Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs
Abstract
:1. Introduction
1.1. Biology of Acanthamoeba spp.
1.2. Genome of Acanthamoeba spp.
1.3. Occurrence of Acanthamoeba spp. in the Environment
2. Granulomatous Amebic Encephalitis (GAE)
2.1. Epidemiology
2.2. Symptoms
2.3. Mechanisms Involved in GAE
2.3.1. Immune Responses
2.3.2. Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of MMPs (TIMPs)
2.3.3. Neurotrophins: Brain-Derived Neurotrophic Factor (BDNF) and Neutrotrophin-4 (NT-4)
2.3.4. Histopathological Changes
3. Acanthamoeba pneumonia (AP)
3.1. Epidemiology
3.2. Symptoms
3.3. Mechanisms Involved in AP
3.3.1. Immune Responses
3.3.2. Cyclooxygenases (COXs)
3.3.3. Antioxidant Defense
3.3.4. Histopathological Changes
4. Treatment
5. Conclusions and Future Research Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lass, A.; Guerrero, M.; Li, X.; Karanis, G.; Ma, L.; Karanis, P. Detection of Acanthamoeba spp. in water samples collected from natural water reservoirs, sewages, and pharmaceutical factory drains using LAMP and PCR in China. Sci. Total Environ. 2017, 584–585, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez, M.M.; Tártara, L.I.; Cid, A.G.; Real, J.P.; Bermúdez, J.M.; Rajal, V.B.; Palma, S.D. Acanthamoeba in the eye, can the parasite hide even more? Latest developments on the disease. Cont. Lens. Anterior Eye 2018, 41, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Kot, K.; Łanocha-Arendarczyk, N.A.; Kosik-Bogacka, D.I. Amoebas from the genus Acanthamoeba and their pathogenic properties. Ann. Parasitol. 2018, 64, 299–308. [Google Scholar] [CrossRef]
- Kalra, S.K.; Sharma, P.; Shyam, K.; Tejan, N.; Ghoshal, U. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp. Parasitol. 2020, 208, 107788. [Google Scholar] [CrossRef]
- Duggal, S.D.; Rongpharpi, S.R.; Duggal, A.K.; Kumar, A.; Biswal, I. Role of Acanthamoeba in granulomatous encephalitis: A review. J. Infect. Dis. Immune Ther. 2017, 1, 2. [Google Scholar]
- Parija, S.C.; Dinoop, K.; Venugopal, H. Management of granulomatous amebic encephalitis: Laboratory diagnosis and treatment. Trop. Parasitol. 2015, 5, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Arnalich-Montiel, F.; Piñero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol. 2013, 29, 181–187. [Google Scholar] [CrossRef]
- Visvesvara, G.S. Infections with free-living amebae. Handb. Clin. Neurol. 2013, 114, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Taher, E.E.; Méabed, E.M.H.; Abdallah, I.; Abdel Wahed, W.Y. Acanthamoeba keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. J. Infect. Public Health 2018, 11, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Megha, K.; Sehgal, R.; Khurana, S. Genotyping of Acanthamoeba spp. isolated from patients with granulomatous amoebic encephalitis. Indian J. Med. Res. 2018, 148, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.J.; Ledee, D.R.; Fuerst, P.A.; Byers, T.J. Subgenus systematics of Acanthamoeba: Four nuclear 18S rDNA sequence types. J. Eukaryot. Microbiol. 1996, 43, 498–504. [Google Scholar] [CrossRef]
- Fuerst, P.A.; Booton, G.C.; Crary, M. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J. Eukaryot. Microbiol 2015, 62, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, P.A.; Booton, G.C. Species, Sequence Types and Alleles: Dissecting Genetic Variation in Acanthamoeba. Pathogens 2020, 9, 534. [Google Scholar] [CrossRef]
- Booton, G.C.; Kelly, D.J.; Chu, Y.W.; Seal, D.V.; Houang, E.; Lam, D.S.; Byers, T.J.; Fuerst, P.A. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J. Clin. Microbiol. 2002, 40, 1621–1625. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 2012, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Behera, H.S.; Panda, A.; Satpathy, G.; Bandivadekar, P.; Vanathi, M.; Agarwal, T.; Nayak, N.; Tandon, R. Genotyping of Acanthamoeba spp. and characterization of the prevalent T4 type along with T10 and unassigned genotypes from amoebic keratitis patients in India. J. Med. Microbiol. 2016, 65, 370–376. [Google Scholar] [CrossRef]
- Łanocha, N.; Kosik-Bogacka, D.; Maciejewska, A.; Sawczuk, M.; Wilk, A.; Kuźna-Grygiel, W. The occurence Acanthamoeba (Free Living Amoeba) in environmental and respiratory samples in Poland. Acta Protozool. 2009, 48, 271–279. [Google Scholar]
