; Sugita, T.; Abe, H.; Chuganji, Y.; Fujiki, K.; Sakata, A.; Aizawa, Y. Evaluation of the role of HLA-DR antigens in Japanese type 1 autoimmune hepatitis. BMC Gastroenterol. 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czaja, A.J.; Carpenter, H.A.; Moore, S.B. Clinical and HLA phenotypes of type 1 autoimmune hepatitis in North American patients outside DR3 and DR4. Liver Int. 2006, 26, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Pando, M.J.; Larriba, J.; Fernandez, G.C.; Fainboim, H.; Ciocca, M.; Ramonet, M.; Badia, I.; Daruich, J.; Findor, J.; Tanno, H.; et al. Pediatric and adult forms of type I autoimmune hepatitis in argentina: Evidence for differential genetic predisposition. Hepatology 1999, 30, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-García, M.N.; Aláez, C.; Olivo, A.; Debaz, H.; Pérez-Luque, E.; Burguete, A.; Cano, S.; de la Rosa, G.; Bautista, N.; Hernández, A.; et al. MHC Class II Sequences of Suscepti-bility and Protection in Mexicans with Autoimmune Hepatitis. J. Hepatol. 1998, 28, 985–990. [Google Scholar] [CrossRef]
- Kirstein, M.M.; Metzler, F.; Geiger, E.; Heinrich, E.; Hallensleben, M.; Manns, M.P.; Vogel, A. Prediction of short- and long-term outcome in patients with autoimmune hepatitis. Hepatology 2015, 62, 1524–1535. [Google Scholar] [CrossRef]
- Higuchi, T.; Oka, S.; Furukawa, H.; Tohma, S.; Yatsuhashi, H.; Migita, K. Genetic risk factors for autoimmune hepatitis: Implications for phenotypic heterogeneity and biomarkers for drug response. Hum. Genom. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Duarte-Rey, C.; Pardo, A.L.; Rodríguez-Velosa, Y.; Mantilla, R.D.; Anaya, J.-M.; Rojas-Villarraga, A. HLA class II association with autoimmune hepatitis in Latin America: A meta-analysis. Autoimmun. Rev. 2009, 8, 325–331. [Google Scholar] [CrossRef]
- Shankarkumar, U.; Amarapurkar, D.N.; Kankonkar, S. Human Leukocyte Antigen Allele Associations in Type-1 Autoimmune Hepatitis Patients from Western India. J. Gastroenterol. Hepatol. 2005, 20, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Muratori, P.; Czaja, A.J.; Muratori, L.; Pappas, G.; Maccariello, S.; Cassani, F.; Granito, A.; Ferrari, R.; Mantovani, V.; Lenzi, M.; et al. Genetic distinctions between autoimmune hepatitis in Italy and North America. World J. Gastroenterol. 2005, 11, 1862–1866. [Google Scholar] [CrossRef]
- Bittencourt, P.L.; Goldberg, A.C.; Cançado, E.L.; Porta, G.; Laudanna, A.A.; Kalil, J. Different HLA profiles confer susceptibility to autoimmune hepatitis type 1 and 2. Am. J. Gastroenterol. 1998, 93, 1394–1395. [Google Scholar] [CrossRef]
- Ma, Y.; Bogdanos, D.; Hussain, M.J.; Underhill, J.; Bansal, S.; Longhi, M.S.; Cheeseman, P.; Mieli–Vergani, G.; Vergani, D. Polyclonal T-Cell Responses to Cytochrome P450IID6 Are Associated with Disease Activity in Autoimmune Hepatitis Type 2. Gastroenterology 2006, 130, 868–882. [Google Scholar] [CrossRef] [PubMed]
- Elfaramawy, A.A.; Elhossiny, R.M.; Abbas, A.A.; Aziz, H.M. HLA-DRB1 as a risk factor in children with autoimmune hepatitis and its relation to hepatitis A infection. Ital. J. Pediatr. 2010, 36, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Meloni, A.; Willcox, N.; Meager, A.; Atzeni, M.; Wolff, A.S.B.; Husebye, E.S.; Furcas, M.; Rosatelli, M.C.; Cao, A.; Congia, M. Autoimmune Polyendocrine Syndrome Type 1: An Extensive Longitudinal Study in Sardinian Patients. J. Clin. Endocrinol. Metab. 2012, 97, 1114–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergani, D.; Larcher, V.; Davies, E.; Wells, L.; Nasaruddin, B.; Mieli-Vergani, G.; Mowat, A. Genetically Determined Low C4: A Predisposing Factor to Autoimmune Chronic Active Hepatitis. Lancet 1985, 326, 294–298. [Google Scholar] [CrossRef]
- Djilali-Saiah, I.; Fakhfakh, A.; Louafi, H.; Caillat-Zucman, S.; Debray, D.; Alvarez, F. HLA class II influences humoral autoimmunity in patients with type 2 autoimmune hepatitis. J. Hepatol. 2006, 45, 844–850. [Google Scholar] [CrossRef]
- Lapierre, P.; Djilali-Saiah, I.; Vitozzi, S.; Alvarez, F. A murine model of type 2 autoimmune hepatitis: Xenoimmunization with human antigens. Hepatology 2004, 39, 1066–1074. [Google Scholar] [CrossRef]
- Illing, P.; Vivian, J.; Dudek, N.L.; Kostenko, L.; Chen, Z.; Bharadwaj, M.; Miles, J.; Kjer-Nielsen, L.; Gras, S.; Williamson, N.; et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nat. Cell Biol. 2012, 486, 554–558. [Google Scholar] [CrossRef]
- Katayama, H.; Mori, T.; Seki, Y.; Anraku, M.; Iseki, M.; Ikutani, M.; Iwasaki, Y.; Yoshida, N.; Takatsu, K.; Takaki, S. Lnk prevents inflammatory CD8+T-cell proliferation and contributes to intestinal homeostasis. Eur. J. Immunol. 2014, 44, 1622–1632. [Google Scholar] [CrossRef]
- Simmonds, M.J.; Gough, S.C.L. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr. Genom. 2007, 8, 453–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grommé, M.; Neefjes, J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol. Immunol. 2002, 39, 181–202. [Google Scholar] [CrossRef]
- Zhernakova, A.; Elbers, C.C.; Ferwerda, B.; Romanos, J.; Trynka, G.; Dubois, P.C.; de Kovel, C.G.; Franke, L.; Oosting, M.; Barisani, D.; et al. Evolutionary and Functional Analysis of Celiac Risk Loci Reveals SH2B3 as a Protective Factor against Bacterial Infection. Am. J. Hum. Genet. 2010, 86, 970–977. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, K.; Czaja, A.J.; Jones, D.E.; Donaldson, P.T. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology 2000, 31, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Strassburg, C.P.; Manns, M.P. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology 2002, 35, 126–131. [Google Scholar] [CrossRef]
- Agarwal, K.; Czaja, A.J.; Donaldson, P.T. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens 2007, 69, 227–235. [Google Scholar] [CrossRef]
- Lu, Q. The critical importance of epigenetics in autoimmunity. J. Autoimmun. 2013, 41, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Nishida, N.; Calin, G.; Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014, 11, 145–156. [Google Scholar] [CrossRef]
- Lanford, R.E.; Hildebrandt-Eriksen, E.S.; Petri, A.; Persson, R.; Lindow, M.; Munk, M.E.; Kauppinen, S.; Ørum, H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010, 327, 198. [Google Scholar] [CrossRef] [Green Version]
- Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. MiR-122–A key factor and therapeutic target in liver disease. J. Hepatol. 2015, 62, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, G.; Bala, S. MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 542–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Cui, J.; Wu, H.; Lu, Q. The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity 2014, 47, 419–429. [Google Scholar] [CrossRef]
- Wang, X.W.; Heegaard, N.H.H.; Ørum, H. MicroRNAs in Liver Disease. Gastroenterology 2012, 142, 1431–1443. [Google Scholar] [CrossRef]
- Migita, K.; Komori, A.; Kozuru, H.; Jiuchi, Y.; Nakamura, M.; Yasunami, M.; Furukawa, H.; Abiru, S.; Yamasaki, K.; Nagaoka, S.; et al. Circulating microRNA Profiles in Patients with Type-1 Autoimmune Hepatitis. PLoS ONE 2015, 10, e0136908. [Google Scholar] [CrossRef]
- Jia, H.-Y.; Chen, F.; Chen, J.-Z.; Wu, S.-S.; Wang, J.; Cao, Q.-Y.; Chen, Z.; Zhu, H.-H. MicroRNA Expression Profiles Related to Early Stage Murine Concanavalin A-Induced Hepatitis. Cell. Physiol. Biochem. 2014, 33, 1933–1944. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Liu, J.; Liu, X.; Huang, E.; Yang, J.; Qian, J.; Zhang, D.; Liu, R.; Chu, Y. MicroRNA 15a/16-1 Suppresses Aryl Hydrocarbon Receptor-Dependent Interleukin-22 Secretion in CD4 + T Cells and Contributes to Immune-Mediated Organ Injury. Hepatology 2018, 67, 1027–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, G.; Jia, H.; Xu, H.; Liu, W.; Zhu, H.; Li, S.; Shi, J.; Li, Z.; He, J.; Chen, Z. Studying the association of microRNA-210 level with chronic hepatitis B progression. J. Viral Hepat. 2013, 21, 272–280. [Google Scholar] [CrossRef]
