Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress
Abstract
:1. Introduction
2. Results
2.1. Relative Dry Weight and H2O2 Content of Acanthus Species under Tidal Flooding Stress
2.2. Effect of Tidal Flooding on the Phenotype and Anatomical Characteristics of Acanthus Species
2.3. Identification and Quantification of Tidal Flooding-Responsive Proteins
2.4. Functional Classification of DEPs
2.5. Identification of Hub Proteins in Acanthus Species
2.6. Tidal Flooding Stress Influences the Energy Status Level of A. ilicifolius and A. mollis
2.7. Tidal Flooding Stress Influences the Total Soluble Sugar and Starch Contents of Acanthus Species
3. Discussion
3.1. Differences in Tissue Tolerance between Acanthus Species
3.2. Effect of Tidal Flooding on the Photosynthesis of Acanthus Species
3.3. Effect of Tidal Flooding on Carbon and Energy Metabolism of Acanthus Species
3.4. Effect of Tidal Flooding on Nutrient Assimilation and Protein Metabolism of Acanthus Species
3.5. Effect of Tidal Flooding on Antioxidative Defense System of Acanthus Species
4. Materials and Methods
4.1. Plant Material and Experimental Setup
4.2. Determination of the Dry Weight
4.3. Anatomical Features of Leaves and Roots
4.4. Protein Extraction and Quantification
4.5. Determinations of AMP, ADP, ATP, and Sugar Content
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbona, V.; Hossain, Z.; López-Climent, M.F.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol. Plant. 2008, 132, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Vandoorne, B.; Descamps, C.; Mathieu, A.S.; Van den Ende, W.; Vergauwen, R.; Javaux, M.; Lutts, S. Long term intermittent flooding stress affects plant growth and inulin synthesis of Cichorium intybus (var. sativum). Plant Soil 2014, 376, 291–305. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Syvertsen, J.P.; Gimeno, V.; Botía, P.; Perez-Perez, J.G. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant 2007, 130, 532–542. [Google Scholar] [CrossRef]
- Gibbs, J.; Greenway, H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 2003, 30, 1–47. [Google Scholar] [CrossRef]
- Kotula, L.; Clode, P.L.; Striker, G.G.; Pedersen, O.; Läuchli, A.; Shabala, S.; Colmer, T.D. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (H ordeum vulgare). New Phytol. 2015, 208, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Azahar, I.; Ghosh, S.; Adhikari, A.; Adhikari, S.; Roy, D.; Shaw, A.K.; Singh, K.; Hossain, Z. Comparative analysis of maize root sRNA transcriptome unveils the regulatory roles of miRNAs in submergence stress response mechanism. Environ. Exp. Bot. 2020, 171, 103924. [Google Scholar] [CrossRef]
- Pedersen, O.; Rich, S.M.; Colmer, T.D. Surviving floods: Leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J. 2009, 58, 147–156. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, Y.S.; Fei, J.; Jiang, Z.Y.; Ye, Z.H. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient. Ecotoxicology 2015, 24, 1659–1667. [Google Scholar] [CrossRef]
- Garcia, N.; Da-Silva, C.J.; Cocco, K.L.T.; Pomagualli, D.; de Oliveira, F.K.; da Silva, J.V.L.; de Oliveira, A.C.B.; do Amarante, L. Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environ. Exp. Bot. 2020, 172, 103975. [Google Scholar] [CrossRef]
- Van Dongen, J.T.; Licausi, F. Oxygen Sensing and Signaling. Annu. Rev. Plant Biol. 2015, 66, 345–367. [Google Scholar] [CrossRef]
- Luo, F.L.; Nagel, K.A.; Zeng, B.; Schurr, U.; Matsubara, S. Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species. Ann. Bot. 2009, 104, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Ploschuk, R.A.; Grimoldi, A.A.; Ploschuk, E.L.; Striker, G.G. Growth during recovery evidences the waterlogging tolerance of forage grasses. Crop Pasture Sci. 2017, 68, 574–582. [Google Scholar] [CrossRef]
