Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma
Abstract
:1. Introduction
2. BRAF Mutation Drives Specific lncRNA Expression
3. Prognostic Value of lncRNAs in Cutaneous Melanoma and Their Role in Therapy Resistance
4. lncRNA Mechanisms of Action Described in Cutaneous Melanoma
4.1. Tumor-Suppressor lncRNAs
4.2. Oncogene lncRNAs
5. lncRNA Detection in Body Fluids of Melanoma Patients as Novel Clinical Application
6. Conclusions
lncRNA | Role in Melanoma | Functional Mechanism | Expression in Melanoma | Direct Target | Pathway Regulated | Ref. |
---|---|---|---|---|---|---|
ANRIL | Oncogene | Scaffold | Upregulated | PRC1, PRC2 | INK4B-ARF-INK4A | [47] |
BANCR | Oncogene | Decoy | Upregulated | miR-204 | EKR1/2, JNK; NOTCH2 | [15,16,17] |
CAR10 | Oncogene | Decoy | Upregulated | miR-125b-5p | RAB3D | [68] |
CASC2 | Tumor suppressor | Decoy | Downregulated | miR-18a-5p miR-181a | RUNX1; PLXNC1 | [35,36] |
CASC15 | Oncogene | Guide | Upregulated | EZH2 | PDCD4 | [69,70] |
CCAT1 | Oncogene | Decoy | Upregulated | miR-33a | HIF-1α | [71] |
CRNDE | Oncogene | Decoy | Upregulated | miR-205 | CCL18 | [72] |
DIRC3 | Dual role | Guide | / | / | IGFBP5 | [45] |
FALEC | Oncogene | Guide | Upregulated | EZH2 | p21 | [50] |
FOXD3-AS1 | Oncogene | Decoy | Upregulated | miR-325 | MAP3K2 | [53] |
GAS5 | Tumor suppressor | / | Downregulated | / | MMP2, MMP9 | [44] |
H19 | Oncogene | / Decoy | Upregulated | / miR-106a-5p | MMP2, MMP3, VIM, CDH2, MST1R, CDH1; E2F3 | [73,74] |
HEIH | Oncogene | Guide | Upregulated | EZH2 | miR-200b/a/429 | [75] |
HOTAIR | Oncogene | Scaffold, Decoy | Upregulated | PRC2, LSD1; miR-152-3p | MET, PI3K/AKT/mTOR | [57,59] |
ILF3-AS1 | Oncogene | Guide | Upregulated | EZH2 | ILF3, miR-200b/a/429 | [76] |
LHFPL3-AS1 | Oncogene | Decoy | Upregulated | miR-181 | Bcl-2 | [77] |
LINC00173 | Oncogene | Decoy | Upregulated | miR-493 | IRS4 | [78] |
LINC00459 | Tumor suppressor | Decoy | Downregulated | miR-218 | DKK3 | [38] |
LINC00518 | Oncogene | Decoy | Upregulated | miR-204-5p | AP1S2 | [79] |
LINC00520 | Oncogene | Decoy | Upregulated | miR-125b-5p | EIF5A2 | [80] |
LINC00961 | Tumor suppressor | Decoy | Downregulated | miR-367 | PTEN | [37] |
LINC01638 | Oncogene | / | Upregulated | / | / | [60] |
LLME23 | Oncogene | Guide | Upregulated | PSF | RAB23 | [81] |
lncRNA-ATB | Oncogene | Decoy | Upregulated | miR-590-5p | YAP | [82] |
LNMAT1 | Oncogene | Guide | Upregulated | EZH2 | CADM1 | [51] |
MALAT1 | Oncogene | Decoy | Upregulated | miR-22; miR-34a; miR-140; miR-608 | MMP14, SNAIL; c-Myc, MET; Slug, ADAM10; HOXC4 | [83,84,85,86] |
MEG3 | Tumor suppressor | Decoy | Downregulated | miR-499-5p; miR-21 | CYLD, E-cadherin, N-cadherin, CyclinD1 | [40,41] |
MHENCR | Oncogene | Decoy | Upregulated | miR-425; miR-489 | IGF1; SPIN1, PI3K/AKT | [87] |
MIR31HG | Oncogene | / | Upregulated | / | p16INK4A | [88] |
MIRAT | Oncogene | / | Upregulated | IQGAP1 | MAPK pathway | [34] |
NEAT1 | Oncogene | Decoy | Upregulated | miR-495-3p; miR-23a-3p | E2F3; KLF3 | [89,90] |
NKILA | Tumor suppressor | / | Downregulated | / | NF-kβ | [42] |
NORAD | Oncogene | Decoy | Upregulated | miR-205 | EGLN2 | [52] |
OIP5-AS1 | Oncogene | Decoy | Upregulated | miR-217 | GLS | [91] |