- Xia, G.; Wu, S.; Wang, X.; Fu, M. Inhibition of microRNA-155 attenuates concanavalin-A-induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation. Can. J. Physiol. Pharmacol. 2018, 96, 1293–1300. [Google Scholar] [CrossRef]
- Tu, H.; Chen, D.-Z.; Cai, C.; Du, Q.; Lin, H.; Pan, T.; Sheng, L.; Xu, Y.; Teng, T.; Tu, J.; et al. Microrna-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation. J. Cell. Mol. Med. 2020, 24, 1256–1267. [Google Scholar] [CrossRef] [Green Version]
- Worth, A.; Thrasher, A.; Gaspar, H.B. Autoimmune lymphoproliferative syndrome: Molecular basis of disease and clinical phenotype. Br. J. Haematol. 2006, 133, 124–140. [Google Scholar] [CrossRef]
- Pensati, L.; Costanzo, A.; Ianni, A.; Accapezzato, D.; Iorio, R.; Natoli, G.; Nisini, R.; Almerighi, C.; Balsano, C.; Vajro, P.; et al. Fas/Apo1 mutations and autoimmune lymphoproliferative syndrome in a patient with type 2 autoimmune hepatitis. Gastroenterology 1997, 113, 1384–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, S.; Suda, T. Fas and Fas ligand: Lpr and gld mutations. Immunol. Today 1995, 16, 39–43. [Google Scholar] [CrossRef]
- Magerus-Chatinet, A.; Stolzenberg, M.C.; Lanzarotti, N.; Neven, B.; Daussy, C.; Picard, C.; Neveux, N.; Desai, M.; Rao, M.; Ghosh, K.; et al. Autoimmune Lymphoproliferative Syndrome Caused by a Homo-zygous Null FAS Ligand (FASLG) Mutation. J. Allergy Clin. Immunol. 2013, 131, 486–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Duncan, G.S.; Seagal, J.; Su, Y.-W.; Hong, C.; Haight, J.; Chen, N.-J.; Elia, A.; Wakeham, A.; Li, W.Y.; et al. Fas Receptor Expression in Germinal-Center B Cells Is Essential for T and B Lymphocyte Homeostasis. Immunity 2008, 29, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Strasser, A.; Jost, P.J.; Nagata, S. The Many Roles of FAS Receptor Signaling in the Immune System. Immunity 2009, 30, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Grimbacher, B.; Warnatz, K.; Yong, P.F.K.; Korganow, A.S.; Peter, H.H. The Crossroads of Autoimmunity and Immunode-ficiency: Lessons from Polygenic Traits and Monogenic Defects. J. Allergy Clin. Immunol. 2016, 137, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, S.I.; Ciocca, M.; Oleastro, M.; Cuarterolo, M.L.; Rocca, A.; de Dávila, M.T.; Roy, A.; Fernández, M.C.; Nievas, E.; Bosaleh, A.; et al. Autoimmune Hepatitis Type 2 in a Child With IPEX Syndrome. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 690–693. [Google Scholar] [CrossRef]
- Wildin, R.S.; Smyk-Pearson, S.; Filipovich, A.H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 2002, 39, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Gambineri, E.; Ciullini Mannurita, S.; Hagin, D.; Vignoli, M.; Anover-Sombke, S.; DeBoer, S.; Segundo, G.R.S.; Allenspach, E.J.; Favre, C.; Ochs, H.D.; et al. Clinical, Immunological, and Molecular Heterogeneity of 173 Patients with the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front. Immunol. 2018, 9, 2411. [Google Scholar] [CrossRef]
- Godfrey, V.L.; Wilkinson, J.E.; Russell, L.B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 1991, 138, 1379–1387. [Google Scholar]
- Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4. Science 1995, 270, 985–988. [Google Scholar] [CrossRef]
- Tivol, E.A.; Borriello, F.; Schweitzer, A.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995, 3, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Tagami, T.; Yamazaki, S.; Uede, T.; Shimizu, J.; Sakaguchi, N.; Mak, T.W.; Sakaguchi, S. Immunologic Self-Tolerance Maintained by Cd25+Cd4+Regulatory T Cells Constitutively Expressing Cytotoxic T Lymphocyte–Associated Antigen 4. J. Exp. Med. 2000, 192, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Klocke, K.; Sakaguchi, S.; Holmdahl, R.; Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl. Acad. Sci. USA 2016, 113, E2383–E2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, X.; van Laethem, F.; Sharpe, A.H.; Singer, A. Induction of Autoimmune Disease in CTLA-4-/- Mice Depends on a Specific CD28 Motif That Is Required for In Vivo Costimulation. Proc. Natl. Acad. Sci. USA 2007, 104, 13756–13761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, D.; Bode, C.; Kenefeck, R.; Hou, T.Z.; Wing, J.B.; Kennedy, A.; Bulashevska, A.; Petersen, B.-S.; Schäffer, A.A.; Grüning, B.; et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 2014, 20, 1410–1416. [Google Scholar] [CrossRef]
- Lee, S.; Moon, J.S.; Lee, C.-R.; Kim, H.-E.; Baek, S.-M.; Hwang, S.; Kang, G.H.; Seo, J.K.; Shin, C.H.; Kang, H.J.; et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J. Allergy Clin. Immunol. 2016, 137, 327–330. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Ramaiya, N.H.; Krajewski, K.M.; Jagannathan, J.P.; Tirumani, S.H.; Srivastava, A.; Ibrahim, N. Ipilimumab associated hepatitis: Imaging and clinicopathologic findings. Investig. New Drugs 2013, 31, 1071–1077. [Google Scholar] [CrossRef]
- Fierabracci, A. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A “Rare” Manifestation in a “Rare” Disease. Int. J. Mol. Sci. 2016, 17, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assis, D.N. Immunopathogenesis of Autoimmune Hepatitis. Clin. Liver Dis. 2020, 15, 129–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, E.; Kobayashi, Y.; Kawano, O.; Endo, K.; Haneda, H.; Yukiue, H.; Sasaki, H.; Yano, M.; Maeda, M.; Fujii, Y. Expression of AIRE in Thymocytes and Peripheral Lymphocytes. Autoimmunity 2008, 41, 133–139. [Google Scholar] [CrossRef]
- Ryan, K.R.; Lawson, C.A.; Lorenzi, A.R.; Arkwright, P.D.; Isaacs, J.D.; Lilic, D. CD4+CD25+ T-Regulatory Cells Are Decreased in Patients with Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy. J. Allergy Clin. Immunol. 2005, 116, 1158–1159. [Google Scholar] [CrossRef] [PubMed]
- Bonito, A.J.; Aloman, C.; Fiel, M.I.; Danzl, N.M.; Cha, S.; Weinstein, E.G.; Jeong, S.; Choi, Y.; Walsh, M.C.; Alexandropoulos, K. Medullary thymic epithelial cell depletion leads to autoimmune hepatitis. J. Clin. Investig. 2013, 123, 3510–3524. [Google Scholar] [CrossRef]
- Ahonen, P.; Myllärniemi, S.; Sipilä, I.; Perheentupa, J. Clinical Variation of Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED) in a Series of 68 Patients. N. Engl. J. Med. 1990, 322, 1829–1836. [Google Scholar] [CrossRef]
- Kisand, K.; Wolff, A.S.B.; Podkrajšek, K.T.; Tserel, L.; Link, M.; Kisand, K.V.; Ersvaer, E.; Perheentupa, J.; Erichsen, M.M.; Bratanic, N.; et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 2010, 207, 299. [Google Scholar] [CrossRef]
- Chascsa, D.M.; Ferré, E.M.N.; Hadjiyannis, Y.; Alao, H.; Natarajan, M.; Quinones, M.; Kleiner, D.E.; Simcox, T.L.; Chitsaz, E.; Rose, S.R.; et al. APECED-Associated Hepatitis: Clinical, Biochemical, Histological and Treatment Data From a Large, Predominantly American Cohort. Hepatology 2021, 73, 1088–1104. [Google Scholar] [CrossRef]
- Obermayer–Straub, P.; Perheentupa, J.; Braun, S.; Kayser, A.; Barut, A.; Loges, S.; Harms, A.; Dalekos, G.; Strassburg, C.P.; Manns, M.P. Hepatic autoantigens in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Gastroenterology 2001, 121, 668–677. [Google Scholar] [CrossRef]
- Lankisch, T.O.; Strassburg, C.P.; Debray, D.; Manns, M.P.; Jacquemin, E. Detection of Autoimmune Regulator Gene Mutations in Children with Type 2 Autoimmune Hepatitis and Extrahepatic Immune-Mediated Diseases. J. Pediatr. 2005, 146, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Hardtke-Wolenski, M.; Taubert, R.; Noyan, F.; Sievers, M.; Dywicki, J.; Schlue, J.; Falk, C.S.; Lundgren, B.A.; Scott, H.S.; Pich, A.; et al. Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens. Hepatology 2015, 61, 1295–1305. [Google Scholar] [CrossRef]
- Takaba, H.; Morishita, Y.; Tomofuji, Y.; Danks, L.; Nitta, T.; Komatsu, N.; Kodama, T.; Takayanagi, H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015, 163, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.-Y.; Keller, G.; Kuo, F.C.; Weiss, M.; Chen, J.; Rosenblatt, M.; Alt, F.W.; Orkin, S.H. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nat. Cell Biol. 1994, 371, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.P.; Sampaio, E.P.; Khan, J.; Calvo, K.R.; Lemieux, J.E.; Patel, S.Y.; Frucht, D.M.; Vinh, D.C.; Auth, R.D.; Freeman, A.F.; et al. Mutations in GATA2 Are Associated with the Autosomal Dominant and Sporadic Monocytopenia and Mycobacterial Infection (MonoMAC) Syn-drome. Blood 2011, 118, 2653–2655. [Google Scholar] [CrossRef] [PubMed]