- Aichelburg, A.C.; Walochnik, J.; Assadian, O.; Prosch, H.; Steuer, A.; Perneczky, G.; Visvesvara, G.S.; Aspöck, H.; Vetter, N. Successful treatment of disseminated Acanthamoeba sp. infection with miltefosine. Emerg. Infect. Dis. 2008, 14, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Barete, S.; Combes, A.; de Jonckheere, J.F.; Datry, A.; Varnous, S.; Martinez, V.; Ptacek, S.G.; Caumes, E.; Capron, F.; Francès, C.; et al. Fatal disseminated Acanthamoeba lenticulata infection in a heart transplant patient. Emerg. Infect. Dis. 2007, 13, 736–738. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Maeda, T.; Kusakabe, S.; Arita, H.; Yagita, K.; Morii, E.; Kanakura, Y. A case report of granulomatous amoebic encephalitis by Group 1 Acanthamoeba genotype T18 diagnosed by the combination of morphological examination and genetic analysis. Diagn. Pathol. 2018, 13, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavarāne, I.; Trofimova, J.; Mališevs, A.; Valciņa, O.; Kirjušina, M.; Rubeniņa, I.; Bērziņš, A. DNA extraction from amoebal isolates and genotype determination of Acanthamoeba from tap water in Latvia. Parasitol. Res. 2018, 117, 3299–3303. [Google Scholar] [CrossRef] [PubMed]
- Javanmard, E.; Niyyati, M.; Lorenzo-Morales, J.; Lasjerdi, Z.; Behniafar, H.; Mirjalali, H. Molecular identification of waterborne free living amoebae (Acanthamoeba, Naegleria and Vermamoeba) isolated from municipal drinking water and environmental sources, Semnan province, north half of Iran. Exp. Parasitol. 2017, 183, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Derda, M.; Hadaś, E.; Wojtkowiak-Giera, A.; Wojt, W.J.; Cholewiński, M.; Skrzypczak, Ł. The occurrence of free-living amoebae in fountains. Probl. Hig. Epidemiol. 2013, 94, 147–150. [Google Scholar]
- Górnik, K.; Kuźna-Grygiel, W. Histological studies of selected organs of mice experimentally infected with Acanthamoeba spp. Folia Morphol. 2005, 64, 161–167. [Google Scholar]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.; Galant, K.; Zaorski, W.; Kot, K.; Łanocha, A. Pathogenic free-living amoeba. Post Mikrobiol. 2017, 1, 106–112. [Google Scholar]
- Clarke, B.; Sinha, A.; Parmar, D.N.; Sykakis, E. Advances in the diagnosis and treatment of Acanthamoeba keratitis. J. Ophthal Mol. 2012, 2012, 484–892. [Google Scholar] [CrossRef] [Green Version]
- Brindley, N.; Matin, A.; Khan, N.A. Acanthamoeba castellanii: High antibody prevalence in racially and ethnically diverse populations. Exp. Parasitol. 2009, 121, 254–256. [Google Scholar] [CrossRef]
- Zamora, A.; Henderson, H.; Swiatlo, E. Acanthamoeba encephalitis: A Case Report and Review of Therapy. Surg. Neurol. Int. 2014, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Yagi, S.; Schuster, F.L.; Visvesvara, G.S. Demonstration of Balamuthia and Acanthamoeba mitochondrial DNA in sectioned archival brain and other tissues by the polymerase chain reaction. Parasitol. Res. 2008, 102, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.; Vijayasaradhi, M.; Uppin, M.S.; Challa, S.; Jabeen, A.; Borghain, R. Acanthamoeba meningoencephalitis in an immunocompetent patient: An autopsy case report. Neuropathology 2011, 31, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, H.; Dendana, F.; Sellami, A.; Cheikhrouhou, F.; Neji, S.; Makni, F.; Ayadi, A. Pathogenic free-living amoebe: Epidemiology and clinical review. Pathol. Biol. 2012, 60, 399–405. [Google Scholar] [CrossRef]
- Martinez, A.J. Infection of the central nervous system due to Acanthamoeba. Rev. Infect. Dis. 1991, 13, 399–402. [Google Scholar] [CrossRef]
- Das, S.; Gunasekaran, K.; Ajjampur, S.S.R.; Abraham, D.; George, T.; Janeela, M.A.; Iyadurai, R. Acanthamoeba encephalitis in immunocompetent hosts: A report of two cases. J. Fam. Med. Prim. Care 2020, 9, 1240–1243. [Google Scholar] [CrossRef]
- Khanna, V.; Shastri, B.; Anusha, G.; Mukhopadhayay, C.; Khanna, R. Acanthamoeba meningoencephalitis in immunocompetent: A case report and review of literature. Trop. Parasitol. 2014, 4, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Khurana, S.; Mewara, A.; Verma, S.; Totadri, S.K. Central nervous system infection with Acanthamoeba in a malnourished child. Case Rep. 2012, 2012, bcr2012007449. [Google Scholar] [CrossRef]
- Ranjan, R.; Handa, A.; Choudhary, A.; Kumar, S. Acanthamoeba infection in an interhemispheric ependymal cyst: A case report. Surg. Neurol. 2009, 72, 185–189. [Google Scholar] [CrossRef]
