A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators
Abstract
:1. Introduction
2. Results
2.1. Assay Design
2.2. Preparation and Evaluation of Recombinant Cells
2.3. Assay Optimization
2.4. Assay Validation I: Effect of the Gap Junction Blocker, Carbenoxolone
2.5. Assay Validation II: Suitability for High-Throughput Screening
2.6. Screening of a Compound Library
3. Discussion
4. Materials and Methods
4.1. Cultivation of Cells
4.2. Buffer Preparation for Cell Culture (PBS)
4.3. Expression Vectors and Molecular Cloning
4.4. Retroviral Transfection
4.5. Lipofectamine Transfection (Lipofection)
4.6. Sample Preparation for Fluorescence Microscopy
4.7. Characterization of Recombinant Cells
4.8. Buffer Preparation for Cx43 GJ Assay (HBSS + BSA)
4.9. Optimized Cx43 Gap Junction Assay
4.10. Data Evaluation and Statistical Analyis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giaume, C.; Naus, C.C.; Sáez, J.C.; Leybaert, L. Glial connexins and pannexins in the healthy and diseased brain. Physiol. Rev. 2021, 101, 93–145. [Google Scholar] [CrossRef] [PubMed]
- Vinken, M.; Vanhaecke, T.; Papeleu, P.; Snykers, S.; Henkens, T.; Rogiers, V. Connexins and their channels in cell growth and cell death. Cell. Signal. 2006, 18, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Bedner, P.; Steinhäuser, C.; Theis, M. Functional redundancy and compensation among members of gap junction protein families? Biochim. Biophys. Acta Biomembr. 2012, 1818, 1971–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salameh, A. Life cycle of connexins: Regulation of connexin synthesis and degradation. Adv. Cardiol. 2006, 42, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Kar, R.; Batra, N.; Riquelme, M.A.; Jiang, J.X. Biological role of connexin intercellular channels and hemichannels. Arch. Biochem. Biophys. 2012, 524, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Lampe, P.D.; TenBroek, E.M.; Burt, J.M.; Kurata, W.E.; Johnson, R.G.; Lau, A.F. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J. Cell Biol. 2000, 149, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Solan, J.L.; Lampe, P.D. Specific Cx43 phosphorylation events regulate gap junction turnover In Vivo. FEBS Lett. 2014, 588, 1423–1429. [Google Scholar] [CrossRef] [Green Version]
- Meggouh, F.; Benomar, A.; Rouger, H.; Tardieu, S.; Birouk, N.; Tassin, J.; Barhoumi, C.; Yahyaoui, M.; Chkili, T.; Brice, A.; et al. The first de novo mutation of the connexin 32 gene associated with X linked Charcot-Marie-tooth disease. J. Med. Genet. 1998, 35, 251–252. [Google Scholar] [CrossRef] [Green Version]
- Koppelhus, U.; Tranebjaerg, L.; Esberg, G.; Ramsing, M.; Lodahl, M.; Rendtorff, N.D.; Olesen, H.V.; Sommerlund, M. A Novel mutation in the connexin 26 gene (GJB2) in a child with clinical and histological features of Keratitis-Ichthyosis-deafness (KID) syndrome. Clin. Exp. Dermatol. 2011, 36, 142–148. [Google Scholar] [CrossRef]
- Guerrero, P.A.; Schuessler, R.B.; Davis, L.M.; Beyer, E.C.; Johnson, C.M.; Yamada, K.A.; Saffitz, J.E. Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J. Clin. Investig. 1997, 99, 1991–1998. [Google Scholar] [CrossRef]