- Webb, G.; Chen, Y.-Y.; Li, K.-K.; Neil, D.; Oo, Y.; Richter, A.; Bigley, V.; Collin, M.; Adams, D.; Hirschfield, G.M. Single-gene association between GATA-2 and autoimmune hepatitis: A novel genetic insight highlighting immunologic pathways to disease. J. Hepatol. 2016, 64, 1190–1193. [Google Scholar] [CrossRef] [Green Version]
- Floreani, A.; Restrepo, P.; Secchi, M.F.; de Martin, S.; Leung, P.S.; Krawitt, E.; Bowlus, C.; Gershwin, M.E.; Anaya, J.M. Etiopathogenesis of autoimmune hepatitis. J. Autoimmun. 2018, 95, 133–143. [Google Scholar] [CrossRef]
- Fujinami, R.S.; von Herrath, M.G.; Christen, U.; Whitton, J.L. Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease. Clin. Microbiol. Rev. 2006, 19, 80–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorio, G.V.; Choudhuri, K.; Ma, Y.; Pensati, P.; Iorio, R.; Grant, P.; Garson, J.; Bogdanos, D.; Vegnente, A.; Mieli-Vergani, G.; et al. Mimicry between the hepatitis C virus polyprotein and antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis C virus infection. Clin. Exp. Immunol. 2003, 133, 404–413. [Google Scholar] [CrossRef]
- Vegnente, G.; Mieli-Vergani, D.; Vergani, G.V.; Gregorio, K.; Choudhuri, Y.; Ma, A. Chronic Hepatitis B Virus Infection Nuclear and Smooth Muscle Antibodies in Polymerase and the Antigenic Targets of Mimicry Between the Hepatitis B Virus DNA. J. Immunol. Ref. 1999, 162, 1802–1810. [Google Scholar]
- Nishiguchi, S.; Kuroki, T.; Ueda, T.; Fukuda, K.; Takeda, T.; Nakajima, S.; Shiomi, S.; Kobayashi, K.; Otani, S.; Hayashi, N.; et al. Detection of Hepatitis C Virus Antibody in the Absence of Viral RNA in Patients with Autoimmune Hepatitis. Ann. Intern. Med. 1992, 116, 21–25. [Google Scholar] [CrossRef]
- Fattovich, G.; Giustina, G.; Favarato, S.; Ruol, A. A survey of adverse events in 11,241 patients with chronic viral hepatitis treated with alfa interferon. J. Hepatol. 1996, 24, 38–47. [Google Scholar] [CrossRef]
- Păcurar, D.; Dijmărescu, I.; Dijmărescu, A.; Pavelescu, M.; Andronie, M.; Becheanu, C. Autoimmune phenomena in treated and naive pediatric patients with chronic viral hepatitis. Exp. Ther. Med. 2019, 18, 5101–5104. [Google Scholar] [CrossRef] [PubMed]
- García-Buey, L.; García-Monzón, C.; Rodriguez, S.; Borque, M.J.; García-Sánchez, A.; Iglesias, R.; DeCastro, M.; Mateos, F.G.; Vicario, J.; Balas, A.; et al. Latent autoimmune hepatitis triggered during interferon therapy in patients with chronic hepatitis C. Gastroenterology 1995, 108, 1770–1777. [Google Scholar] [CrossRef]
- Pop, T.L.; Stefănescu, A.; Samaşca, G.; Miu, N. Clinical Significance of the Antinuclear Antibodies in Chronic Viral Hepatitis B in Children. Clin. Lab. 2014, 60, 931. [Google Scholar] [CrossRef]
- Skoog, S.M.; Rivard, R.E.; Batts, K.P.; Smith, C.I. Autoimmune Hepatitis Preceded by Acute Hepatitis A Infection. Am. J. Gastroenterol. 2002, 97, 1568–1569. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, F.; Ueno, Y.; Mano, Y.; Igarashi, T.; Yahagi, K.; Niitsuma, H.; Okamoto, H.; Shimosegawa, T. A Patient with Clinical Features of Acute Hepatitis E Viral Infection and Autoimmune Hepatitis. Tohoku J. Exp. Med. 2005, 206, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Pischke, S.; Gisa, A.; Suneetha, P.V.; Wiegand, S.B.; Taubert, R.; Schlue, J.; Wursthorn, K.; Bantel, H.; Raupach, R.; Bremer, B.; et al. Increased HEV Seroprevalence in Patients with Autoimmune Hepatitis. PLoS ONE 2014, 9, e85330. [Google Scholar] [CrossRef]
- Vento, S.; Guella, L.; Mirandola, F.; Cainelli, F.; Di Perri, G.; Solbiati, M.; Concia, E.; Ferraro, T. Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet 1995, 346, 608–609. [Google Scholar] [CrossRef]
- Yokomori, H.H.; Toyoda-Akui, M.; Kaneko, F.; Shimizu, Y.; Takeuchi, H.; Tahara, K.; Yoshida, H.; Kondo, H.; Motoori, T.; Ohbu, M.; et al. Association of an overlap syndrome of autoimmune hepatitis and primary biliary cirrhosis with cytomegalovirus infection. Int. J. Gen. Med. 2011, 4, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Lohse, A.W.; Gerken, G.; Mohr, H.; Löhr, H.F.; Treichel, U.; Dienes, H.P.; Büschenfelde, K.H.M.Z. Relation between autoimmune liver diseases and viral hepatitis: Clinical and serological characteristics in 859 patients. Z. Gastroenterol. 1995, 33, 527–533. [Google Scholar]
- Van Gerven, N.M.; van der Eijk, A.A.; Pas, S.D.; Zaaijer, H.L.; de Boer, Y.S.; Witte, B.I.; van Nieuwkerk, C.M.; Mulder, C.J.; Bouma, G.; de Man, R.A. Dutch Autoimmune Hepatitis Study Group. Seroprevalence of Hepatitis E Virus in Autoimmune Hepatitis Patients in the Netherlands. J. Gastrointestin. Liver Dis. 2016, 25, 9–13. [Google Scholar] [CrossRef]
- Holdener, M.; Hintermann, E.; Bayer, M.; Rhode, A.; Rodrigo, E.; Hintereder, G.; Johnson, E.F.; Gonzalez, F.J.; Pfeilschifter, J.; Manns, M.P.; et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J. Exp. Med. 2008, 205, 1409–1422. [Google Scholar] [CrossRef]
- Hintermann, E.; Ehser, J.; Christen, U. The CYP2D6 Animal Model: How to Induce Autoimmune Hepatitis in Mice. J. Vis. Exp. 2012, 2012, e3644. [Google Scholar] [CrossRef]
- Hintermann, E.; Ehser, J.; Bayer, M.; Pfeilschifter, J.M.; Christen, U. Mechanism of autoimmune hepatic fibrogenesis induced by an adenovirus encoding the human liver autoantigen cytochrome P450 2D6. J. Autoimmun. 2013, 44, 49–60. [Google Scholar] [CrossRef]
- Hardtke-Wolenski, M.; Fischer, K.; Noyan, F.; Schlue, J.; Falk, C.S.; Stahlhut, M.; Woller, N.; Kuehnel, F.; Taubert, R.; Manns, M.P.; et al. Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4+T cells. Hepatology 2013, 58, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Vergani, D.; Mieli-Vergani, G.; Alberti, A.; Neuberger, J.; Eddleston, A.L.W.F.; Davis, M.; Williams, R. Antibodies to the Surface of Halothane-Altered Rabbit Hepatocytes in Patients with Severe Halothane-Associated Hepatitis. N. Engl. J. Med. 1980, 303, 66–71. [Google Scholar] [CrossRef]
- Bourdi, M.; Tinel, M.; Beaune, P.H.; Pessayre, D. Interactions of dihydralazine with cytochromes P4501A: A possible expla-nation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol. Pharmacol. 1994, 45, 1287–1295. [Google Scholar]
- Kurth, M.J.; Yokoi, T.; Gershwin, M.E. Halothane-induced hepatitis: Paradigm or paradox for drug-induced liver injury. Hepatology 2014, 60, 1473–1475. [Google Scholar] [CrossRef] [Green Version]
- Gough, A.; Chapman, S.; Wagstaff, K.; Emery, P.; Elias, E. Minocycline induced autoimmune hepatitis and systemic lupus erythematosus-like syndrome. BMJ 1996, 312, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Appleyard, S.; Saraswati, R.; A Gorard, D. Autoimmune hepatitis triggered by nitrofurantoin: A case series. J. Med. Case Rep. 2010, 4, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuberger, J.; Mieli-Vergani, G.; Tredger, J.M.; Davis, M.; Williams, R. Oxidative metabolism of halothane in the production of altered hepatocyte membrane antigens in acute halothane-induced hepatic necrosis. Gut 1981, 22, 669–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, J.M.; Gilbert, K.M.; Lamps, L.W.; Pumford, N.R. CD4(+) T-Cell Activation and Induction of Autoimmune Hepatitis Following Trichloroethylene Treatment in MRL+/+ Mice. Toxicol. Sci. 2000, 57, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Grama, A.; Aldea, C.; Burac, L.; Delean, D.; Boghitoiu, D.; Bulata, B.; Nitescu, V.; Ulmeanu, C.; Pop, T.L. Acute liver failure secondary to toxic exposure in children. Arch. Med. Sci. 2022, 18. [Google Scholar] [CrossRef]
- Björnsson, E.; Talwalkar, J.; Treeprasertsuk, S.; Kamath, P.S.; Takahashi, N.; Sanderson, S.; Neuhauser, M.; Lindor, K. Drug-induced autoimmune hepatitis: Clinical characteristics and prognosis. Hepatology 2010, 51, 2040–2048. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Methyldopa. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548173/ (accessed on 14 August 2021).