- Ghadage, D.P.; Choure, A.C.; Wankhade, A.B.; Bhore, A.V. Opportunistic free: Living amoeba now becoming a usual pathogen? Indian J. Pathol. Microbiol. 2017, 60, 601–603. [Google Scholar] [CrossRef]
- Hamide, A.; Sarkar, E.; Kumar, N.; Das, A.K.; Narayan, S.K.; Parija, S.C. Acanthameba meningoencephalitis: A case report. Neurol. India 2002, 50, 484–486. [Google Scholar] [PubMed]
- Saxena, A.; Mittal, S.; Burman, P.; Garg, P. Acanthameba meningitis with successful outcome. Indian J. Pediatr. 2009, 76, 1063–1064. [Google Scholar] [CrossRef] [PubMed]
- Hanafiah, M.; Shahizon, A.M.M.; Hamdan, M.F.; Wong, S.W.; Kanaheswari, Y. Acanthamoeba encephalitis in an immunocompeteny child and review of the imaging features of intracranical acanthamoebic infections in immunocompetent patients. Neurol. Asia 2018, 23, 179–184. [Google Scholar]
- Seijo Martinez, M.; Gonzalez-Mediero, G.; Santiago, P.; Rodriguez De Lope, A.; Diz, J.; Conde, C.; Visvesvara, G.S. Granulomatous amebic encephalitis in a patient with AIDS: Isolation of acanthamoeba sp. Group II from brain tissue and successful treatment with sulfadiazine and fluconazole. J. Clin. Microbiol. 2000, 38, 3892–3895. [Google Scholar] [CrossRef] [Green Version]
- Petry, F.; Torzewski, M.; Bohl, J.; Wilhelm-Schwenkmezger, T.; Scheid, P.; Walochnik, J.; Michel, R.; Zöller, L.; Werhahn, K.J.; Bhakdi, S.; et al. Early diagnosis of Acanthamoeba infection during routine cytological examination of cerebrospinal fluid. J. Clin. Microbiol. 2006, 44, 1903–1904. [Google Scholar] [CrossRef] [Green Version]
- Fung, K.T.; Dhillon, A.P.; McLaughlin, J.E.; Lucas, S.B.; Davidson, B.; Rolles, K.; Patch, D.; Burroughs, A.K. Cure of Acanthamoeba cerebral abscess in a liver transplant patient. Liver Transpl. 2008, 14, 308–312. [Google Scholar] [CrossRef]
- Maritschnegg, P.; Sovinz, P.; Lackner, H.; Benesch, M.; Nebl, A.; Schwinger, W.; Walochnik, J.; Urban, C. Granulomatous amebic encephalitis in a child with acute lymphoblastic leukemia successfully treated with multimodal antimicrobial therapy and hyperbaric oxygen. J. Clin. Microbiol. 2011, 49, 446–448. [Google Scholar] [CrossRef] [Green Version]
- Lackner, P.; Beer, R.; Broessner, G.; Helbok, R.; Pfausler, B.; Brenneis, C.; Auer, H.; Walochnik, J.; Schmutzhard, E. Acute granulomatous acanthamoeba encephalitis in an immunocompetent patient. Neurocrit. Care 2010, 12, 91–94. [Google Scholar] [CrossRef]
- Walochnik, J.; Aichelburg, A.; Assadian, O.; Steuer, A.; Visvesvara, G.; Vetter, N.; Aspöck, H. Granulomatous amoebic encephalitis caused by Acanthamoeba amoebae of genotype T2 in a human immunodeficiency virus-negative patient. J. Clin. Microbiol. 2008, 46, 338–340. [Google Scholar] [CrossRef] [Green Version]
- Modica, S.; Miracco, C.; Cusi, M.G.; Tordini, G.; Muzii, V.F.; Iacoangeli, F.; Nocentini, C.; Ali, I.K.M.; Roy, S.; Cerase, A.; et al. Non-granulomatous cerebellar infection by Acanthamoeba spp. in an immunocompetent host. Infection 2018, 46, 885–889. [Google Scholar] [CrossRef]
- El Sahly, H.; Udayamurthy, M.; Parkerson, G.; Hasbun, R. Survival of an AIDS patient after infection with Acanthamoeba sp. of the central nervous system. Infection 2017, 45, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.; Umar, I.; Kolyvas, G.; Bilbao, J.; Guiot, M.C.; Duplisea, K.; Qvarnstrom, Y.; Visvesvara, G.S. Treatment of granulomatous amoebic encephalitis with voriconazole and miltefosine in an immunocompetent soldier. Am. J. Trop. Med. Hyg. 2012, 87, 715–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, W.H.; Hung, C.C.; Huang, H.H.; Liang, S.Y.; Cheng, Y.J.; Ji, D.D.; Chang, S.C. First case of granulomatous amebic encephalitis caused by Acanthamoeba castellanii in Taiwan. Am. J. Trop. Med. Hyg. 2009, 81, 277–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, W. Free-Living Amoeba with Pathogenic Properties to Human and Animals, 1st ed.; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1985; pp. 8–15. [Google Scholar]
- Khan, N.A.; Siddiqui, R. The neuropathogenesis of Acanthamoeba encephalitis: Barriers to overcome. J. Cell Sci. Ther. 2011, S3. [Google Scholar] [CrossRef] [Green Version]
- Visvesvara, G.S.; Stehr-Green, J.K. Epidemiology of free-living ameba infections. J. Protozool. 1990, 37, 25S–33S. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [Green Version]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.K.; Miller, S.D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 2004, 173, 3916–3924. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.C.; Arumugam, T.V.; Xu, X.; Cheng, A.; Mughal, M.R.; Jo, D.G.; Lathia, J.D.; Siler, D.A.; Chigurupati, S.; Ouyang, X.; et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. USA 2007, 104, 13798–13803. [Google Scholar] [CrossRef] [Green Version]