PANDAR | Oncogene | / | Upregulated | / | NF-YA | [92] |
PVT1 | Oncogene | Guide | Upregulated | EZH2 | miR-200c | [64,65,66] |
RMEL3 | Oncogene | / | Upregulated | / | MAPK and PI3K pathways | [18,19] |
SAMMSON | Oncogene | / | Upregulated | p32 | Mitochondria metabolism | [46] |
SLNCR1 | Oncogene | Scaffold | Upregulated | Brn3a, AR | MMP9 | [49] |
SNHG5 | Oncogene | Decoy | Upregulated | miR-155; miR-26a-5p | TRPC3 | [93,94,95] |
SPRY4-IT1 | Oncogene | / | Upregulated | / | Lipid metabolism; DPPIV/CD26, MAPK pathway | [14,61,62] |
THOR | Oncogene | / | Upregulated | / | IGF2BP pathway | [54] |
TSLNC8 | PP1α | MAPK pathway; response to BRAF inhibitor | [96] | |||
TTN-AS1 | Oncogene | Decoy | Upregulated | TTN | / | [97] |
TUG1 | Oncogene | Decoy | Upregulated | miR-129-5p | AEG-1, PI3K/AKT, WNT | [33] |
UCA1 | Oncogene | Decoy | Upregulated | miR-507; miR-28-5p | FOXM1; HOXB3 | [98,99] |
ZEB1-AS1 | Oncogene | / | Upregulated | / | / | [100,101] |
ZFAS1 | Oncogene | Decoy | Upregulated | miR-150-5p | RAB9A | [102] |
ZFPM2-AS1 | Oncogene | Decoy | Upregulated | miR-650 | NOTCH1 | [103] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEG-1 | Astrocyte-elevated gene-1 |
AKT | Protein kinase B |
ANRIL | Antisense non-coding RNA in the INK4 locus |
AP1S2 | Adaptor Related Protein Complex 1 Sigma 2 Subunit |
AR | Androgen receptor |
BANCR | BRAF-regulated lncRNA |
BAP1 | Breast cancer 1 associated protein |
BCL-2 | B-cell lymphoma-2 |
BRAF | v-raf murine sarcoma viral oncogene homolog B1 |
BRN3A | Brain-specific homeobox protein 3a |
CADM1 | Cell adhesion molecule 1 |
CAR10 | Chromatin-associated RNA 10 |
CASC2 | Cancer susceptibility candidate 2 |
CASC15 | Cancer susceptibility candidate 15 |
CCAT1 | Colon cancer-associated transcript-1 |
CCL18 | Chemokine ligand 18 |
CDH | Cadherin |
CDKN2A | Cyclin dependent kinase inhibitor 2A |
CeRNA | Competing endogenous RNA |
CRISPR-Cas9 | Clustered regularly interspaced short palindromic repeats |
CRNDE | Colorectal neoplasia differentially expressed |
CTLA-4 | Cytotoxic T-lymphocyte antigen-4 |
DIRC3 | Disrupted in Renal Carcinoma 3 |
DKK3 | Dickkopf-related protein 3 |
ECM | Extra-cellular matrix |
EGLN2 | Egl nine homolog 2 |
EIF5A2 | Eukaryotic initiation factor 5A2 |
EMICERI | EQTN MOB3B IFNK C9orf72 enhancer RNA I |
EMT | Epithelial–mesenchymal transition |
ER | Endoplasmic Reticulum |
ERK | Extracellular signal-regulated kinase |
EZH2 | Enhancer of zeste homolog 2 |
FALEC | Focally amplified lncRNA on chromosome 1 |
FOXD3-AS1 | Forkhead box D3-Antisense RNA 1 |
FOXM1 | Forkhead box protein M1 |
GAS5 | Growth-arrest specific 5 |
GEP | Gene expression profile |
GLS | Glutaminase |
H3K27me3 | Histone H3 lysine 27 trimethylation |
HEIH | Hepatocellular Carcinoma Upregulated EZH2-Associated Long Non-Coding RNA |
Hh | Hedgehog |
HOTAIR | HomeobOX transcript antisense intergenic RNA |
ICGC | International Cancer Genome Consortium |
ICI | Immune checkpoint inhibitors |
IGFBP | Insulin Like Growth Factor Binding Protein |
ILF3-AS1 | Interleukin Enhancer Binding Factor 3-Antisense 1 |
IQGAP1 | IQ Motif Containing GTPase Activating Protein 1 |
IRS4 | Insulin receptor substrate 4 |
JNK | c-Jun N-terminal Kinase |
KFL3 | Krüppel-like factor 3 |