- Rodman, J.S.; Deutsch, D.J.; Gutman, S.I. Methyldopa Hepatitis. A Report of Six Cases and Review of the Literature. Am. J. Med. 1976, 60, 941–948. [Google Scholar] [CrossRef]
- Anonymous. Minocycline. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547956/ (accessed on 14 August 2021).
- Anonymous. Nitrofurantoin. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548318/ (accessed on 14 August 2021).
- Anonymous. Alpha Interferon-LiverTox-NCBI Bookshelf. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547867/ (accessed on 14 August 2021).
- Berardi, S.; Lodato, F.; Gramenzi, A.; D’Errico, A.; Lenzi, M.; Bontadini, A.; Morelli, M.C.; Tamè, M.R.; Piscaglia, F.; Biselli, M.; et al. High Incidence of Allograft Dysfunction in Liver Transplanted Patients Treated with Pegylated-Interferon Alpha-2b and Ribavirin for Hepatitis C Recurrence: Possible de Novo Autoimmune Hepatitis? Gut 2007, 56, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Hydralazine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548580/ (accessed on 14 August 2021).
- Anonymous. Autoimmune Hepatitis. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548188/ (accessed on 14 August 2021).
- Germano, V.; Diamanti, A.P.; Baccano, G.; Natale, E.; Muda, A.O.; Priori, R.; Valesini, G. Autoimmune hepatitis associated with infliximab in a patient with psoriatic arthritis. Ann. Rheum. Dis. 2005, 64, 1519–1520. [Google Scholar] [CrossRef] [Green Version]
- Michot, J.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef]
- Anonymous. Halothane. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548151/ (accessed on 14 August 2021).
- Gut, J.; Christen, U.; Frey, N.; Koch, V.; Stoffler, D. Molecular mimicry in halothane hepatitis: Biochemical and structural characterization of lipoylated autoantigens. Toxicology 1995, 97, 199–224. [Google Scholar] [CrossRef]
- Anonymous. Fenofibrate. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548607/ (accessed on 14 August 2021).
- Lecoeur, S.; Bonierbale, E.; Challine, D.; Gautier, J.-C.; Valadon, P.; Dansette, P.; Catinot, R.; Ballet, F.; Mansuy, D.; Beaune, P.H. Specificity of In Vitro Covalent Binding of Tienilic Acid Metabolites to Human Liver Microsomes in Relationship to the Type of Hepatotoxicity: Comparison with Two Directly Hepatotoxic Drugs. Chem. Res. Toxicol. 1994, 7, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Scully, L.J.; Clarke, D.; Barr, R.J. Diclofenac Induced Hepatitis. 3 Cases with Features of Autoimmune Chronic Active Hepatitis. Dig. Dis. Sci. 1993, 38, 744–751. [Google Scholar] [CrossRef]
- Anonymous. Diclofenac-LiverTox-NCBI Bookshelf. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547953/ (accessed on 14 August 2021).
- Norris, S.; Collins, C.; Doherty, D.; Smith, F.; McEntee, G.; Traynor, O.; Nolan, N.; Hegarty, J.; O’Farrelly, C. Resident human hepatitis lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol. 1998, 28, 84–90. [Google Scholar] [CrossRef]
- Löhr, H.F.; Schlaak, J.F.; Gerken, G.; Fleischer, B.; Dienes, H.-P.; Büschenfelde, K.-H.M.Z. Phenotypical analysis and cytokine release of liver-infiltrating and peripheral blood T lymphocytes from patients with chronic hepatitis of different etiology. Liver Int. 1994, 14, 161–166. [Google Scholar] [CrossRef]
- Löhr, H.; Manns, M.; Kyriatsoulis, A.; Lohse, A.W.; Trautwein, C.; Büschenfelde, K.-H.M.Z.; Fleischer, B. Clonal analysis of liver-infiltrating T cells in patients with LKM-1 antibody-positive autoimmune chronic active hepatitis. Clin. Exp. Immunol. 1991, 84, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tang, Y.; You, Z.; Wang, Q.; Liang, S.; Han, X.; Qiu, D.; Wei, J.; Liu, Y.; Shen, L.; et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 ex-pression. PLoS ONE 2011, 6, e18909. [Google Scholar]
- Oo, Y.H.; Adams, D.H. Regulatory T cells and autoimmune hepatitis: Defective cells or a hostile environment? J. Hepatol. 2012, 57, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.-D.; Chen, D.-Z.; Wu, J.-L.; Lu, F.-B.; Chen, L.; Zheng, M.-H.; Li, H.; Huang, Y.; Li, J.; Jin, X.-Y.; et al. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cell. Immunol. 2018, 328, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Longhi, M.S.; Ma, Y.; Mitry, R.R.; Bogdanos, D.; Heneghan, M.; Cheeseman, P.; Mieli-Vergani, G.; Vergani, D. Effect of CD4+CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J. Autoimmun. 2005, 25, 63–71. [Google Scholar] [CrossRef]
- Longhi, M.S.; Hussain, M.J.; Mitry, R.R.; Arora, S.K.; Mieli-Vergani, G.; Vergani, D.; Ma, Y. Functional Study of CD4+CD25+ Regulatory T Cells in Health and Autoimmune Hepatitis. J. Immunol. 2006, 176, 4484–4491. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Kobayashi, M.; Hosaka, T.; Someya, T.; Akuta, N.; Kobayashi, M.; Suzuki, F.; Tsubota, A.; Saitoh, S.; Arase, Y.; et al. Peripheral CD8+/CD25+ Lymphocytes May Be Implicated in Hepatocellular Injuries in Patients with Acute-Onset Autoimmune Hepatitis. J. Gastroenterol. 2004, 39, 649–653. [Google Scholar] [CrossRef]
- Eggink, H.F.; Houthoff, H.J.; Huitema, S.; Gips, C.H.; Poppema, S. Cellular and humoral immune reactions in chronic active liver disease. I. Lymphocyte subsets in liver biopsies of patients with untreated idiopathic autoimmune hepatitis, chronic active hepatitis B and primary biliary cirrhosis. Clin. Exp. Immunol. 1982, 50, 17–24. [Google Scholar]
- Ferri, S.; Longhi, M.S.; de Molo, C.; Lalanne, C.; Muratori, P.; Granito, A.; Hussain, M.J.; Ma, Y.; Lenzi, M.; Mieli-Vergani, G.; et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010, 52, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.B.; Graham, A.K.; Chapman, R.W.; Fleming, K.A. Elevation of Gamma Delta T Lymphocytes in Peripheral Blood and Livers of Patients with Primary Sclerosing Cholangitis and Other Autoimmune Liver Diseases. Hepatology 1996, 23, 988–993. [Google Scholar] [CrossRef]
- Cherñavsky, A.C.; Paladino, N.; Rubio, A.E.; de Biasio, M.B.; Periolo, N.; Cuarterolo, M.; Goñi, J.; Galoppo, C.; Cañero-Velasco, M.C.; Muñoz, A.E.; et al. Simultaneous expression of th1 cytokines and IL-4 confers severe characteristics to type I autoimmune hepatitis in children. Hum. Immunol. 2004, 65, 683–691. [Google Scholar] [CrossRef]
- Webb, G.; Hirschfield, G.; Krawitt, E.; Gershwin, M. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. Annu. Rev. Pathol. Mech. Dis. 2018, 13, 247–292. [Google Scholar] [CrossRef] [PubMed]
- Czaja, A.J.; Carpenter, H.A. Sensitivity, specificity, and predictability of biopsy interpretations in chronic hepatitis. Gastroenterology 1993, 105, 1824–1832. [Google Scholar] [CrossRef]
- Senaldi, G.; Portmann, B.; Mowat, A.P.; Mieli-Vergani, G.; Vergani, D. Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis. Arch. Dis. Child. 1992, 67, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Wu, H.; Liu, Y.; Yang, C.; Pan, Z.; Xia, J.; Xiong, Y.; Wang, G.; Sun, Z.; Chen, J.; et al. Increase of infiltrating monocytes in the livers of patients with chronic liver diseases. Discov. Med. 2016, 21, 25–33. [Google Scholar] [PubMed]