- Sauter, B.; Albert, M.L.; Francisco, L.; Larson, M.; Somersan, S.; Bhardwaj, N. Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med 2000, 191, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vabulas, R.M.; Ahmad-Nejad, P.; Ghose, S.; Kirschning, C.J.; Issels, R.D.; Wagner, H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 2002, 277, 15107–15112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtkowiak-Giera, A.; Derda, M.; Kolasa-Wołosiuk, A.; Hadaś, E.; Kosik-Bogacka, D.; Solarczyk, P.; Jagodziński, P.P.; Wandurska-Nowak, E. Toll-like receptors in the brain of mice following infection with Acanthamoeba spp. Parasitol. Res. 2016, 115, 4335–4344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Elios, M.M.; Benagiano, M.; Della Bella, C.; Amedei, A. T-cell response to bacterial agents. J. Infect. Dev. Ctries. 2011, 5, 640–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, F.R.; McLaren, J.E. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int. J. Mol. Sci. 2020, 21, 6144. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.S.; O’Garra, A. Further checkpoints in Th1 development. Immunity 2002, 16, 755–758. [Google Scholar] [CrossRef] [Green Version]
- Dabbagh, K.; Lewis, D.B. Toll-like receptors and T-helper-1/T-helper-2 responses. Curr. Opin. Infect. Dis. 2003, 16, 199–204. [Google Scholar] [CrossRef]
- Fouzder, C.; Mukhuty, A.; Das, S.; Chattopadhyay, D. TLR signaling on protozoan and helminthic parasite. In Toll-Like Receptors; InTechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Massilamany, C.; Marciano-Cabral, F.; Rocha-Azevedo, B.d.; Jamerson, M.; Gangaplara, A.; Steffen, D.; Zabad, R.; Illes, Z.; Sobel, R.A.; Reddy, J. SJL mice infected with Acanthamoeba castellanii develop central nervous system autoimmunity through the generation of cross-reactive T cells for myelin antigens. PLoS ONE 2014, 9, e98506. [Google Scholar] [CrossRef] [Green Version]
- Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [Green Version]
- Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020, 9, 1313. [Google Scholar] [CrossRef]
- Yong, V.W. Metalloproteinases: Mediators of pathology and regeneration in the CNS. Nat. Rev. Neurosci. 2005, 6, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Yong, V.W.; Krekoski, C.A.; Forsyth, P.A.; Bell, R.; Edwards, D.R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 1998, 21, 75–80. [Google Scholar] [CrossRef]
- Agrawal, S.M.; Lau, L.; Yong, V.W. MMPs in the central nervous system: Where the good guys go bad. Semin. Cell Dev. Biol. 2008, 19, 42–51. [Google Scholar] [CrossRef]
- Bruschi, F.; Pinto, B. The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens 2013, 2, 105–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.; Jamerson, M.; Cabral, G.; Carlesso, A.M.; Marciano-Cabral, F. Expression of matrix metalloproteinases in Naegleria fowleri and their role in invasion of the central nervous system. Microbiology 2017, 163, 1436–1444. [Google Scholar] [CrossRef]
- Łanocha-Arendarczyk, N.; Baranowska-Bosiacka, I.; Gutowska, I.; Kolasa-Wołosiuk, A.; Kot, K.; Łanocha, A.; Metryka, E.; Wiszniewska, B.; Chlubek, D.; Kosik-Bogacka, D. The Activity of Matrix Metalloproteinases (MMP-2, MMP-9) and Their Tissue Inhibitors (TIMP-1, TIMP-3) in the Cerebral Cortex and Hippocampus in Experimental Acanthamoebiasis. Int. J. Mol. Sci. 2018, 19, 4128. [Google Scholar] [CrossRef] [Green Version]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Zigova, T.; Pencea, V.; Wiegand, S.J.; Luskin, M.B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell Neurosci. 1998, 11, 234–245. [Google Scholar] [CrossRef]
- Benraiss, A.; Chmielnicki, E.; Lerner, K.; Roh, D.; Goldman, S.A. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 2001, 21, 6718–6731. [Google Scholar] [CrossRef] [Green Version]