- Li, A.M.; Wei, C.X.; Jiang, J.J.; Zhang, Y.T.; Snowdon, R.J.; Wang, Y.P. Phenotypic variation in progenies from somatic hybrids between Brassica napus and Sinapis alba. Euphytica 2009, 170, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.N.; Earle, E.D. Somatic hybrids between Brassica oleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor. Appl. Genet 1997, 94, 1078–1085. [Google Scholar] [CrossRef]
- Yang, Y.C.; Yang, S.H.; Li, J.F.; Deng, Y.F.; Zhang, Z.; Xu, S.H.; Guo, W.X.; Zhong, C.R.; Zhou, R.C.; Shi, S.H. Transcriptome analysis of the holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genom. 2015, 16, 605. [Google Scholar] [CrossRef]
- Shackira, A.M.; Puthur, J.T. Cd2+ influences metabolism and elemental distribution in roots of Acanthus ilicifolius L. Int. J. Phytoremediat. 2019, 21, 866–877. [Google Scholar]
- Zhang, L.E.; Liao, B.W.; Guan, W. Effects of simulated tide inundation on seed germination and seedling growth of mangrove species Acanthus ilicifolius. Chin. J. Ecol. 2011, 30, 2165–2172. [Google Scholar]
- Řezanka, T.; Řezanka, P.; Sigler, K. Glycosides of arylnaphthalene lignans from Acanthus mollis having axial chirality. Phytochemistry 2009, 70, 1049–1054. [Google Scholar] [CrossRef]
- Matos, P.; Figueirinha, A.; Ferreira, I.; Cruz, M.T.; Batista, M.T. Acanthus mollis L. leaves as source of anti-inflammatory and antioxidant phytoconstituents. Nat. Prod. Res. 2019, 33, 1824–1827. [Google Scholar] [CrossRef]
- Bader, A.; Martini, F.; Schinella, G.R.; Rios, J.L.; Prieto, J.M. Modulation of cox-1, 5-, 12- and 15-lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases. Phytother. Res. 2015, 29, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, Z.; Shen, Z.J.; Luo, M.R.; Liu, Y.L.; Wei, M.Y.; Wang, W.H.; Qin, Y.Y.; Gao, C.H.; Li, K.K.; et al. Physiological and proteomic responses of mangrove plant Avicennia marina seedlings to simulated periodical inundation. Plant Soil 2020, 450, 231–254. [Google Scholar] [CrossRef]
- Campilho, A.; Nieminen, K.; Ragni, L. The development of the periderm: The final frontier between a plant and its environment. Curr. Opin. Plant Biol. 2020, 53, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Zhu, L.; Peng, W.L.; He, X.C.; Chen, H.L.; Li, J.; Yu, T.; Liang, Z.T.; Zhao, Z.Z.; Chen, H.B. Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT Food Sci. Technol. 2015, 62, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.R.; Chen, C.L.; Zhang, L.W.; Green-Church, K.B.; Zweier, J.L. Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J. Biol. Chem. 2005, 280, 37339–37348. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Jie, Z.L.; Wang, M.; Lin, G.H.; Wang, W.Q. Leaf and stem anatomical responses to periodical waterlogging in simulated tidal floods in mangrove Avicennia marina seedlings. Aquat. Bot. 2009, 91, 231–237. [Google Scholar] [CrossRef]
- Hassiotou, F.; Ludwig, M.; Renton, M.; Veneklaas, E.J.; Evans, J.R. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J. Exp. Bot. 2009, 60, 2303–2314. [Google Scholar] [CrossRef] [Green Version]
- Pi, N.; Tam, N.F.Y.; Wu, Y.; Wong, M.H. Root anatomy and spatial pattern of radial oxygen loss of eight true mangrove species. Aquat. Bot. 2009, 90, 222–230. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, M.L.; Li, C.D.; Sun, F.L.; Sun, C.C.; Wang, Y.S. Dynamics of radial oxygen loss in mangroves subjected to waterlogging. Ecotoxicology 2020, 29, 684–690. [Google Scholar] [CrossRef]
- McGarry, R.C.; Kragler, F. Phloem-mobile signals affecting flowers: Applications for crop breeding. Trends Plant Sci. 2013, 18, 198–206. [Google Scholar] [CrossRef]
- Downton, W.J.S.; Loveys, B.R.; Grant, W.J.R. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytol. 2006, 110, 503–509. [Google Scholar] [CrossRef]