- Czaja, A.J.; Sievers, C.; Zein, N.N. Nature and Behavior of Serum Cytokines in Type 1 Autoimmune Hepatitis. Dig. Dis. Sci. 2000, 45, 1028–1035. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, X.; Wang, S.; Li, Y.; Fan, J.; Chen, W.; Zai, W.; Wang, S.; Wang, Y.; Chen, M.; et al. NOD-Like Receptor Protein 3 Inflammasome-Dependent IL-1β Accelerated ConA-Induced Hepatitis. Front. Immunol. 2018, 9, 758. [Google Scholar] [CrossRef]
- Noel, G.; Arshad, M.I.; Filliol, A.; Genet, V.; Rauch, M.; Lucas-Clerc, C.; Lehuen, A.; Girard, J.P.; Piquet-Pellorce, C.; Samson, M. Ablation of Interaction between IL-33 and ST2+ Regulatory T Cells Increases Immune Cell-Mediated Hepatitis and Activated NK Cell Liver Infiltration. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G313–G323. [Google Scholar] [CrossRef] [Green Version]
- Landi, A.; Weismuller, T.J.; Lankisch, T.O.; Santer, D.M.; Tyrrell, D.L.J.; Manns, M.P.; Houghton, M. Differential Serum Levels of Eosinophilic Eotaxins in Primary Sclerosing Cholangitis, Primary Biliary Cirrhosis, and Autoimmune Hepatitis. J. Interf. Cytokine Res. 2014, 34, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.J.; Mustafa, A.; Gallati, H.; Mowat, A.P.; Mieli-Vergani, G.; Vergani, D. Cellular Expression of Tumour Necrosis Factor-Alpha and Interferon-Gamma in the Liver Biopsies of Children with Chronic Liver Disease. J. Hepatol. 1994, 21, 816–821. [Google Scholar] [CrossRef]
- Tacke, F.; Hammerich, L. Interleukins in chronic liver disease: Lessons learned from experimental mouse models. Clin. Exp. Gastroenterol. 2014, 7, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; Takahashi, A.; Imaizumi, H.; Hayashi, M.; Okai, K.; Kanno, Y.; Watanabe, H.; Ohira, H. Interleukin-21 plays a critical role in the pathogenesis and severity of type I autoimmune hepatitis. SpringerPlus 2016, 5, 777. [Google Scholar] [CrossRef] [Green Version]
- Thomas-Dupont, P.; Remes-Troche, J.M.; Izaguirre-Hernández, I.Y.; Vargas, L.A.S.; Maldonado-Rentería, M.D.J.; Hernández-Flores, K.G.; Torre, A.; Bravo-Sarmiento, E.; Vivanco-Cid, H. Elevated circulating levels of IL-21 and IL-22 define a cytokine signature profile in type 2 autoimmune hepatitis patients. Ann. Hepatol. 2016, 15, 550–558. [Google Scholar] [PubMed]
- Maggiore, G.; de Benedetti, F.; Massa, M.; Pignatti, P.; Martini, A. Circulating Levels of Interleukin-6, Interleukin-8, and Tumor Necrosis Factor-Alpha in Children with Autoimmune Hepatitis. J. Pediatr. Gastroenterol. Nutr. 1995, 20, 23–27. [Google Scholar] [CrossRef]
- Zhu, J.; Paul, W.E. CD4 T cells: Fates, functions, and faults. Blood 2008, 112, 1557–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, M.T.; Weaver, C.T. Autoimmunity: Increasing suspects in the CD4+ T cell lineup. Nat. Immunol. 2009, 11, 36–40. [Google Scholar] [CrossRef]
- Wen, L.; Peakman, M.; Lobo-Yeo, A.; Vergani, D.; Mowat, A.; Vergani, M.; McFarlane, B. T-cell-directed hepatocyte damage in autoimmune chronic active hepatitis. Lancet 1990, 336, 1527–1530. [Google Scholar] [CrossRef]
- Longhi, M.S.; Ma, Y.; Bogdanos, D.P.; Cheeseman, P.; Mieli-Vergani, G.; Vergani, D. Impairment of CD4(+)CD25(+) Regulatory T-Cells in Autoimmune Liver Disease. J. Hepatol. 2004, 41, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Herkel, J.; Jagemann, B.; Wiegard, C.; Lazaro, J.F.G.; Lüth, S.; Kanzler, S.; Blessing, M.; Schmitt, E.; Lohse, A.W. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocyutes. Hepatology 2003, 37, 1079–1085. [Google Scholar] [CrossRef]
- O’Leary, J.G.; Zachary, K.; Misdraji, J.; Chung, R.T. De Novo Autoimmune Hepatitis during Immune Reconstitution in an HIV-Infected Patient Receiving Highly Active Antiretroviral Therapy. Clin. Infect. Dis. 2008, 46, e12–e14. [Google Scholar] [CrossRef] [Green Version]
- Granito, A.; Stanzani, M.; Muratori, L.; Bogdanos, D.P.; Muratori, P.; Pappas, G.; Quarneti, C.; Lenzi, M.; Vergani, D.; Bianchi, F.B. LKM1-Positive Type 2 Autoimmune Hepatitis Following Allogenic Hematopoietic Stem-Cell Transplantation. Am. J. Gastroenterol. 2008, 103, 1313–1314. [Google Scholar] [CrossRef]
- Ogawa, S.; Sakaguchi, K.; Takaki, A.; Shiraga, K.; Sawayama, T.; Mouri, H.; Miyashita, M.; Koide, N.; Tsuji, T. Increase in CD95 (Fas/APO-1)-positive CD4+and CD8+T cells in peripheral blood derived from patients with autoimmune hepatitis or chronic hepatitis C with autoimmune phenomena. J. Gastroenterol. Hepatol. 2000, 15, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Zwolak, A.; Surdacka, A.; Daniluk, J. Bcl-2 and Fas expression in peripheral blood leukocytes of patients with alcoholic and autoimmune liver disorders. Hum. Exp. Toxicol. 2016, 35, 799–807. [Google Scholar] [CrossRef]
- Buitrago-Molina, L.E.; Dywicki, J.; Noyan, F.; Trippler, M.; Pietrek, J.; Schlue, J.; Manns, M.P.; Wedemeyer, H.; Jaeckel, E. Splenectomy Prior to Experimental Induction of Autoimmune Hepatitis Promotes More Severe Hepatic Inflammation, Production of IL-17 and Apoptosis. Biomedicines 2021, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- An, J. Expression and Significance of Th17 Cells and Related Factors in Patients with Autoimmune Hepatitis. Comb. Chem. High Throughput Screen. 2019, 22, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.Y.; Salunga, T.L.; Tsuneyama, K.; Lian, Z.-X.; Yang, G.-X.; Hsu, W.; Moritoki, Y.; Ansari, A.A.; Kemper, C.; Price, J.; et al. Hepatic IL-17 responses in human and murine primary biliary cirrhosis. J. Autoimmun. 2009, 32, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Ma, X.; Tsuneyama, K.; Huang, S.; Takahashi, T.; Chalasani, N.P.; Bowlus, C.L.; Yang, G.X.; Leung, P.S.; Ansari, A.A.; et al. IL-12/Th1 and IL-23/Th17 Biliary Microenvironment in Primary Biliary Cirrhosis: Implications for Therapy. Hepatology 2014, 59, 1944–1953. [Google Scholar] [CrossRef] [Green Version]
- Longhi, M.S.; Liberal, R.; Holder, B.; Robson, S.C.; Ma, Y.; Mieli–Vergani, G.; Vergani, D. Inhibition of Interleukin-17 Promotes Differentiation of CD25 Cells Into Stable T Regulatory Cells in Patients With Autoimmune Hepatitis. Gastroenterology 2012, 142, 1526–1535. [Google Scholar] [CrossRef]
- Gagliani, N.; Amezcua Vesely, M.C.; Iseppon, A.; Brockmann, L.; Xu, H.; Palm, N.W.; de Zoete, M.R.; Licona-Limón, P.; Paiva, R.S.; Ching, T.; et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015, 523, 221–225. [Google Scholar] [CrossRef]
- Liberal, R.; Grant, C.R.; Holder, B.S.; Cardone, J.; Martinez-Llordella, M.; Ma, Y.; Heneghan, M.A.; Mieli-Vergani, G.; Vergani, D.; Longhi, M.S. In autoimmune hepatitis type 1 or the autoimmune hepatitis-sclerosing cholangitis variant defective regu-latory T-cell responsiveness to IL-2 results in low IL-10 production and impaired suppression. Hepatology 2015, 62, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Feng, X.; Yan, W.; Tian, D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front. Immunol. 2020, 11, 2485. [Google Scholar] [CrossRef]
- Peiseler, M.; Sebode, M.; Franke, B.; Wortmann, F.; Schwinge, D.; Quaas, A.; Baron, U.; Olek, S.; Wiegard, C.; Lohse, A.W.; et al. FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J. Hepatol. 2012, 57, 125–132. [Google Scholar] [CrossRef]
- Behairy, B.E.; El-Araby, H.A.; Abd El kader, H.H.; Ehsan, N.A.; Salem, M.E.; Zakaria, H.M.; Khedr, M.A. Assessment of Intrahepatic Regulatory T Cells in Children with Autoimmune Hepatitis. Ann. Hepatol. 2017, 15, 682–690. [Google Scholar]