- Sohrabji, F.; Lewis, D.K. Estrogen-BDNF interactions: Implications for neurodegenerative diseases. Front. Neuroendocrinol. 2006, 27, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuccato, C.; Liber, D.; Ramos, C.; Tarditi, A.; Rigamonti, D.; Tartari, M.; Valenza, M.; Cattaneo, E. Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol. Res. 2005, 52, 133–139. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.R.; Conroy, A.L.; Hawkes, M.; Elphinstone, R.E.; Gamble, J.L.; Hayford, K.; Namasopo, S.; Opoka, R.O.; Liles, W.C.; Kain, K.C. Brain-derived Neurotrophic Factor Is Associated with Disease Severity and Clinical Outcome in Ugandan Children Admitted to Hospital With Severe Malaria. Pediatr. Infect. Dis. J. 2017, 36, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.A.; Vieira, E.L.; Rocha, N.P.; Castro, V.M.; Oréfice, J.L.; Barichello, T.; Costa, R.A.; Oréfice, F.; Young, L.; Teixeira, A.L. Serum levels of neurotrophic factors in active toxoplasmic retinochoroiditis. Braz. J. Infect. Dis. 2017, 21, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Łanocha-Arendarczyk, N.; Kosik-Bogacka, D.; Kot, K.; Baranowska-Bosiacka, I.; Metryka, E. Brain-derived neurotrophic factor (BDNF) in the brain cortex and hippocampus of mice infected with Acanthamoeba spp. In Proceedings of the Conference: Biotechnologia-Problemy i Wyzwania, Szczecin, Poland, 8 June 2018; pp. 86–87. Abstract book. (In Polish). [Google Scholar]
- Ibáñez, C.F. Neurotrophin-4: The odd one out in the neurotrophin family. Neurochem. Res. 1996, 21, 787–793. [Google Scholar] [CrossRef]
- Ferrer, I.; Krupinski, J.; Goutan, E.; Martí, E.; Ambrosio, S.; Arenas, E. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol. 2001, 101, 229–238. [Google Scholar] [CrossRef]
- Klintsova, A.Y.; Greenough, W.T. Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol. 1999, 9, 203–208. [Google Scholar] [CrossRef]
- Chan, K.M.; Lam, D.T.; Pong, K.; Widmer, H.R.; Hefti, F. Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochem. Res. 1996, 21, 763–767. [Google Scholar] [CrossRef]
- Chung, J.Y.; Kim, M.W.; Bang, M.S.; Kim, M. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise. PLoS ONE 2013, 8, e52461. [Google Scholar] [CrossRef] [Green Version]
- Łanocha-Arendarczyk, N.; Kot, K.; Baranowska-Bosiacka, I.; Metryka, E.; Kapczuk, P.; Kosik-Bogacka, D. Activity of neurotrophin (NT-4) in the brain cortex and hippocampus in experimental acanthamoebiasis with regard to the immunological status of the host. Ann. Parasitol. 2019, 65, 117. [Google Scholar]
- Culbertson, C.G.; Smith, J.W.; Minner, J.R. Acanthamoeba: Observations on animal pathogenicity. Science 1958, 127, 1506. [Google Scholar] [CrossRef] [PubMed]
- Culbertson, C.G.; Smith, J.W.; Cohen, H.K.; Minner, J.R. Experimental infection of mice and monkeys by Acanthamoeba. Am. J. Pathol. 1959, 35, 185–197. [Google Scholar] [PubMed]
- Culberston, C.G.; Ensminger, P.W.; Overton, W.M. Hartmennella (Acanthamoeba) experimental chronic, granulomatous brain infections produced by new isolated of low virulence. Am. J. Clin. Pathol. 1966, 46, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rucka, A. Histopathological changes in the brain and lungs of mice infected with pathogenic amoebas. Wiad. Parazytol. 1974, 2–3, 247–250. (In Polish) [Google Scholar]
- Gieryng, H.; Gieryng, R. Histopathological changes in the brain of mice infected with the amoebas from the limax group. Ann. Univ. Mariae Curie Sklodowska 1987, 16, 103–109. (In Polish) [Google Scholar]
- Martinez, A.J. Is Acanthamoeba encephalitis an opportunistic infection? Neurology 1980, 30, 567–574. [Google Scholar] [CrossRef]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Schuster, F.L.; Yagi, S.; Gavali, S.; Michelson, D.; Raghavan, R.; Blomquist, I.; Glastonbury, C.; Bollen, A.W.; Scharnhorst, D.; Reed, S.L.; et al. Under the radar: Balamuthia amebic encephalitis. Clin. Infect. Dis. 2009, 48, 879–887. [Google Scholar] [CrossRef]
- Kaul, D.R.; Lowe, L.; Visvesvara, G.S.; Farmen, S.; Khaled, Y.A.; Yanik, G.A. Acanthamoeba infection in a patient with chronic graft-versus-host disease occurring during treatment with voriconazole. Transpl. Infect. Dis. 2008, 10, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Young, A.L.; Leboeuf, N.R.; Tsiouris, S.J.; Husain, S.; Grossman, M.E. Fatal disseminated Acanthamoeba infection in a liver transplant recipient immunocompromised by combination therapies for graft-versus-host disease. Transpl. Infect. Dis. 2010, 12, 529–537. [Google Scholar] [CrossRef]