LHFPL3-AS1 | Lipoma HMGIC fusion partner-like tetraspan subfamily member 3- Antisense RNA 1 |
LINC | Long intergenic non-protein-coding RNA |
lncRNA | Long non-coding RNA |
lncRNA-ATB | Long non-coding RNA activated by transforming growth factor (TGF)-β |
LNMAT | Lymph node metastasis associated transcript 1 |
LSD1 | Histone demethylase complex |
MALAT1 | Metastasis-associated lung adenocarcinoma transcript 1 |
MAP3K2 | Mitogen-activated protein kinase kinase kinase 2 |
MAPK | Mitogen-activated protein kinase |
MDSC | Myeloid-derived suppressor cells |
MEG3 | Maternally expressed gene 3 |
MEK | Mitogen-activated protein kinase kinase |
MHENCR | Melanoma highly expressed noncoding RNA |
MIR31HG | miR-31 host gene |
MIRAT | MAPK Inhibitor Resistance Associated Transcript |
MiRNA | MicroRNA |
MITF | Microphthalmia-associated transcription factor |
MMP | Matrix metalloproteinase |
mPOS | mitochondria Precursor over-accumulation stress |
MRNA | Messenger RNA |
MST1R | Macrophage stimulating 1 receptor |
mTOR | mammalian target of rapamycin |
NEAT1 | Nuclear Enriched Abundant Transcript 1 |
NF-YA | Nuclear transcription factor Y subunit alpha |
NKILA | Nuclear factor kappa-light-chain-enhancer of activated B cells interacting lncRNA |
NORAD | Non-coding RNA Activated by DNA |
OIP5-AS1 | Damage Opacity-associated-interacting protein 5-Antisense RNA 1 |
ORF | Open reading frame |
OS | Overall survival |
PANDAR | Promoter of CDKN1A antisense DNA damage activated RNA |
PD-1 | Programmed death-1 |
PDCD4 | Programmed cell death 4 |
PD-L1 | Programmed death ligand-1 |
PDX | Patient-derived xenograft |
PFS | Progression free survival |
PI3K | Phosphatidylinositol 3-kinase |
PiRNA | Piwi-interacting RNA |
POT1 | Protection of telomeres 1 |
PP1α | Protein phosphatase 1α |
PRC | Polycomb repressor complexes |
PTBP1 | Polypyrimidine tract binding protein 1 |
PTEN | Phosphate and tension homolog |
PVT1 | Plasmacytoma variant translocation 1 |
qRT-PCR | Quantitative reverse transcription polymerase chain reaction |
RNA-Seq | RNA sequencing |
SiRNA | Small interfering RNA |
SLNCR | Steroid receptor RNA activator 1-like non-coding RNA |
SNHG5 | Small nucleolar RNA host gene 5 |
SnoRNA | Small nucleolar RNA |
SnRNA | Small nuclear RNA |
SOX10 | Sry-related HMg-Box gene 10 |
SPRY4-IT1 | Sprouty RTK Signaling Antagonist 4-Intronic Transcript 1 (also known as SPRIGHTLY) |
SRA | Steroid receptor RNA activator gene |
TCGA | The Cancer Genome Atlas |
TERT | Telomerase reverse transcriptase |
THOR | Testis-associated Highly conserved Oncogenic long non-coding RNA |
TIL | Tumor-infiltrating lymphocytes |
Treg | Regulatory T cells |
TRPC3 | Transient receptor potential channel 3 |
TSLNC8 | Tumor suppressive long noncoding RNA on chromosome 8p12 |
TTN-AS1 | Titin Antisense RNA 1 |
TUG1 | Taurine-Upregulated Gene1 |
UCA1 | Urothelial carcinoma-associated 1 |
UM | Uveal melanoma |
UVR | Ultraviolet radiation |
YAP | Yes associated protein 1 |
ZEB1-AS1 | Zinc finger E-box binding homeobox 1-antisense 1 |
ZFAS1 | Zinc finger antisense 1 |
ZFPM2-AS1 | Zinc finger protein FOG family member 2-antisense 1 |
References
- Cancer Stat Facts: Melanoma of the Skin, NCI SEER. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 6 November 2020).