- Chen, Y.; Jeffery, H.C.; Hunter, S.; Bhogal, R.; Birtwistle, J.; Braitch, M.K.; Roberts, S.; Ming, M.; Hannah, J.; Thomas, C.; et al. Human intrahepatic regulatory T cells are functional, require IL-2 from effector cells for survival, and are susceptible to Fas ligand-mediated apoptosis. Hepatology 2016, 64, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Oo, Y.H.; Sakaguchi, S. Regulatory T-cell directed therapies in liver diseases. J. Hepatol. 2013, 59, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granito, A.; Muratori, P.; Ferri, S.; Pappas, G.; Quarneti, C.; Lenzi, M.; Bianchi, F.B.; Muratori, L. Diagnosis and therapy of autoimmune hepatitis. Mini Rev. Med. Chem. 2009, 9, 847–860. [Google Scholar] [CrossRef]
- Global Burden of Disease Liver Cancer Collaboration. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Fu, J.; Jin, L.; Zhang, H.; Zhou, C.; Zou, Z.; Zhao, J.-M.; Zhang, B.; Shi, M.; Ding, X.; et al. Circulating and Liver Resident CD4+CD25+ Regulatory T Cells Actively Influence the Antiviral Immune Response and Disease Progression in Patients with Hepatitis B. J. Immunol. 2006, 177, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Stoop, J.N.; van der Molen, R.G.; Baan, C.; van der Laan, L.; Kuipers, E.J.; Kusters, J.G.; Janssen, H.L.A. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005, 41, 771–778. [Google Scholar] [CrossRef]
- Yang, G.; Liu, A.; Xie, Q.; Guo, T.B.; Wan, B.; Zhou, B.; Zhang, J.Z. Association of CD4+CD25+Foxp3+ regulatory T cells with chronic activity and viral clearance in patients with hepatitis B. Int. Immunol. 2006, 19, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.; Li, S.; Wu, W.; Sun, Z.; Chen, Y.; Chen, Z. Circulating CD4+ CD25+ regulatory T cells correlate with chronic hepatitis B infection. Immunology 2008, 123, 57. [Google Scholar] [CrossRef]
- Longhi, M.S.; Meda, F.; Wang, P.; Samyn, M.; Mieli-Vergani, G.; Vergani, D.; Ma, Y. Expansion and de novo generation of potentially therapeutic regulatory T cells in patients with autoimmune hepatitis. Hepatology 2008, 47, 581–591. [Google Scholar] [CrossRef]
- Kobayashi, N.; Hiraoka, N.; Yamagami, W.; Ojima, H.; Kanai, Y.; Kosuge, T.; Nakajima, A.; Hirohashi, S. FOXP3+ Regulatory T Cells Affect the Development and Progression of Hepatocarcinogenesis. Clin. Cancer Res. 2007, 13, 902–911. [Google Scholar] [CrossRef] [Green Version]
- Kurebayashi, Y.; Kubota, N.; Sakamoto, M. Immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma: Relationship with histopathological and molecular classifications. Hepatol. Res. 2021, 51, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.R.; Liberal, R.; Holder, B.S.; Cardone, J.; Ma, Y.; Robson, S.C.; Mieli-Vergani, G.; Vergani, D.; Longhi, M.S. Dysfunctional CD39(POS) Regulatory T Cells and Aberrant Control of T-Helper Type 17 Cells in Autoimmune Hepatitis. Hepatology 2014, 59, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberal, R.; Grant, C.R.; Holder, B.S.; Ma, Y.; Mieli-Vergani, G.; Vergani, D.; Longhi, M.S. The Impaired Immune Regulation of Autoimmune Hepatitis Is Linked to a Defective Galectin-9/Tim-3 Pathway. Hepatology 2012, 56, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.P.; Griffin, K.J.; Sullivan, K.; Johnson, E.F. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase. J. Clin. Investig. 1991, 88, 1370–1378. [Google Scholar] [CrossRef] [Green Version]
- Pape, S.; Nevens, F.; Verslype, C.; Mertens, C.; Drenth, J.P.; Tjwa, E.T. Profiling the patient with autoimmune hepatitis on calcineurin inhibitors: A real-world-experience. Eur. J. Gastroenterol. Hepatol. 2020, 32, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Daniel, V.; Trojan, K.; Opelz, G. Immunosuppressive drugs affect induction of IFNy+ Treg in vitro. Hum. Immunol. 2016, 77, 146–152. [Google Scholar] [CrossRef]
- Akimova, T.; Kamath, B.M.; Goebel, J.W.; Meyers, K.E.C.; Rand, E.B.; Hawkins, A.; Levine, M.; Bucuvalas, J.C.; Hancock, W.W. Differing Effects of Rapamycin or Calcineurin Inhibitor on T-Regulatory Cells in Pediatric Liver and Kidney Transplant Recipients. Arab. Archaeol. Epigr. 2012, 12, 3449–3461. [Google Scholar] [CrossRef]
- Vierling, J.M.; Kerkar, N.; Czaja, A.J.; Mack, C.L.; Adams, D.; Assis, D.N.; Manns, M.P.; Mayo, M.J.; Nayfeh, T.; Majzoub, A.M.M.; et al. Immunosuppressive Treatment Regimens in Auto-immune Hepatitis: Systematic Reviews and Meta-Analyses Supporting American Association for the Study of Liver Diseases Guidelines. Hepatology 2020, 72, 753–769. [Google Scholar] [CrossRef]
- Raffin, C.; Vo, L.T.; Bluestone, J.A. T Reg Cell-Based Therapies: Challenges and Perspectives. Nature Reviews. Immunology 2020, 20, 158–172. [Google Scholar]
- Diestelhorst, J.; Junge, N.; Schlue, J.; Falk, C.S.; Manns, M.P.; Baumann, U.; Jaeckel, E.; Taubert, R. Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS ONE 2017, 12, e0181107. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, H.C.; Jeffery, L.E.; Lutz, P.; Corrigan, M.; Webb, G.J.; Hirschfield, G.M.; Adams, D.H.; Oo, Y.H. Low-Dose Interleu-kin-2 Promotes STAT-5 Phosphorylation, T Reg Survival and CTLA-4-Dependent Function in Autoimmune Liver Diseases. Clin. Exp. Immunol. 2017, 188, 394–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oo, Y.H.; Banz, V.; Kavanagh, D.; Liaskou, E.; Withers, D.; Humphreys, E.; Reynolds, G.M.; Lee-Turner, L.; Kalia, N.; Hubscher, S.G.; et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J. Hepatol. 2012, 57, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, D.; Thapa, M.; Gumber, S.; Elrod, E.J.; Rahman, K.; Ibegbu, C.C.; Magliocca, J.F.; Adams, A.B.; Anania, F.; Grakoui, A. CD4+ Foxp3+ T Cells Promote Aberrant IgG Production and Maintain CD8+ T Cell Suppression during Chronic Liver Disease. Hepatology 2017, 65, 661. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Henriksen, K.J.; Bi, M.; Finger, E.B.; Szot, G.; Ye, J.; Masteller, E.L.; McDevitt, H.; Bonyhadi, M.; Bluestone, J.A. In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes. J. Exp. Med. 2004, 199, 1455–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longhi, M.S.; Hussain, M.J.; Kwok, W.W.; Mieli-Vergani, G.; Ma, Y.; Vergani, D. Autoantigen-specific regulatory T cells, a potential tool for immune-tolerance reconstitution in type-2 autoimmune hepatitis. Hepatology 2011, 53, 536–547. [Google Scholar] [CrossRef]
- Liang, M.; Liwen, Z.; Juan, D.; Yun, Z.; Yanbo, D.; Jianping, C. Dysregulated TFR and TFH cells correlate with B-cell differentiation and antibody production in autoimmune hepatitis. J. Cell. Mol. Med. 2020, 24, 3948–3957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, M.; Fujino, M.; Jiang, G.; Kitazawa, Y.; Xie, L.; Azuma, M.; Yagita, H.; Nagao, S.; Sugioka, A.; Kurosawa, Y.; et al. PD-1/B7-H1 Interaction Contribute to the Spontaneous Acceptance of Mouse Liver Allograft. Am. J. Transplant. 2010, 10, 40–46. [Google Scholar] [CrossRef]