- Visvesvara, G.S.; Mirra, S.S.; Brandt, F.H.; Moss, D.M.; Mathews, H.M.; Martinez, A.J. Isolation of two strains of Acanthamoeba castellanii from human tissue and their pathogenicity and isoenzyme profiles. J. Clin. Microbiol. 1983, 18, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, A.J. Acanthamoebiasis and immunosuppression. Case report. J. Neuropathol. Exp. Neurol. 1982, 41, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Anderlini, P.; Przepiorka, D.; Luna, M.; Langford, L.; Andreeff, M.; Claxton, D.; Deisseroth, A.B. Acanthamoeba meningoencephalitis after bone marrow transplantation. Bone Marrow Transplant. 1994, 14, 459–461. [Google Scholar] [PubMed]
- Castellano-Sanchez, A.; Popp, A.C.; Nolte, F.S.; Visvesvara, G.S.; Thigpen, M.; Redei, I.; Somani, J. Acanthamoeba castellani encephalitis following partially mismatched related donor peripheral stem cell transplantation. Transpl. Infect. Dis. 2003, 5, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Murakawa, G.J.; McCalmont, T.; Altman, J.; Telang, G.H.; Hoffman, M.D.; Kantor, G.R.; Berger, T.G. Disseminated acanthamebiasis in patients with AIDS. A report of five cases and a review of the literature. Arch. Dermatol. 1995, 131, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.G.; Sattar, F.; Granwehr, B.; Aronson, J.F.; Wang, Z.; Lick, S. Disseminated acanthamoebiasis after lung transplantation. J. Heart Lung Transplant. 2006, 25, 237–240. [Google Scholar] [CrossRef]
- Afshar, K.; Boydking, A.; Ganesh, S.; Herrington, C.; McFadden, P.M. Rapidly fatal disseminated acanthamoebiasis in a single lung transplant recipient. Ann. Transplant. 2013, 18, 108–111. [Google Scholar] [CrossRef]
- Readinger, A.; Blumberg, M.; Colome-Grimmer, M.I.; Kelly, E. Disseminated Acanthamoeba infection with sporotrichoid nodules. Int. J. Dermatol. 2006, 45, 942–943. [Google Scholar] [CrossRef]
- Im, K.; Kim, D.S. Acanthamoebiasis in Korea: Two new cases with clinical cases review. Yonsei Med. J. 1998, 39, 478–484. [Google Scholar] [CrossRef]
- Mutreja, D.; Jalpota, Y.; Madan, R.; Tewari, V. Disseminated acanthamoeba infection in a renal transplant recipient: A case report. Indian J. Pathol. Microbiol. 2007, 50, 346–348. [Google Scholar]
- Gordeeva, L.M. Amoeba of limax group from the respiratory tract of man interactions with cell cultures. In Proceedings of the 4th International Congress of Parasitology, Warszawa, Poland, 19–26 August 1978; pp. 34–35. [Google Scholar]
- Gu, J.; Liu, Y.; Xie, B.; Ye, P.; Huang, J.; Lu, Z. Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed. Rep. 2018, 8, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Ahmad, S.; Irshad, R.; Goyal, Y.; Rafat, S.; Siddiqui, N.; Dev, K.; Husain, M.; Ali, S.; Mohan, A.; et al. TLRs in pulmonary diseases. Life Sci. 2019, 233, 116671. [Google Scholar] [CrossRef] [PubMed]
- Derda, M.; Wojtkowiak-Giera, A.; Kolasa-Wołosiuk, A.; Kosik-Bogacka, D.; Hadaś, E.; Jagodziński, P.P.; Wandurska-Nowak, E. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4). Exp. Parasitol. 2016, 165, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Kay, E.; Scotland, R.S.; Whiteford, J.R. Toll-like receptors: Role in inflammation and therapeutic potential. Biofactors 2014, 40, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Phythian-Adams, A.T.; Cook, P.C.; Lundie, R.J.; Jones, L.H.; Smith, K.A.; Barr, T.A.; Hochweller, K.; Anderton, S.M.; Hämmerling, G.J.; Maizels, R.M.; et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J. Exp. Med. 2010, 207, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Paul, W.E.; Zhu, J. How are T(H)2-type immune responses initiated and amplified? Nat. Rev. Immunol. 2010, 10, 225–235. [Google Scholar] [CrossRef]
- Maizels, R.M.; Balic, A.; Gomez-Escobar, N.; Nair, M.; Taylor, M.D.; Allen, J.E. Helminth parasites: Masters of regulation. Immunol. Rev. 2004, 201, 89–116. [Google Scholar] [CrossRef]
- Park, M.K.; Cho, M.K.; Kang, S.A.; Park, H.K.; Kim, D.H.; Yu, H.S. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2. PLoS ONE 2014, 9, e92726. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.T.; Yang, C.M. Inflammatory signalings involved in airway and pulmonary diseases. Mediat. Inflamm. 2013, 2013, 791231. [Google Scholar] [CrossRef] [Green Version]
- Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Cyclooxygenase pathways. Acta Biochim. Pol. 2014, 61, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors—Current status and future prospects. Eur. J. Med. Chem. 2001, 36, 109–126. [Google Scholar] [CrossRef]