- Potrony, M.; Badenas, C.; Aguilera, P.; Puig-Butille, J.A.; Carrera, C.; Malvehy, J.; Puig, S. Update in genetic susceptibility in melanoma. Ann. Transl. Med. 2015, 3. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, H.; Chin, L.; Garraway, L.A.; Fisher, D.E. Melanoma: From mutations to medicine. Genes Dev. 2012, 26, 1131–1155. [Google Scholar] [CrossRef] [Green Version]
- Giunta, E.F.; De Falco, V.; Napolitano, S.; Argenziano, G.; Brancaccio, G.; Moscarella, E.; Ciardiello, D.; Ciardiello, F.; Troiani, T. Optimal treatment strategy for metastatic melanoma patients harboring BRAF-V600 mutations. Ther. Adv. Med. Oncol. 2020, 12. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Candido, S.; Falzone, L.; Spandidos, D.A.; Libra, M. Cutaneous melanoma and the immunotherapy revolution (Review). Int. J. Oncol. 2020, 57, 609–618. [Google Scholar] [CrossRef]
- Andrews, S.J.; Rothnagel, J.A. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 2014, 15, 193–204. [Google Scholar] [CrossRef]
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.M.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nat. Cell Biol. 2009, 458, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Gesell, T.; Stadler, P.F.; Mattick, J.S. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res. 2013, 41, 8220–8236. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.J.; Getz, G.; Korbel, J.O.; Stuart, J.M.; Jennings, J.L.; Stein, L.D.; Perry, M.D.; Nahal-Bose, H.K.; Ouellette, B.F.F.; Li, C.H.; et al. Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nat. Cell Biol. 2020, 578, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S.; et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 2015, 47, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Khaitan, D.; Dinger, M.E.; Mazar, J.; Crawford, J.; Smith, M.A.; Mattick, J.S.; Perera, R.J. The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. Cancer Res. 2011, 71, 3852–3862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flockhart, R.J.; Webster, D.E.; Qu, K.; Mascarenhas, N.; Kovalski, J.; Kretz, M.; Khavari, P.A. BRAFV600Eremodels the melanocyte transcriptome and inducesBANCRto regulate melanoma cell migration. Genome Res. 2012, 22, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, L.; Jia, L.; Duan, Y.; Li, Y.; Bao, L.; Sha, N. Long Non-Coding RNA BANCR Promotes Proliferation in Malignant Melanoma by Regulating MAPK Pathway Activation. PLoS ONE 2014, 9, e100893. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Zheng, Y.; Ma, S.; Xing, Q.; Wang, X.; Yang, B.; Yin, G.; Guan, F. BANCR contributes to the growth and invasion of melanoma by functioning as a competing endogenous RNA to upregulate Notch2 expression by sponging miR-204. Int. J. Oncol. 2017, 51, 1941–1951. [Google Scholar] [CrossRef]
- Goedert, L.; Pereira, C.G.; Roszik, J.; Plaça, J.R.; Cardoso, C.; Chen, G.; Deng, W.; Yennu-Nanda, V.G.; Silva, W.A.S., Jr.; Davies, M.A.; et al. RMEL3, a novel BRAFV600E-associated long noncoding RNA, is required for MAPK and PI3K signaling in melanoma. Oncotarget 2016, 7, 36711–36718. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, C.; Serafim, R.B.; Kawakami, A.; Pereira, C.G.; Roszik, J.; Valente, V.; Vazquez, V.L.; Fisher, D.E.; Espreafico, E.M. The lncRNA RMEL3 protects immortalized cells from serum withdrawal-induced growth arrest and promotes melanoma cell proliferation and tumor growth. Pigment. Cell Melanoma Res. 2018, 32, 303–314. [Google Scholar] [CrossRef]
- Li, F.Z.; Dhillon, A.S.; Anderson, R.L.; McArthur, G.; Ferrao, P. Phenotype Switching in Melanoma: Implications for Progression and Therapy. Front. Oncol. 2015, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Yao, L.; Jiang, Y. A novel integrative approach to identify lncRNAs associated with the survival of melanoma patients. Gene 2016, 585, 216–220. [Google Scholar] [CrossRef]
- Chen, X.; Guo, W.; Xu, X.-J.; Su, F.; Wang, Y.; Zhang, Y.; Wang, Q.; Zhu, L. Melanoma long non-coding RNA signature predicts prognostic survival and directs clinical risk-specific treatments. J. Dermatol. Sci. 2017, 85, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, J.; Zeng, X. A six-long non-coding RNA signature predicts prognosis in melanoma patients. Int. J. Oncol. 2018, 52, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liu, Z.; Liu, X.; Chen, H.X. Comprehensive Analysis of a Competing Endogenous RNA Network Identifies Seven-lncRNA Signature as a Prognostic Biomarker for Melanoma. Front. Oncol. 2019, 9, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutschner, T.; Hämmerle, M.; Eissmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Gross, M.; et al. The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Res. 2013, 73, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, A.; Furuta, M.; Totoki, Y.; Tsunoda, T.; Kato, M.; Shiraishi, Y.; Tanaka, H.; Taniguchi, H.; Kawakami, Y.; Ueno, M.; et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 2016, 48, 500–509. [Google Scholar] [CrossRef]