- Gutstein, D.E.; Morley, G.E.; Tamaddon, H.; Vaidya, D.; Schneider, M.D.; Chen, J.; Chien, K.R.; Stuhlmann, H.; Fishman, G.I. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 2001, 88, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaume, A.G.; de Sousa, P.A.; Kulkarni, S.; Langille, B.L.; Zhu, D.; Davies, T.C.; Juneja, S.C.; Kidder, G.M.; Rossant, J. Cardiac malformation in neonatal mice lacking connexin43. Science 1995, 267, 1831–1834. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, J.P.C.; Melo, M.B.; Schimiti, R.B.; Bressanim, N.C.; Costa, F.F.; Costa, V.P. A Novel Mutation in the GJA1 Gene in a family with Oculodentodigital dysplasia. Arch. Ophthalmol. 2005, 123, 1422–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, N.P.; Benoit, V.; Agius, D.; Grima, M.A.; Parascandalo, R.; Hilbert, P.; Borg, I. Two novel GJA1 variants in Oculodentodigital dysplasia. Mol. Genet. Genom. Med. 2019, 7, e882. [Google Scholar] [CrossRef] [PubMed]
- Maass, K.; Ghanem, A.; Kim, J.-S.; Saathoff, M.; Urschel, S.; Kirfel, G.; Grümmer, R.; Kretz, M.; Lewalter, T.; Tiemann, K.; et al. Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol. Biol. Cell 2004, 15, 4597–4608. [Google Scholar] [CrossRef] [Green Version]
- Babica, P.; Sovadinová, I.; Upham, B.L. Scrape loading/dye transfer assay. Methods Mol. Biol. 2016, 1437, 133–144. [Google Scholar] [CrossRef]
- El-Fouly, M.H.; Trosko, J.E.; Chang, C.-C. Scrape-Loading and Dye Transfer. Exp. Cell Biol. 1987, 168, 422–430. [Google Scholar] [CrossRef]
- Ziambaras, K.; Lecanda, F.; Steinberg, T.H.; Civitelli, R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J. Bone Miner. Res. 1998, 13, 218–228. [Google Scholar] [CrossRef]
- Picoli, C.; Soleilhac, E.; Journet, A.; Barette, C.; Comte, M.; Giaume, C.; Mouthon, F.; Fauvarque, M.-O.; Charvériat, M. High-content screening identifies new inhibitors of connexin 43 gap junctions. Assay Drug Dev. Technol. 2019, 17, 240–248. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, E.J.; Lee, J. A new high-throughput screening-compatible gap junctional intercellular communication assay. BMC Biotechnol. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Haq, N.; Grose, D.; Ward, E.; Chiu, O.; Tigue, N.; Dowell, S.J.; Powell, A.J.; Chen, M.X. A high-throughput assay for Connexin 43 (Cx43, GJA1) gap junctions using codon-optimized aequorin. Assay Drug Dev. Technol. 2013, 11, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lurtz, M.M.; Louis, C.F. Intracellular calcium regulation of connexin43. Am. J. Physiol. Cell. Physiol. 2007, 293, 1806–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imanaga, I.; Hai, L.; Ogawa, K.; Matsumura, K.; Mayama, T. Phosphorylation of connexin in functional regulation of the cardiac gap junction. Exp. Clin. Cardiol. 2004, 9, 161–164. [Google Scholar] [PubMed]
- Bedner, P.; Niessen, H.; Odermatt, B.; Kretz, M.; Willecke, K.; Harz, H. Selective permeability of different connexin channels to the second messenger cyclic AMP. J. Biol. Chem. 2006, 281, 6673–6681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, F.; Binkowski, B.F.; Butler, B.L.; Stecha, P.F.; Lewis, M.K.; Wood, K.V. Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 2008, 3, 346–351. [Google Scholar] [CrossRef]
- Pettengill, M.A.; Lam, V.W.; Ojcius, D.M. The danger signal adenosine induces persistence of chlamydial infection through stimulation of A2b receptors. PLoS ONE 2009, 4, e8299. [Google Scholar] [CrossRef] [Green Version]
- Hinz, S.; Navarro, G.; Borroto-Escuela, D.; Seibt, B.F.; Ammon, Y.-C.; de Filippo, E.; Danish, A.; Lacher, S.K.; Červinková, B.; Rafehi, M.; et al. Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget 2018, 9, 13593–13611. [Google Scholar] [CrossRef] [Green Version]
- Valiunas, V. Cyclic nucleotide permeability through unopposed connexin hemichannels. Front. Pharmacol. 2013, 4, 75. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.S.; Baumgarten, I.M. Glycyrrhetinic acid derivatives: A novel class of inhibitors of gap-junctional intercellular communication. structure-activity relationships. J. Pharmacol. Exp. Ther. 1988, 246, 1104–1107. [Google Scholar]