- Claar, D.; Hartert, T.V.; Peebles, R.S., Jr. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev. Respir. Med. 2015, 9, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Hasturk, S.; Kemp, B.; Kalapurakal, S.K.; Kurie, J.M.; Hong, W.K.; Lee, J.S. Expression of cyclooxygenase-1 and cyclooxygenase-2 in bronchial epithelium and nonsmall cell lung carcinoma. Cancer 2002, 94, 1023–1031. [Google Scholar] [CrossRef]
- Radi, Z.A. Pathophysiology of cyclooxygenase inhibition in animal models. Toxicol. Pathol. 2009, 37, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Szymanski, K.V.; Toennies, M.; Becher, A.; Fatykhova, D.; N’Guessan, P.D.; Gutbier, B.; Klauschen, F.; Neuschaefer-Rube, F.; Schneider, P.; Rueckert, J.; et al. Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue. Eur. Respir. J. 2012, 40, 1458–1467. [Google Scholar] [CrossRef] [Green Version]
- Kosik-Bogacka, D.I.; Baranowska-Bosiacka, I.; Kolasa-Wołosiuk, A.; Lanocha-Arendarczyk, N.; Gutowska, I.; Korbecki, J.; Namięta, H.; Rotter, I. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp. Parasitol. 2016, 169, 69–76. [Google Scholar] [CrossRef]
- Łanocha-Arendarczyk, N.; Baranowska-Bosiacka, I.; Kot, K.; Gutowska, I.; Kolasa-Wołosiuk, A.; Chlubek, D.; Kosik-Bogacka, D. Expression and Activity of COX-1 and COX-2 in Acanthamoeba sp.-Infected Lungs According to the Host Immunological Status. Int. J. Mol. Sci. 2018, 19, 121. [Google Scholar] [CrossRef] [Green Version]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosakote, Y.M.; Liu, T.; Castro, S.M.; Garofalo, R.P.; Casola, A. Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am. J. Respir. Cell Mol. Biol. 2009, 41, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk, L.; Siemieniuk, E.; Skrzydlewska, E. Antioxidant potential of rat liver in experimental infection with Fasciola hepatica. Parasitol. Res. 2005, 96, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Na, B.K.; Song, K.J.; Park, M.H.; Park, Y.K.; Kim, T.S. Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitol. Res. 2012, 111, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Motavalli, M.; Khodadadi, I.; Fallah, M.; Maghsood, A.H. Effect of oxidative stress on vital indicators of Acanthamoeba castellanii (T4 genotype). Parasitol. Res. 2018, 117, 2957–2962. [Google Scholar] [CrossRef] [PubMed]
- Hadas, E.; Mazur, T. Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp. Trop. Med. Parasitol. 1993, 44, 197–200. [Google Scholar]
- Jha, B.K.; Jung, H.J.; Seo, I.; Suh, S.I.; Suh, M.H.; Baek, W.K. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species. Exp. Parasitol. 2015, 159, 100–106. [Google Scholar] [CrossRef]
- Łanocha-Arendarczyk, N.; Baranowska-Bosiacka, I.; Gutowska, I.; Kot, K.; Metryka, E.; Kosik-Bogacka, D.I. Relationship between antioxidant defense in Acanthamoeba spp. infected lungs and host immunological status. Exp. Parasitol. 2018, 193, 58–65. [Google Scholar] [CrossRef]
- Gieryng, H.; Gieryng, R.; Piróg, Z. Histological changes in the lungs of mice experimentally infected with amoebas from the limax group. Histopathological changes in the lungs. Wiad. Parazytol. 1993, 39, 367–372. (In Polish) [Google Scholar]
- Elsheikha, H.M.; Siddiqui, R.; Khan, N.A. Drug Discovery against Acanthamoeba Infections: Present Knowledge and Unmet Needs. Pathogens 2020, 9, 405. [Google Scholar] [CrossRef]
- Tunkel, A.R.; Glaser, C.A.; Bloch, K.C.; Sejvar, J.J.; Marra, C.M.; Roos, K.L.; Hartman, B.J.; Kaplan, S.L.; Scheld, W.M.; Whitley, R.J. Infectious Diseases Society of America. The management of encephalitis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 47, 303–327. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Investigational drug available directly from CDC for the treatment of infections with free-living amebae. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 666. [Google Scholar]
No. | Place of Study | Patient Details | Biological Sample | Treatment | References |
---|---|---|---|---|---|
1 | India | 22 years; IC | CSF | fluconazole, trimethoprim-sulfamethoxazole, metronidazole, rifampicin, miltefosin; for 3 months | [36] |
2 | India | 3 years, male; child on chronic malnutrition | CSF | - | [13] |
3 | India | 30 years, male; IC | CSF | rifampicin, trimethoprim-sulfamethoxazole, fluconazole; for 14 days | [37] |
4 | India | 3 years, male; malnourished child | CSF | cotrimoxazole, rifampicin, ketoconazole | [38] |
5 | India | 25 years, male; IC | frontotemporal craniotomy | rifampicin, trimethoprim-sulfamethoxazole, fluconazole | [39] |