- Yiren, H.; Yingcong, Y.; Sunwu, Y.; Keqin, L.; XiaoChun, T.; Senrui, C.; Ende, C.; Xizhou, L.; Yanfan, C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol. Cancer 2017, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Deng, J.; Zhang, L.; Zhao, J.; Zhou, F.; Liu, N.; Cai, R.; Wu, J.; Shu, B.; Qi, S. Reconstruction of lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional lncRNAs in skin cutaneous melanoma. BMC Cancer 2020, 20, 1–20. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X.; Hao, Y.; Fang, Z.; He, Y. Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res. 2014, 24, 335–341. [Google Scholar] [CrossRef]
- Tian, J.; Yang, Y.; Li, M.-Y.; Zhang, Y. A novel RNA sequencing-based prognostic nomogram to predict survival for patients with cutaneous melanoma. Medicine 2020, 99, e18868. [Google Scholar] [CrossRef]
- Joung, J.; Engreitz, J.M.; Konermann, S.; Abudayyeh, O.O.; Verdine, V.K.; Aguet, F.; Gootenberg, J.S.; Sanjana, N.E.; Wright, J.B.; Fulco, C.P.; et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nat. Cell Biol. 2017, 548, 343–346. [Google Scholar] [CrossRef]
- Pan, B.; Lin, X.; Zhang, L.; Hong, W.; Zhang, Y. Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Melanoma Res. 2019, 29, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Menggen, Q.; Wuren, Q.; Shi, Q.; Pi, X. Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma. Med. Sci. Monit. 2018, 24, 1547–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanlorenzo, M.; Vujic, I.; Esteve-Puig, R.; Lai, K.; Vujic, M.; Lin, K.; Posch, C.; Dimon, M.; Moy, A.; Zekhtser, M.; et al. The lincRNA MIRAT binds to IQGAP1 and modulates the MAPK pathway in NRAS mutant melanoma. Sci. Rep. 2018, 8, 10902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, W.; Feng, F.; Cao, Q.; Li, Y.; Hou, Y.; Zhang, L.; Fan, J.-F. Upregulated lncRNA CASC2 May Inhibit Malignant Melanoma Development Through Regulating miR-18a-5p/RUNX1. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2019, 27, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, X.; Zhou, H.; Dan, X.; Jiang, L.; Wu, Y. Long non-coding RNA CASC2 inhibits tumorigenesis via the miR-181a/PLXNC1 axis in melanoma. Acta Biochim. Biophys. Sin. 2018, 50, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Mou, K.; Ge, R.; Han, D.; Zhou, Y.; Wang, L. Linc00961 inhibits the proliferation and invasion of skin melanoma by targeting the miR-367/PTEN axis. Int. J. Oncol. 2019, 55, 708–720. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Zheng, Z.; Cao, Z. LINC00459 sponging miR-218 to elevate DKK3 inhibits proliferation and invasion in melanoma. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Wu, D.; Prives, C. Relevance of the p53–MDM2 axis to aging. Cell Death Differ. 2018, 25, 169–179. [Google Scholar] [CrossRef]
- Long, J.; Pi, X. lncRNA-MEG3 Suppresses the Proliferation and Invasion of Melanoma by Regulating CYLD Expression Mediated by Sponging miR-499-5p. BioMed Res. Int. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, L.; Li, Y.; Zheng, Z.; Lin, X.; Yang, C. LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating miR-21/E-cadherin axis. Cancer Cell Int. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Bian, D.; Gao, C.; Bao, K.; Song, G. The long non-coding RNA NKILA inhibits the invasion-metastasis cascade of malignant melanoma via the regulation of NF-ĸB. Am. J. Cancer Res. 2017, 7, 28–40. [Google Scholar] [PubMed]
- Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA Gas5 Is a Growth Arrest- and Starvation-Associated Repressor of the Glucocorticoid Receptor. Sci. Signal. 2010, 3, ra8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yang, H.; Xiao, Y.; Tang, X.; Li, Y.; Han, Q.; Fu, J.; Yang, Y.; Zhu, Y. Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells. Int. J. Oncol. 2016, 48, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Coe, E.A.; Tan, J.Y.; Shapiro, M.; Louphrasitthiphol, P.; Bassett, A.R.; Marques, A.C.; Goding, C.R.; Vance, K.W. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet. 2019, 15, e1008501. [Google Scholar] [CrossRef] [Green Version]
- Leucci, E.; Vendramin, R.; Spinazzi, M.; Laurette, P.; Fiers, M.; Wouters, J.; Radaelli, E.; Eyckerman, S.; Leonelli, C.; Vanderheyden, K.; et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nat. Cell Biol. 2016, 531, 518–522. [Google Scholar] [CrossRef]
- Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.-M. Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a. Mol. Cell 2010, 38, 662–674. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, H.; Pan, H.; Shi, Y.; Li, T.; Ge, S.; Jia, R.; Zhang, H.; Fan, X. ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett. 2016, 381, 41–48. [Google Scholar] [CrossRef]
- Schmidt, K.; Joyce, C.E.; Buquicchio, F.; Brown, A.; Ritz, J.; Distel, R.J.; Yoon, C.H.; Novina, C.D. The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region. Cell Rep. 2016, 15, 2025–2037. [Google Scholar] [CrossRef] [Green Version]
- Ni, N.; Song, H.; Wang, X.; Xu, X.; Jiang, Y.; Sun, J. Up-regulation of long noncoding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21. Biomed. Pharmacother. 2017, 96, 1371–1379. [Google Scholar] [CrossRef]
- Mou, K.; Zhang, X.; Mu, X.; Ge, R.; Han, D.; Zhou, Y.; Wang, L. LNMAT1 Promotes Invasion-Metastasis Cascade in Malignant Melanoma by Epigenetically Suppressing CADM1 Expression. Front. Oncol. 2019, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cao, K.; Li, J.; Wang, A.; Sun, L.; Tang, J.; Xiong, W.; Zhou, X.; Chen, X.; Zhou, J.; et al. Overexpression of long non-coding RNA NORAD promotes invasion and migration in malignant melanoma via regulating the MIR-205-EGLN2 pathway. Cancer Med. 2019, 8, 1744–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Gao, J.; Yu, Y.; Zhao, Z.; Pan, Y. LncRNA FOXD3-AS1 promotes proliferation, invasion and migration of cutaneous malignant melanoma via regulating miR-325/MAP3K2. Biomed. Pharmacother. 2019, 120, 109438. [Google Scholar] [CrossRef] [PubMed]
- Hosono, Y.; Niknafs, Y.S.; Prensner, J.R.; Iyer, M.K.; Dhanasekaran, S.M.; Mehra, R.; Pitchiaya, S.; Tien, J.; Escara-Wilke, J.; Poliakov, A.; et al. Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA. Cell 2017, 171, 1559–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, P.; Zhou, X.-Y.; Du, X. Circulating long non-coding RNAs in cancer: Current status and future perspectives. Mol. Cancer 2016, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantile, M.; Scognamiglio, G.; Marra, L.; Aquino, G.; Botti, C.; Falcone, M.R.; Malzone, M.G.; Liguori, G.; Di Bonito, M.; Franco, R.; et al. HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease. J. Cell. Physiol. 2017, 232, 3422–3432. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nat. Cell Biol. 2010, 464, 1071–1076. [Google Scholar] [CrossRef]
- Tsai, M.-C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science 2010, 329, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Luan, W.; Li, R.; Liu, L.; Ni, X.; Shi, Y.; Xia, Y.; Wang, J.; Lu, F.; Xu, B. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget 2017, 8, 85401–85414. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Yin, A. LINC0638 lncRNA is involved in the local recurrence of melanoma following surgical resection. Oncol. Lett. 2019, 18, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Mazar, J.; Zhao, W.; Khalil, A.M.; Lee, B.; Shelley, J.; Govindarajan, S.S.; Yamamoto, F.; Ratnam, M.; Aftab, M.N.; Collins, S.; et al. The Functional Characterization of Long Noncoding RNA SPRY4-IT1 in Human Melanoma Cells. Oncotarget 2014, 5, 8959–8969. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Mazar, J.; Lee, B.; Sawada, J.; Li, J.-L.; Shelley, J.; Govindarajan, S.; Towler, D.; Mattick, J.S.; Komatsu, M.; et al. The Long Noncoding RNA SPRIGHTLY Regulates Cell Proliferation in Primary Human Melanocytes. J. Investig. Dermatol. 2016, 136, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shen, S.; Xiong, J.; Xu, Y.; Zhang, H.; Liu, H.; Lu, Z. Clinical significance of long noncoding RNA SPRY 4- IT 1 in melanoma patients. FEBS Open Bio 2016, 6, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Gao, G.; Liu, S.; Yu, L.; Yan, D.; Yao, X.; Sun, W.; Han, D.; Dong, H. Long Noncoding RNA PVT1 as a Novel Diagnostic Biomarker and Therapeutic Target for Melanoma. BioMed Res. Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-J.; Ding, H.-W.; Ma, G.-A. Long Noncoding RNA PVT1 Promotes Melanoma Progression via Endogenous Sponging miR-26b. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018, 26, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, D.; Li, Y.; Li, X.; Zhao, L.; Zhang, J.; Song, Y. Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma. Int. J. Mol. Med. 2017, 41, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, T.; Rutkowski, P.; Michalak, M.; Kozak, K.; Guglas, K.; Ryś, M.; Galus, Ł.; Woźniak, S.; Ługowska, I.; Gos, A.; et al. Plasma lncRNA expression profile as a prognostic tool in BRAF-mutant metastatic melanoma patients treated with BRAF inhibitor. Oncotarget 2019, 10, 3879–3893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Zheng, Y.; Xu, X.; Sun, C.; Lv, M. Long Noncoding RNA CAR10 Contributes to Melanoma Progression By Suppressing miR-125b-5p to Induce RAB3D Expression. OncoTargets Ther. 2020, 13, 6203–6211. [Google Scholar] [CrossRef]