- James, H.E.; Bartling, D.; Musgrove, J.E.; Kirwin, P.M.; Herrmann, R.G.; Robinson, C. Transport of proteins into chloroplasts. Import and maturation of precursors to the 33-, 23-, and 16-kDa proteins of the photosynthetic oxygen-evolving complex. J. Biol. Chem. 1989, 264, 19573–19576. [Google Scholar] [CrossRef]
- Kato, Y.; Miura, E.; Ido, K.; Ifuku, K.; Sakamoto, W. The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 2009, 151, 1790–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.Y.; Zhang, D.Y.; Zhao, Y.L.; Wang, W.; Yang, H.; Tai, F.J.; Li, C.H.; Hu, X.L. The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both Stresses. Front Plant Sci. 2016, 7, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoychev, V.; Simovastoilova, L.; Vaseva, I.; Kostadinova, A.; Nenkova, R.; Feller, U.; Demirevska, K. Protein changes and proteolytic degradation in red and white clover plants subjected to waterlogging. Acta Physiol. Plant 2013, 35, 1925–1932. [Google Scholar] [CrossRef]
- Takahashi, H.; Takahara, K.; Hashida, S.; Hirabayashi, T.; Fujimori, T.; Kawai-Yamada, M.; Yamaya, T.; Yanagisawa, S.; Uchimiya, H. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiol. 2009, 151, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Odanaka, S.; Bennett, A.B.; Kanayama, Y. Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol. 2002, 129, 1119–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eda, M.; Ishimaru, M.; Tada, T.; Sakamoto, T.; Kotake, T.; Tsumuraya, Y.; Mort, A.J.; Gross, K.T. Enzymatic activity and substrate specificity of the recombinant tomato β-galactosidase 1. J. Plant Physiol. 2014, 171, 1454–1460. [Google Scholar] [CrossRef]
- Dai, N.; Petreikov, M.; Portnoy, V.; Katzir, N.; Pharr, D.M.; Schaffer, A.A. Cloning and expression analysis of a UDP-Galactose/Glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiol. 2006, 142, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, N.; Creuzenet, C.; Lam, J.S.; Berghuis, A.M. Crystal Structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa Substrate specificity in UDP- hexose 4-epimerases. J. Biol. Chem. 2004, 279, 22635–22642. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.; Licausi, F.; Araujo, W.L.; Nunes-Nesi, A.; Sodek, L.; Fernie, A.R.; van Dongen, J.T. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 2010, 152, 1501–1513. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.; Froehlich, J.E.; Moll, M.R.; Benning, C.A. Heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 2007, 19, 2006–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arino, J.; Ramos, J.; Sychrova, H. Alkali metal cation transport and homeostasis in yeasts. Microbiol. Mol. Biol. Rev. 2010, 74, 95–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabalza, A.; van Dongen, J.T.; Froehlich, A.; Oliver, S.N.; Faix, B.; Gupta, K.J.; Schmälzlin, E.; Igal, M.; Orcaray, L.; Royuela, M.; et al. Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol. 2009, 149, 1087–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saika, H.; Matsumura, H.; Takano, T.; Tsutsumi, N.; Nakazono, M. A point mutation of Adh1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breed. Sci. 2006, 56, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fu, J.L.; Li, M.; Fragner, L.; Weckwerth, W.; Yang, P.F. Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of Lotus (Nelumbo nucifera). Front. Plant Sci. 2016, 7, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.L.; Zhao, J.Y.; Zhao, Y.N.; Lu, X.; Zhou, Z.H.; Zhao, C.X.; Xu, G.W. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci. Rep. 2016, 6, 37976. [Google Scholar] [CrossRef]
- Tedder, M.E.; Nie, Z.; Margosiak, S.; Chu, S.; Feher, V.A.; Almassy, R.; Appelt, K.; Yager, K.M. Structure-based design, synthesis, and antimicrobial activity of purine derived SAH/MTA nucleosidase inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 3165–3168. [Google Scholar] [CrossRef]