- Kido, M.; Watanabe, N.; Okazaki, T.; Akamatsu, T.; Tanaka, J.; Saga, K.; Nishio, A.; Honjo, T.; Chiba, T. Fatal Autoimmune Hepatitis Induced by Concurrent Loss of Naturally Arising Regulatory T Cells and PD-1-Mediated Signaling. Gastroenterology 2008, 135, 1333–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, N.; Kido, M.; Iwamoto, S.; Nishiura, H.; Maruoka, R.; Tanaka, J.; Watanabe, T.; Tanaka, Y.; Okazaki, T.; Chiba, T.; et al. Dysregulated Generation of Follicular Helper T Cells in the Spleen Triggers Fatal Autoimmune Hepatitis in Mice. Gastroenterology 2011, 140, 1322–1333. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, H.C.; Braitch, M.K.; Bagnall, C.; Hodson, J.; Jeffery, L.E.; Wawman, R.E.; Wong, L.L.; Birtwistle, J.; Bartlett, H.; Lohse, A.W.; et al. Changes in natural killer cells and exhausted memory regulatory T Cells with corticosteroid therapy in acute autoimmune hepatitis. Hepatol. Commun. 2018, 2, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, P.; Béland, K.; Yang, R.; Alvarez, F. Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology 2013, 57, 217–227. [Google Scholar] [CrossRef]
- Oo, Y.H.; Ackrill, S.; Cole, R.; Jenkins, L.; Anderson, P.; Jeffery, H.C.; Jones, N.; Jeffery, L.E.; Lutz, P.; Wawman, R.E.; et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis. JHEP Rep. 2019, 1, 286–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buitrago-Molina, L.E.; Pietrek, J.; Noyan, F.; Schlue, J.; Manns, M.P.; Wedemeyer, H.; Hardtke-Wolenski, M.; Jaeckel, E. Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J. Autoimmun. 2021, 117, 102591. [Google Scholar] [CrossRef] [PubMed]
- Marceau, G.; Yang, R.; Lapierre, P.; Béland, K.; Alvarez, F. Low-dose anti-CD3 antibody induces remission of active auto-immune hepatitis in xenoimmunized mic. Liver Int. 2015, 35, 275–284. [Google Scholar] [CrossRef]
- Ichiki, Y.; Aoki, C.A.; Bowlus, C.; Shimoda, S.; Ishibashi, H.; Gershwin, M.E. T cell immunity in autoimmune hepatitis. Autoimmun. Rev. 2005, 4, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, E.; Lindor, K.D.; Homburger, H.A.; Dickson, E.R.; Czaja, A.J.; Wiesner, R.H.; Ludwig, J. Immunohistochemical Characterization of Hepatic Lymphocytes in Primary Biliary Cirrhosis in Comparison With Primary Sclerosing Cholangitis and Autoimmune Chronic Active Hepatitis. Mayo Clin. Proc. 1993, 68, 1049–1055. [Google Scholar] [CrossRef]
- Tordjmann, T.; Soulie, A.; Guettier, C.; Schmidt, M.; Berthou, C.; Beaugrand, M.; Sasportes, M. Perforin and granzyme B lytic protein expression during chronic viral and autoimmune hepatitis. Liver Int. 2008, 18, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Longhi, M.S.; Hussain, M.J.; Bogdanos, D.P.; Quaglia, A.; Mieli-Vergani, G.; Ma, Y.; Vergani, D. Cytochrome P450IID6-specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2. Hepatology 2007, 46, 472–484. [Google Scholar] [CrossRef]
- Holz, L.E.; Benseler, V.; Vo, M.; McGuffog, C.; van Rooijen, N.; McCaughan, G.W.; Bowen, D.G.; Bertolino, P. Naïve CD8 T cell activation by liver bone marrow-derived cells leads to a “neglected” IL-2low Bimhigh phenotype, poor CTL function and cell death. J. Hepatol. 2012, 57, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Rajoriya, N.; Fergusson, J.R.; Leithead, J.A.; Klenerman, P. Gamma Delta T-Lymphocytes in Hepatitis C and Chronic Liver Disease. Front. Immunol. 2014, 5, 400. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Peakman, M.; Mieli-Vergani, G.; Vergani, D. Elevation of Activated Gamma Delta T Cell Receptor Bearing T Lymphocytes in Patients with Autoimmune Chronic Liver Disease. Clin. Exp. Immunol. 1992, 89, 78–82. [Google Scholar] [CrossRef]
- Kasper, H.U.; Ligum, D.; Cucus, J.; Stippel, D.L.; Dienes, H.P.; Drebber, U. Liver Distribution of Gammadelta-T-Cells in Patients with Chronic Hepatitis of Different Etiology. APMIS 2009, 117, 779–785. [Google Scholar] [CrossRef]
- Stinissen, P.; Vandevyver, C.; Medaer, R.; Vandegaer, L.; Nies, J.; Tuyls, L.; Hafler, D.A.; Raus, J.; Zhang, J. Increased Frequency of Gamma Delta T Cells in Cerebrospinal Fluid and Peripheral Blood of Patients with Multiple Sclerosis. Reactivity, Cytotoxicity, and T Cell Receptor V Gene Rearrangements. J. Immunol. 1995, 154, 4883–4894. [Google Scholar]
- Bank, I.; Duvdevani, M.; Livneh, A. Expansion of Gammadelta T-Cells in Behçet’s Disease: Role of Disease Activity and Microbial Flora in Oral Ulcers. J. Lab. Clin. Med. 2003, 141, 33–40. [Google Scholar] [CrossRef]
- Marquardt, N.; Béziat, V.; Nyström, S.; Hengst, J.; Ivarsson, M.A.; Kekäläinen, E.; Johansson, H.; Mjösberg, J.; Westgren, M.; Lankisch, T.O.; et al. Cutting Edge: Identification and Characterization of Human Intrahepatic CD49a+ NK Cells. J. Immunol. 2015, 194, 2467–2471. [Google Scholar] [CrossRef] [Green Version]
- Hudspeth, K.; Donadon, M.; Cimino, M.; Pontarini, E.; Tentorio, P.; Preti, M.; Hong, M.; Bertoletti, A.; Bicciato, S.; Invernizzi, P.; et al. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J. Autoimmun. 2016, 66, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Chen, Y.; Gao, B. Natural killer cells in liver disease. Hepatology 2013, 57, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wei, H.; Sun, R.; Hu, Z.; Gao, B.; Tian, Z. Involvement of natural killer cells in PolyI:C-induced liver injury. J. Hepatol. 2004, 41, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.J.; Goddard, S.; Ahmed-Choudhury, J.; Reynolds, G.; Jackson, D.G.; Briskin, M.; Wu, L.; Hübscher, S.G.; Adams, D.H. Hepatic Expression of Secondary Lymphoid Chemokine (CCL21) Promotes the Development of Portal-Associated Lymphoid Tissue in Chronic Inflammatory Liver Disease. Am. J. Pathol. 2002, 160, 1445–1455. [Google Scholar] [CrossRef] [Green Version]
- Taubert, R.; Hardtke-Wolenski, M.; Noyan, F.; Wilms, A.; Baumann, A.K.; Schlue, J.; Olek, S.; Falk, C.S.; Manns, M.P.; Jaeckel, E. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J. Hepatol. 2014, 61, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Burak, K.W.; Swain, M.G.; Santodomingo-Garzon, T.; Lee, S.S.; Urbanski, S.J.; Aspinall, A.; Coffin, C.S.; Myers, R.P. Rituximab for the Treatment of Patients with Autoimmune Hepatitis Who are Refractory or Intolerant to Standard Therapy. Can. J. Gastroenterol. 2013, 27, 273–280. [Google Scholar] [CrossRef]
- Than, N.N.; Hodson, J.; Schmidt-Martin, D.; Taubert, R.; Wawman, R.E.; Botter, M.; Gautam, N.; Bock, K.; Jones, R.; Appanna, G.D.; et al. Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: Results from the In-ternational Autoimmune Hepatitis Group. JHEP Rep. 2019, 1, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Buitrago-Molina, L.; Dywicki, J.; Noyan, F.; Schepergerdes, L.; Pietrek, J.; Lieber, M.; Schlue, J.; Manns, M.; Wedemeyer, H.; Jaeckel, E.; et al. Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 2021, 10, 1471. [Google Scholar] [CrossRef]
- Arvaniti, P.; Giannoulis, G.; Gabeta, S.; Zachou, K.; Koukoulis, G.K.; Dalekos, G.N. Belimumab is a promising third-line treatment option for refractory autoimmune hepatitis. JHEP Rep. 2020, 20, 4. [Google Scholar]
- Eibl, M. Immunological Consequences of Splenectomy. Prog. Pediatric. Surg. 1985, 18, 139–145. [Google Scholar] [CrossRef]