- Lessard, L.; Liu, M.; Marzese, D.M.; Wang, H.; Chong, K.; Kawas, N.P.; Donovan, N.C.; Kiyohara, E.; Hsu, S.; Nelson, N.; et al. The CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. J. Investig. Dermatol. 2015, 135, 2464–2474. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Zhao, B.; Li, D.; Yin, G. Long non-coding RNA CASC15 promotes melanoma progression by epigenetically regulating PDCD4. Cell Biosci. 2018, 8, 42. [Google Scholar] [CrossRef]
- Lv, L.; Jia, J.-Q.; Chen, J. The lncRNA CCAT1 Upregulates Proliferation and Invasion in Melanoma Cells via Suppressing miR-33a. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018, 26, 201–208. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Zhao, Z.; Chen, Z.; Wang, Z.; Xu, S.; Zhang, X.; Liu, T.; Yu, S. The long non-coding RNA CRNDE competed endogenously with miR-205 to promote proliferation and metastasis of melanoma cells by targeting CCL18. Cell Cycle 2018, 17, 2296–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, G.; Li, H.; Gao, F.; Tan, Q. lncRNA H19 predicts poor prognosis in patients with melanoma and regulates cell growth, invasion, migration and epithelial–mesenchymal transition in melanoma cells. OncoTargets Ther. 2018, 11, 3583–3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, W.; Zhou, Z.; Ni, X.; Xia, Y.; Wang, J.; Yan, Y.; Xu, B. Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. J. Cancer Res. Clin. Oncol. 2018, 144, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xing, G.; Wang, Y.; Luo, Z.; Liu, G.; Meng, H. Long noncoding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-J.; Liu, S.; Zhao, X.; Ma, X.; Gao, G.; Yu, L.; Yan, D.; Dong, H.; Sun, W. Long noncoding RNA ILF3-AS1 promotes cell proliferation, migration, and invasion via negatively regulating miR-200b/a/429 in melanoma. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wan, H.; Zhang, X. LncRNA LHFPL3-AS1 contributes to tumorigenesis of melanoma stem cells via the miR-181a-5p/BCL2 pathway. Cell Death Dis. 2020, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Lei, P.; Zeng, W.; Gao, J.; Wu, N. Long Noncoding RNA LINC00173 Promotes the Malignancy of Melanoma by Promoting the Expression of IRS4 Through Competitive Binding to microRNA-493. Cancer Manag. Res. 2020, 12, 3131–3144. [Google Scholar] [CrossRef]
- Luan, W.; Ding, Y.; Ma, S.; Ruan, H.; Wang, J.; Lu, F. Long noncoding RNA LINC00518 acts as a competing endogenous RNA to promote the metastasis of malignant melanoma via miR-204-5p/AP1S2 axis. Cell Death Dis. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Luan, W.; Ding, Y.; Yuan, H.; Ma, S.; Ruan, H.; Wang, J.; Lu, F.; Bu, X. Long non-coding RNA LINC00520 promotes the proliferation and metastasis of malignant melanoma by inducing the miR-125b-5p/EIF5A2 axis. J. Exp. Clin. Cancer Res. 2020, 39, 96. [Google Scholar] [CrossRef]
- Wu, C.; Tan, G.-H.; Ma, C.-C.; Li, L. The Non-Coding RNA Llme23 Drives the Malignant Property of Human Melanoma Cells. J. Genet. Genom. 2013, 40, 179–188. [Google Scholar] [CrossRef]
- Mou, K.; Liu, B.; Ding, M.; Mu, X.; Han, D.; Zhou, Y.; Wang, L.-J. lncRNA-ATB functions as a competing endogenous RNA to promote YAP1 by sponging miR-590-5p in malignant melanoma. Int. J. Oncol. 2018, 53, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Luan, W.; Li, L.; Shi, Y.; Bu, X.; Xia, Y.; Wang, J.; Djangmah, H.S.; Liu, X.; You, Y.; Xu, B. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget 2016, 7, 63901–63912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Li, X.; Qiao, L.; Liu, W.; Xu, C.; Wang, X. MALAT1 regulates miR-34a expression in melanoma cells. Cell Death Dis. 2019, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Sun, P.; Zhou, Q.-Y.; Gao, X.; Han, Q. Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing of miR-140. Am. J. Transl. Res. 2016, 8, 3939–3946. [Google Scholar] [PubMed]
- Wu, S.; Chen, H.; Zuo, L.; Jiang, H.; Yan, H. Suppression of long noncoding RNA MALAT1 inhibits the development of uveal melanoma via microRNA-608-mediated inhibition of HOXC4. Am. J. Physiol. Physiol. 2020, 318, C903–C912. [Google Scholar] [CrossRef]
- Chen, X.; Dong, H.; Liu, S.; Yu, L.; Yan, D.; Yao, X.; Sun, W.; Han, D.; Gao, G. Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. Am. J. Transl. Res. 2017, 9, 90–102. [Google Scholar] [PubMed]