6 | India | 2 years, male; IC | CSF | vancomycin, ceftriaxone, dexamethasone | [40] |
7 | India | 45 years, female; IC | CSF | rifampicin, cotrimoxazole, fluconazole, albendazole, carbamazepine | [41] |
8 | India | 15 years, female; IC | CSF | ketoconazole, rifampicin, cotrimoxazole; for 9 months | [42] |
9 | Malaysia | 1 year, female; IC | brain biopsy | fluconazole, trimethoprim, rifampicin; for 106 days | [43] |
10 | Spain | 33 years, male; patient with AIDS | brain biopsy | fluconazole, sulfadiazine and surgical excision of lesions | [44] |
11 | Germany | 64 years, female; IC | CSF | fluconazole, rifampicin, metronidazole, sulfadiazine; for 14 days | [45] |
12 | UK | 41 years, male; liver transplant recipient | brain tissue | rifampicin, co-trimoxazole; for 3 months | [46] |
13 | Austria | 25 months, male; patients with ALL | CSF | trimethoprim-sulfamethoxazole, fluconazole, pentamidine, miltefosine | [47] |
14 | Austria | 17 years, male; IC | CSF | fluconazole, rifampicin, cotrimoxazole; for 2 months | [48] |
15 | Austria | 25 years, male; patients with tuberculous meningitis | CSF, biopsy | fluconazole, trimethoprim-sulfamethoxazole, amphotericin B, flucytosine, sulfadiazine, miltefosine | [49] |
16 | Italy | 35 years, male; IC | brain tissue biopsy | fluconazole, trimethoprim-sulfamethoxazole, miltefosine | [50] |
17 | USA | 34 years, male; patient with HIV | CSF | trimethoprim-sulfamethoxazole, flucytosine, fluconazole, miltefosine | [51] |
18 | Canada | 38 years, male; IC | serum sample, brain biopsy | voriconazole, miltefosine | [52] |
19 | Taiwan | 63 years, male; IC | CSF | amphotericin B, rifampicin, dexamethasone | [53] |
No. | Place of Study | Patient Details | Biological Sample | References |
---|---|---|---|---|
1 | Poland | 15 years, male; patient with AML | bronchoaspirate fluid | [20] |
2 | Poland | 53 years, male; patient with ACL | bronchoaspirate fluid | [20] |
3 | Poland | newborn with atypical pneumonia | bronchoalveolar lavage (BAL) | [20] |
4 | Poland | newborn with atypical pneumonia | bronchoalveolar lavage (BAL) | [20] |
5 | Austria | 25 years, male from India; IS | lung biopsy | [21] |
6 | France | 39 years, male; heart transplant recipient | postmortem, biopsy of lungs | [22] |
7 | USA | 53 years, male; patient with ALL | postmortem, biopsy of lungs | [102] |
8 | USA | 63 years, male; liver transplant recipient | postmortem, biopsy of lungs | [103] |
9 | USA | 38 years, male; kidney transplant recipient | postmortem, biopsy of lungs | [104] |
10 | USA | 28 years, male; kidney transplant recipient | postmortem, biopsy of lungs | [105] |
11 | USA | 39 years, female; patient with CML | postmortem, biopsy of lungs | [106] |
12 | USA | 45 years, male; patient with AML | postmortem, biopsy of lungs | [107] |
13 | USA | 35 years, male; patient with AIDS | bronchial washing | [108] |
14 | USA | 60 years, male; bilateral lung transplant recipient | postmortem, biopsy of lungs | [109] |
15 | USA | 62 years, male; single lung transplant recipient | postmortem, biopsy of lungs | [110] |
16 | USA | 60 years, male; lung transplant recipient | postmortem, biopsy of lungs | [111] |
17 | Korea | 7 months, female; congenital immunodeficiency patient | bronchial washing | [112] |
18 | Japan | 52 years, male; allogenic bone marrow transplantation | postmortem, biopsy of lungs | [23] |
19 | India | 36 years, female; kidney transplant recipient | postmortem, biopsy of lungs | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, K.; Łanocha-Arendarczyk, N.; Kosik-Bogacka, D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. Int. J. Mol. Sci. 2021, 22, 1261. https://doi.org/10.3390/ijms22031261
Kot K, Łanocha-Arendarczyk N, Kosik-Bogacka D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. International Journal of Molecular Sciences. 2021; 22(3):1261. https://doi.org/10.3390/ijms22031261
Chicago/Turabian StyleKot, Karolina, Natalia Łanocha-Arendarczyk, and Danuta Kosik-Bogacka. 2021. "Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs" International Journal of Molecular Sciences 22, no. 3: 1261. https://doi.org/10.3390/ijms22031261
APA StyleKot, K., Łanocha-Arendarczyk, N., & Kosik-Bogacka, D. (2021). Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. International Journal of Molecular Sciences, 22(3), 1261. https://doi.org/10.3390/ijms22031261