- Burnham, M.P.; Sharpe, P.M.; Garner, C.; Hughes, R.; Pollard, C.E.; Bowes, J. Investigation of connexin 43 uncoupling and prolongation of the cardiac QRS complex in preclinical and marketed drugs. Br. J. Pharmacol. 2014, 171, 4808–4819. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chung, T.D.Y.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Von Voigtlander, P.F.; Hall, E.D.; Ochoa, M.C.; Lewis, R.A.; Triezenberg, H.J. U-54494A: A unique anticonvulsant related to kappa opioid agonists. J. Pharmacol. Exp. Ther. 1987, 243, 542–547. [Google Scholar]
- Johnson, R.D.; Camelliti, P. Role of non-myocyte gap junctions and connexin hemichannels in cardiovascular health and disease: Novel therapeutic targets? Int. J. Mol. Sci. 2018, 19, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leybaert, L.; Lampe, P.D.; Dhein, S.; Kwak, B.R.; Ferdinandy, P.; Beyer, E.C.; Laird, D.W.; Naus, C.C.; Green, C.R.; Schulz, R. Connexins in cardiovascular and neurovascular health and disease: Pharmacological implications. Pharmacol. Rev. 2017, 69, 396–478. [Google Scholar] [CrossRef] [PubMed]
- Steinhäuser, C.; Grunnet, M.; Carmignoto, G. Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 2016, 323, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Suzumura, A. Gap junctions and hemichannels composed of connexins: Potential therapeutic targets for neurodegenerative diseases. Front. Cell. Neurosci. 2014, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Nalewajska, M.; Marchelek-Myśliwiec, M.; Opara-Bajerowicz, M.; Dziedziejko, V.; Pawlik, A. connexins-therapeutic targets in cancers. Int. J. Mol. Sci. 2020, 21, 9119. [Google Scholar] [CrossRef]
- Bedner, P.; Dupper, A.; Hüttmann, K.; Müller, J.; Herde, M.K.; Dublin, P.; Deshpande, T.; Schramm, J.; Häussler, U.; Haas, C.A.; et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 2015, 138, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Manthey, D.; Willecke, K. Transfection and expression of exogenous connexins in mammalian cells. Methods Mol. Biol. 2001, 154, 187–199. [Google Scholar] [CrossRef]
- Dessauer, C.W.; Watts, V.J.; Ostrom, R.S.; Conti, M.; Dove, S.; Seifert, R. International union of basic and clinical pharmacology. CI structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol. Rev. 2017, 69, 93–139. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danish, A.; Gedschold, R.; Hinz, S.; Schiedel, A.C.; Thimm, D.; Bedner, P.; Steinhäuser, C.; Müller, C.E. A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators. Int. J. Mol. Sci. 2021, 22, 1417. https://doi.org/10.3390/ijms22031417
Danish A, Gedschold R, Hinz S, Schiedel AC, Thimm D, Bedner P, Steinhäuser C, Müller CE. A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators. International Journal of Molecular Sciences. 2021; 22(3):1417. https://doi.org/10.3390/ijms22031417
Chicago/Turabian StyleDanish, Azeem, Robin Gedschold, Sonja Hinz, Anke C. Schiedel, Dominik Thimm, Peter Bedner, Christian Steinhäuser, and Christa E. Müller. 2021. "A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators" International Journal of Molecular Sciences 22, no. 3: 1417. https://doi.org/10.3390/ijms22031417
APA StyleDanish, A., Gedschold, R., Hinz, S., Schiedel, A. C., Thimm, D., Bedner, P., Steinhäuser, C., & Müller, C. E. (2021). A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators. International Journal of Molecular Sciences, 22(3), 1417. https://doi.org/10.3390/ijms22031417