- Montes, M.; Nielsen, M.M.; Maglieri, G.; Jacobsen, A.; Højfeldt, J.; Agrawal-Singh, S.; Hansen, K.; Helin, K.; Van De Werken, H.J.; Pedersen, J.S.; et al. The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence. Nat. Commun. 2015, 6, 6967. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Zhou, Y.; Han, H.; Li, P.; Wei, W.; Lin, N. lncRNA NEAT1 facilitates melanoma cell proliferation, migration, and invasion via regulating miR-495-3p and E2F3. J. Cell. Physiol. 2019, 234, 19592–19601. [Google Scholar] [CrossRef]
- Ding, F.; Lai, J.; Gao, Y.; Wang, G.; Shang, J.; Zhang, D.; Zheng, S. NEAT1/miR-23a-3p/KLF3: A novel regulatory axis in melanoma cancer progression. Cancer Cell Int. 2019, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Luan, W.; Zhang, X.; Ruan, H.; Wang, J.; Bu, X. Long noncoding RNA OIP5-AS1 acts as a competing endogenous RNA to promote glutamine catabolism and malignant melanoma growth by sponging miR-217. J. Cell. Physiol. 2019, 234, 16609–16618. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Song, P.; Xu, J.; Li, G. Long non-coding RNA PANDAR promotes melanoma cell invasion through regulating epithelial-mesenchymal transition. Int. J. Clin. Exp. Pathol. 2018, 11, 2430–2439. [Google Scholar] [PubMed]
- Gao, J.; Zeng, K.; Liu, Y.; Gao, L.; Liu, L. LncRNA SNHG5 promotes growth and invasion in melanoma by regulating the miR-26a-5p/TRPC3 pathway. OncoTargets Ther. 2018, 12, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichigozaki, Y.; Fukushima, S.; Jinnin, M.; Miyashita, A.; Nakahara, S.; Tokuzumi, A.; Yamashita, J.; Kajihara, I.; Aoi, J.; Masuguchi, S.; et al. Serum long non-coding RNA, snoRNA host gene 5 level as a new tumor marker of malignant melanoma. Exp. Dermatol. 2015, 25, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, S.; Li, Y.; Tognetti, L.; Tan, R.; Zeng, K.; Pianigiani, E.; Mi, X.; Li, H.; Fimiani, M.; et al. SNHG5 promotes proliferation and induces apoptosis in melanoma by sponging miR-155. RSC Adv. 2018, 8, 6160–6168. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Fang, J.; Xiao, Z.; Deng, J.; Zhang, M.; Gu, L. Downregulation of lncRNA TSLNC8 promotes melanoma resistance to BRAF inhibitor PLX4720 through binding with PP1α to re-activate MAPK signaling. J. Cancer Res. Clin. Oncol. 2021, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Lu, J.; Chen, L.; Zhang, S.; Qi, W.; Li, W.; Xu, H. Long noncoding RNA TTN-AS1 facilitates tumorigenesis and metastasis by maintaining TTN expression in skin cutaneous melanoma. Cell Death Dis. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, Q.; Zhao, L.; Wu, J.; Chen, X.; Wang, Y.; Zang, W.; Zhao, G. LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma. Med. Oncol. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Han, C.; Tang, F.; Chen, J.; Xu, D.; Li, X.; Xu, Y.; Wang, S.; Zhou, J. Knockdown of lncRNA-UCA1 inhibits the proliferation and migration of melanoma cells through modulating the miR-28-5p/HOXB3 axis. Exp. Ther. Med. 2019, 17, 4294–4302. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Li, Z.; Leng, K.; Xu, Y.; Ji, D.; Huang, L.; Cui, Y.; Jiang, X. ZEB 1- AS 1: A crucial cancer-related long non-coding RNA. Cell Prolif. 2018, 51. [Google Scholar] [CrossRef] [Green Version]
- Siena, Á.; Plaça, J.R.; Araújo, L.F.; de Barros, I.I.; Peronni, K.; Molfetta, G.; de Biagi, C., Jr.; Espreafico, E.M.; Sousa, J.F.; Silva, W.A., Jr. Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Zhang, Z.; Qin, X.; Gao, Y.; Zhao, P.; Liu, J.; Zeng, W. Long noncoding RNA ZFAS1 promotes tumorigenesis through regulation of miR-150-5p/RAB9A in melanoma. Melanoma Res. 2019, 29, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, X.; Mu, X.; Tian, Q.; Gao, T.; Ge, R.; Zhang, J. ZFPM2-AS1 facilitates cell proliferation and migration in cutaneous malignant melanoma through modulating miR -650/ NOTCH1 signaling. Dermatol. Ther. 2021, e14751. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Falco, V.; Napolitano, S.; Esposito, D.; Guerrera, L.P.; Ciardiello, D.; Formisano, L.; Troiani, T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int. J. Mol. Sci. 2021, 22, 1166. https://doi.org/10.3390/ijms22031166
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. International Journal of Molecular Sciences. 2021; 22(3):1166. https://doi.org/10.3390/ijms22031166
Chicago/Turabian StyleDe Falco, Vincenzo, Stefania Napolitano, Daniela Esposito, Luigi Pio Guerrera, Davide Ciardiello, Luigi Formisano, and Teresa Troiani. 2021. "Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma" International Journal of Molecular Sciences 22, no. 3: 1166. https://doi.org/10.3390/ijms22031166
APA StyleDe Falco, V., Napolitano, S., Esposito, D., Guerrera, L. P., Ciardiello, D., Formisano, L., & Troiani, T. (2021). Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. International Journal of Molecular Sciences, 22(3), 1166. https://doi.org/10.3390/ijms22031166