- Vauclare, P.; Suter, M.; Sticher, L.; Ballmoos, P.V.; Krähenbühl, U.; Camp, R.O.D.; Brunold, C. Flux control of sulphate assimilation in Arabidopsis thaliana: Adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J. 2010, 31, 729–740. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeon, J.; Lee, S.; Lee, J.H.; Gao, L.; Lee, B.H.; Park, J.M.; Kim, Y.J.; Kwak, J.M. Proteasome subunit RPT2a promotes PTGS through repressing RNA quality control in Arabidopsis. Nat. Plants 2019, 5, 1273–1282. [Google Scholar] [CrossRef]
- Schramm, F.; Ganguli, A.; Kiehlmann, E.; Englich, G.; Walch, D.; von Koskull-Döring, P. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol. 2006, 60, 759–772. [Google Scholar] [CrossRef]
- Gruber, C.W.; Čemažar, M.; Heras, B.; Martin, J.L.; Craik, D.J. Protein disulfide isomerase: The structure of oxidative folding. Trends Biochem. Sci. 2006, 31, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Boni, I.V.; Isaeva, D.M.; Musychenko, M.L.; Tzareva, N.V. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 1991, 19, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.R.; Salinas, J.; Collinge, D.B. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol. 2002, 50, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.L.; Gai, Y.P.; Zheng, C.C.; Mu, Z.M. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 2010, 9, 5328–5339. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.K.; Jang, H.H.; Lee, J.R.; Sung, N.R.; Lee, H.B.; Lee, D.H.; Park, D.J.; Kang, C.H.; Chung, W.S.; Lim, C.O.; et al. Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress. Plant Sci. 2009, 177, 227–232. [Google Scholar]
- Góngora-Castillo, E.; Ibarra-Laclette, E.; Trejo-Saavedra, D.L.; Rivera-Bustamante, R.F. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol. J. 2012, 9, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, D.P.; Skipsey, M.; Edwards, R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 2010, 71, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Bora, L.S.; Thomaz, S.M.; Padial, A.A. Evidence of rapid evolution of an invasive poaceae in response to salinity. Aquat. Sci. 2020, 82, 76. [Google Scholar] [CrossRef]
- He, C.F.; Wang, Y.M. Protein extraction from leaves of Aloe vera L., a succulent and recalcitrant plant for proteomic analysis. Plant Mol. Biol. Rep. 2008, 26, 292–300. [Google Scholar] [CrossRef]
- Bradford, M.M.; Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Liu, Y.L.; Shen, Z.J.; Simon, M.; Li, H.; Ma, D.N.; Zhu, X.Y.; Zheng, H.L. Comparative proteomic analysis reveals the regulatory effects of H2S on salt tolerance of mangrove plant Kandelia obovata. Int. J. Mol. Sci. 2020, 21, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Lin, H.T.; Jiang, Y.M.; Zhang, S.; Lin, Y.F.; Wang, Z.H. Phomopsis longanae Chi-induced pericarp browning and disease development of harvested longan fruit in association with energy status. Postharvest Biol. Technol. 2014, 93, 24–28. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-l.; Zheng, H.-l. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int. J. Mol. Sci. 2021, 22, 1055. https://doi.org/10.3390/ijms22031055
Liu Y-l, Zheng H-l. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. International Journal of Molecular Sciences. 2021; 22(3):1055. https://doi.org/10.3390/ijms22031055
Chicago/Turabian StyleLiu, Yi-ling, and Hai-lei Zheng. 2021. "Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress" International Journal of Molecular Sciences 22, no. 3: 1055. https://doi.org/10.3390/ijms22031055
APA StyleLiu, Y. -l., & Zheng, H. -l. (2021). Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. International Journal of Molecular Sciences, 22(3), 1055. https://doi.org/10.3390/ijms22031055