- Karakantza, M.; Theodorou, G.L.; Mouzaki, A.; Theodori, E.; Vagianos, C.; Maniatis, A. In Vitro Study of the Long-Term Effects of Post-Traumatic Splenectomy on Cellular Immunity. Scand. J. Immunol. 2004, 59, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.T.; Harty, J.T. Splenectomy Alters Distribution and Turnover but not Numbers or Protective Capacity of de novo Generated Memory CD8T-Cells. Front. Immunol. 2014, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Kurokohchi, K.; Masaki, T.; Himoto, T.; Deguchi, A.; Nakai, S.; Morishita, A.; Yoneyama, H.; Kimura, Y.; Watanabe, S.; Kuriyama, S. Usefulness of liver infiltrating CD86-positive mononuclear cells for diagnosis of autoimmune hepatitis. World J. Gastroenterol. 2006, 12, 2523–2529. [Google Scholar] [CrossRef]
- Clemente-Casares, X.; Blanco, J.; Ambalavanan, P.; Yamanouchi, J.; Singha, S.; Fandos, C.; Tsai, S.; Wang, J.; Garabatos, N.; Izquierdo, C.; et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 2016, 530, 434–440. [Google Scholar] [CrossRef]
- Ellebrecht, C.T.; Bhoj, V.G.; Nace, A.; Choi, E.J.; Mao, X.; Cho, M.J.; Di Zenzo, G.; Lanzavecchia, A.; Seykora, J.T.; Cotsarelis, G.; et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 2016, 353, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Lied, G.A.; Berstad, A. Functional and Clinical Aspects of the B-Cell-Activating Factor (BAFF): A Narrative Review. Scand. J. Immunol. 2010, 73, 1–7. [Google Scholar] [CrossRef]
- Liberal, R.; Mieli-Vergani, G.; Vergani, D. Contemporary issues and future directions in autoimmune hepatitis. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 1163–1174. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
Human miRNA | Upregulated | Reference | Downregulated | Reference |
---|---|---|---|---|
miR-122-5p | [86] | miR-223-3p | [86] | |
miR-1915-5p | miR-575 | |||
miR-193b-3p | miR-451a | |||
miR-1908-3p | miR-4638-5p | |||
miR-6073 | miR-4443 | |||
miR-99a-5p | miR-486-5p | |||
miR-602 | miR-6765-3p | |||
miR-1199-5p | miR-6820-5p | |||
miR-1290 | miR-4648 | |||
miR-21-5p | miR-6511a-5p | |||
miR-4732-5p | miR-6889-5p | |||
miR-122 | miR-1207-5p | |||
miR-192 | miR-7150 | |||
miR-375 | miR-6877-5p | |||
miR-21 | miR-4476 | |||
miR-6763-5p | ||||
Animal miRNA | ||||
miR-10a, miR-133a | [87] | miR-15a/16-1 | [88] | |
miR-210 | [89] | miR-155 | [90] | |
miR-155 | [90] | miR-143-3p | [91] |
Drug | Comments | Selected References |
---|---|---|
Methyldopa | A possible toxic metabolic component that could present as an antigenic hapten on the surface of cells in susceptible hosts | [155,156] |
Minocycline | Some associations with a rare HLA allele B*35:02, but most patients with similar clinical features lack this allele. | [149,157] |
Nitrofurantoin | Not completely known. Drug metabolism produces oxidative free radicals, which can injure hepatocytes. Many cases are linked to HLA-DR6 and DR2 alleles. | [150,158] |
α- and β-interferons | Immunomodulatory effects in presenting HLA antigens on hepatocyte surface and modifying CD4 and CD8+ T cell activity in predisposed patients. It can cause acute exacerbation of AIH and acute hepatitis-like syndrome that can coexist or be confused with chronic hepatitis B or C. | [133,159,160] |
Hydralazine | Metabolized by N-acetyltransferase (NAT), more often associated with specific genetic variants in NAT activity, in the presence of autoantibodies to the P450 system (CYP 1A2). | [147,161] |
Infliximab, adalimumab, etanercept | TNFα antagonists; the mechanism is not known, may induce and modulate autoimmunity. | [162,163] |
Ipilimumab | AntiCTLA-4 inhibition and depletion of Treg cells | [110] |
Nivolumab | PD-1 inhibition | [164] |
Halothane | Partially modified by liver microsomal enzyme CYP 2E1 in trifluoroacetic acid. Halothane can trifluoroacetylate hepatic proteins, which can be immunogenic and produce cytotoxicity. In halothane hepatitis, antibodies to trifluoroacetylated proteins are present. | [165,166] |
Tienilic acid (fenofibrate) | Not completely known. Liver immune reactivity may appear in the presence of altered metabolites or fenofibrate–protein haptens. Recognition of cytochrome P450 2C9 by antiLKM2 autoantibodies. | [167,168] |
Non-steroidal anti-inflammatory drugs (diclofenac) | An immunoallergic component is linked to the genetic allele UGT 2B7, CYP 2C8, and ABC C2, genes being involved in the metabolism, conjugation, and excretion of diclofenac. | [169,170] |
Cell Type | Peripheral Blood | Liver | ||||
---|---|---|---|---|---|---|
AIH vs. Healthy | Reference | AIH vs. Healthy | Reference | |||
CD4+ T Cells | ↑ | [172] | ↑ | [172] | ||
Th1 CD4+ T cells | NA | NA | ↑ | [173] | ||
Th17 CD4+ T cells | ↑ | [174] | ↑ | [175] | ||
CD4+CD25+ FOXP3 (Adults) | Number ↑ | Function (-) | [176] | Number (-) | Function (-) | [176] |
CD4+CD25+ (Adults and Children) | Number (-) | Function ↓ | [177] | Number (-) | Function (-) | [177] |
FOXP3 (Adults and Children) | Number ↓ | Function (-) | [178] | Number (-) | Function (-) | [178] |
CD8+ T cells | ↑ | [179] | ↑ | [180] | ||
γδ T cells | ↑ | [181] | ↑ | [182] | ||
Natural killer T cells | [181] | ↑ | [183] | |||
B cells | = | [184] | = | [184] | ||
Plasma cells | NA | NA | ↑ | [185] | ||
Monocytes | ↑ | [186] | ↑ | [187] |
Cell Type | Cell Stimuli | Secreted Cytokines | Peripheral Blood AIH vs. Healthy | Reference | Liver AIH vs. Healthy | Reference | Effects on Pathogenesis |
---|---|---|---|---|---|---|---|
Th1 | IL-12 | IL-2 | ↓ | [188] | NA | NA | CD 8 (cytotoxic T cells) is a component of the adaptative immune system response through apoptosis of recognized cells on MHC class I and MHC class II on liver cells, which present the antigen Activation of NK cells |
IL-1ß | ↑ | [189] | ↑ | [190] | |||
IFN-γ | ↑ | [191] | ↑ | [192] | |||
Th2 | IL-4 | IL-4 | ↓ | [188] | ↑ | [183] | Promote CD4+ cells Promote B cell differentiation, plasma cells produce autoantibodies, and complement activation NK cells recognition of Fc receptor on hepatocyte surface IL-13 signaling in liver fibrogenesis Circulating IL-21 may predict the progression of necro-inflammatory activity on liver histology |
IL-10 | ↑ | [172] | NA | NA | |||
IL-13 | ↑ | [190] | ↑ | [193] | |||
IL-21 | ↑ | [194] | NA | NA | |||
Th17 | TGF-ß, IL-1ß, IL-6 | IL-17 | ↑ | [174] | ↑ | [174] | Elevated levels of IL-21 and IL-22 even in patients undergoing immunosuppressive therapy Th 17 cells induce liver damage and release of inflammation cytokines |
IL-22 | ↑ | [195] | NA | NA | |||
IL-23 | ↑ | [195] | NA | NA | |||
TNF-α | ↑ | [196] | ↑ | [192] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirbe, C.; Simu, G.; Szabo, I.; Grama, A.; Pop, T.L. Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms. Int. J. Mol. Sci. 2021, 22, 13578. https://doi.org/10.3390/ijms222413578
Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms. International Journal of Molecular Sciences. 2021; 22(24):13578. https://doi.org/10.3390/ijms222413578
Chicago/Turabian StyleSirbe, Claudia, Gelu Simu, Iulia Szabo, Alina Grama, and Tudor Lucian Pop. 2021. "Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms" International Journal of Molecular Sciences 22, no. 24: 13578. https://doi.org/10.3390/ijms222413578
APA StyleSirbe, C., Simu, G., Szabo, I., Grama, A., & Pop, T. L. (2021). Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms. International Journal of Molecular Sciences, 22(24), 13578. https://doi.org/10.3390/ijms222413578